Submitted:
08 March 2024
Posted:
11 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Current Situation and Development
2.1. Optimization of Near-Field Radiation Characteristics of Temperature Measurement Antenna and Antenna Structure Parameter Inversion Technology for Pencil-Shaped Beam Distribution
2.2. Quantification of Uncertainties in Architectural Performance Bottlenecks of Microwave Radiometers and Dual-Electro-Thermal Blackbody Calibration Sources
2.3. Near-Field Temperature Contribution Weight Function Measurement of Skin Tissue and the Core Difficulty of Temperature Inversion Technology
3. Research Content and Key Technologies
3.1. A priori Knowledge Neural Network Optimization Model Combining Multi-Node Matching with Q-Value Constraints and Multi-Objective Function Constraints
3.2. Channel Phase Shifting Correction Algorithm and Calibration Link Uncertainty Calibration for Measuring Radiation Brightness Temperature Errors
3.3. Incoherent Skin Tissue Radiation Forward Model and Objective Function Constrained Deep Learning Combined Inversion Method
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Organization W, H. Global Health Observatory; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Pacheco, A.G.C.; Krohling, R.A. An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification. IEEE J BIOMED HEALTH, 2021, 25, 3554–3563. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Hong, W.; Zhang, Y. Design of High-Directivity Compact-Size Conical Horn Lens Antenna. In IEEE An-tennas and Wireless Propagation Letters; IEEE: Greenvile, SC, USA, 2014; Volume 13, pp. 467–470. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Maccarini, P.F.; Salahi, S.; Oliveira, T.R.; Pereira, P.J.S.; Limao-Vieira, P.; Snow, B.W.; Reudink, D.; Stauffer, P.R. Design and Optimization of an Ultra Wideband and Compact Microwave Antenna for Radiometric Monitoring of Brain Temperature. IEEE Trans. Biomed. Eng. 2014, 61, 2154–2160. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.M.; Ma, P.; Liu, J. , et al. Design and Implementation of a Novel Interferometric Microwave Radiometer for Human Body Temperature Measurement. SENSORS-BASEL, 2021, 21, 1619. [Google Scholar] [PubMed]
- Ma, J.Y.; Liu, J.; Tian, Y.P. , et al. Design and Implementation of Ku-Band High Directionality Antenna. IEEE T ANTENN PROPAG, 2022, 70, 11514–11525. [Google Scholar]
- Budhu, J.; Rahmat-Samii, Y. A Novel and Systematic Approach to Inhomogeneous Dielectric Lens Design Based on Curved Ray Geometrical Optics and Particle Swarm Optimization. IEEE Trans. Antennas Propag. 2019, 67, 3657–3669. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, H.; Hong, W. Multi-Stage Collaborative Machine Learning and Its Application to Antenna Modeling and Optimization. IEEE T ANTENN PROPAG, 2020, 67, 1659–1668. [Google Scholar]
- Yuan, L.; Yang, X.S.; Wang, C. , et al. Multibranch Artificial Neural Network Modeling for Inverse Estimation of Antenna Array Directivity. IEEE T ANTENN PROPAG, 2020, 68, 4417–4427. [Google Scholar]
- Yuan, L.; Wang, L.; Yang, X.S. , et al. An Efficient Artificial Neural Network Model for Inverse Design of Metasurfaces. IEEE ANTENN WIREL PR, 2021, 20, 1013–1017. [Google Scholar]
- Xiao, L.Y.; Shao, W.; Jin, F.L. , et al. Multi-Parameter Modeling with ANN for Antenna Design. IEEE T ANTENN PROPAG, 2018, 66, 3718–3723. [Google Scholar]
- Xiao, L.Y.; Shao, W.; Jin, F.L. , et al. Inverse Artificial Neural Network for Multi-Objective Antenna Design. IEEE T ANTENN PROPAG, 2021, 69, 6651–6659. [Google Scholar]
- Naseri, P.; Hum, S.V. A Generative Machine Learning-Based Approach for Inverse Design of Multilayer Metasurfaces. IEEE T ANTENN PROPAG, 2021, 69, 5725–5739. [Google Scholar] [CrossRef]
- Momenroodaki, P.; Haines, W.; Fromandi, M.; Popovic, Z. Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry. IEEE Trans. Microw. Theory Tech. 2017, 66, 2535–2545. [Google Scholar] [CrossRef]
- Goryanin, I.; Karbainov, S.; Shevelev, O.; Tarakanov, A.; Redpath, K.; Vesnin, S.; Ivanov, Y. Passive microwave radiometry in biomedical studies. Drug Discov. Today 2020, 25, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Luo, J.; Hu, A.Y. , et al. Uniform Circular Multiphase Modulation Correlation Radiometer and Its Sensitivity Analysis. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49, 1857–1863. [Google Scholar]
- Sun, G.M.; Liu, J.; Ma, J.Y. , et al. Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer. MICROMACHINES-BASEL, 2021, 12, 1202. [Google Scholar] [PubMed]
- Liu, J.; Zhang, R.Q.; Sun, G.M. , et al. Design and Implementation of High Sensitivity Microwave Radiometer. AEU-INT J ELECTRON C, 2023, 170, 1–10. [Google Scholar]
- Chen, R.H.; Luo, J.; Hu, A.Y. , et al. Uniform circular multiphase modulation correlation radiometer and its sensitivity analysis. Journal of Beijing University of Aeronautics and Astronautics, 3, 49, 1857-1863 (in Chinese).
- Jacob, K.; Schroder, A.; Murk, A. Design, Manufacturing, and Characterization of Conical Blackbody Targets With Optimized Profile. IEEE Trans. Terahertz Sci. Technol. 2017, 8, 76–84. [Google Scholar] [CrossRef]
- Houtz, D.A.; Emery, W.; Gu, D.; Walker, D.K. Brightness Temperature Calculation and Uncertainty Propagation for Conical Microwave Blackbody Targets. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 7246–7256. [Google Scholar] [CrossRef]
- Schroder, A.; Murk, A.; Wylde, R.; Schobert, D.; Winser, M. Brightness Temperature Computation of Microwave Calibration Targets. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 7104–7112. [Google Scholar] [CrossRef]
- Virone, G.; Addamo, G.; Bosisio, A.V.; Zannoni, M.; Valenziano, L.; Rizzo, D.; Radaelli, P. Thermal Vacuum Cold Target for the Metop SG MicroWave Imager. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 10348–10356. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, R.; Li, X. , et al. Wideband Microwave Calibration Target Design for Improved Directional Brightness Temperature Radiation. IEEE GEOSCI REMOTE S, 2022, 19, 1–5. [Google Scholar]
- Liu, J.; Sun, Z.L.; Sun, G.M. , et al. Design and Implementation of a Ku-Band High- Precision Blackbody Calibration Target. MICROMACHINES-BASEL. 2023, 14, 18. [Google Scholar]
- Scheeler, R. A Microwave Radiometer for Internal Body Temperature Measurement. University of Colorado at Boulder, 2013.
- Popovic, Z.; Momenroodaki, P.; Scheeler, R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Commun. Mag. 2014, 52, 118–125. [Google Scholar] [CrossRef]
- He, F. Study of Nondestructive Retrieval Method for the Measurement of Human Internal Temperature by Microwave. Huazhong University of Science and Technology, 2015.
- Qian, P.C.; Barry, M.A.; Lu, J.T. , et al. Transcatheter Microwave Ablation Can Deliver Deep and Circumferential Perivascular Nerve Injury Without Significant Arterial Injury to Provide Effective Renal Denervation. J HYPERTENS, 2019, 37, 2083–2092. [Google Scholar] [PubMed]
- Scheeler, R.; Kuester, E.F.; Popovic, Z. Sensing Depth of Microwave Radiation for Internal Body Temperature Measurement. IEEE Trans. Antennas Propag. 2013, 62, 1293–1303. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, K.; Ma, J.Y. , et al. High-Precision Temperature Inversion Algorithm for Correlative Microwave Radiometer. SENSORS-BASEL, 2021, 21, 5336. [Google Scholar] [PubMed]
- Lin, X.; Ding, Y.; Gong, Z. , et al. Hybrid Microwave Medical Imaging Approach Combining Quantitative and Qualitative Algorithms. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 438–442. [Google Scholar]
- Tisdale, K.; Bringer, A.; Kiourti, A. A Core Body Temperature Retrieval Method for Microwave Radiometry When Tissue Permittivity is Unknown. IEEE J. Electromagn. Rf Microwaves Med. Biol. 2022, 6, 470–476. [Google Scholar] [CrossRef]
- Tisdale, K.; Bringer, A.; Kiourti, A. Development of a Coherent Model for Radiometric Core Body Temperature Sensing. IEEE J. Electromagn. Rf Microwaves Med. Biol. 2022, 6, 355–363. [Google Scholar] [CrossRef]
- Groumpas, E.; Koutsoupidou, M.; Karanasiou, I.S.; Papageorgiou, C.; Uzunoglu, N. Real-Time Passive Brain Monitoring System Using Near-Field Microwave Radiometry. IEEE Trans. Biomed. Eng. 2019, 67, 158–165. [Google Scholar] [CrossRef]
- Issac, J.P.; Sugumar, S.P.; Arunachalam, K. Self-Balanced Near-Field Microwave Radiometer for Passive Tissue Thermometry. IEEE Sensors J. 2022, 22, 6544–6552. [Google Scholar] [CrossRef]
- Streeter, R.; Botello, G.S.; Hall, K. , et al. Correlation Radiometry for Subcutaneous Temperature Measurements. IEEE J ELECTROMAG RF, 2022, 6, 230–237. [Google Scholar]
- Chen, C.; Zhang, J.Q.; Lu, T.Y. , et al. Secret Key Generation for IRS-Assisted Multi-Antenna Systems: A Machine Learning-Based Approach. IEEE T INF FOREN SEC, 2024, 19, 1086–1098. [Google Scholar]
- Zhu, D.; Tao, J.Y. , Su J. L., et al. BlockMFRAs: Block-Wise Multiple-Fold Redundancy Arrays for Joint Optimization of Radiometric Sensitivity and Angular Resolution in Interferometric Radiometers. IEEE T GEOSCI REMOTE, 2024, 62, 1–15. [Google Scholar]
- Einizade, A.; Sardouie, S.H. Iterative Pseudo-Sparse Partial Least Square and Its Higher Order Variant: Application to Inference From High-Dimensional Biosignals. IEEE Trans. Cogn. Dev. Syst. 2023, 16, 296–307. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
