Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Characterization of CD34+ Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-distributed Stochastic Neighbor Embedding (T-SNE) Protocol

Version 1 : Received: 1 March 2024 / Approved: 1 March 2024 / Online: 4 March 2024 (01:30:54 CET)

A peer-reviewed article of this Preprint also exists.

Nollmann, C.; Moskorz, W.; Wimmenauer, C.; Jäger, P.S.; Cadeddu, R.P.; Timm, J.; Heinzel, T.; Haas, R. Characterization of CD34+ Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol. Cancers 2024, 16, 1320. Nollmann, C.; Moskorz, W.; Wimmenauer, C.; Jäger, P.S.; Cadeddu, R.P.; Timm, J.; Heinzel, T.; Haas, R. Characterization of CD34+ Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol. Cancers 2024, 16, 1320.

Abstract

Using multi-color flow cytometry analysis, we studied the immunophenotypical differences between leukemic blasts/LSCs from patients with AML/MDS and hematopoietic stem and progenitor cells (HSPCs) from patients in complete remission (CR) following their successful treatment. The panel of markers included CD34, CD38, CD45RA, CD123 as representatives for a hierarchical hematopoietic stem and progenitor cell (HSPC) classification as well as programmed death ligand 1 (PD-L1). Rather than restricting the evaluation on a 2- or 3-dimensional analysis, we applied a t-distributed stochastic neighbor embedding (t-SNE) approach to get a deeper insight and segregation between leukemic and normal HPSCs. For that purpose, we created a t-SNE map, which resulted in the visualization of 27 cell clusters based on their similarity concerning the composition and intensity of antigen expression. Two of these clusters were “leukemia-related” containing a great proportion of CD34+/CD38- hematopoietic stem cells (HSCs) or CD34+ cells with a strong coexpression of CD45RA/CD123, respectively. CD34+ cells within the latter cluster were also highly positive for PD-L1 reflecting their immunosuppressive capacity. Beyond this proof of principle study, the inclusion of additional markers will be helpful to refine the differentiation between normal HSPCs and leukemic cells, particularly in the context of minimal disease detection and antigen-targeted therapeutic interventions. Furthermore, we suggest a protocol for the assignment of new cell ensembles in quantitative terms, via a numerical value, the Pearson coefficient, based on a similarity comparison of the t-SNE pattern with a reference.

Keywords

Hematopoietic stem and progenitor cell (HSPC); acute myeloid leukemia (AML); Myelodysplastic syndromes (MDS); leukemic stem cell (LSC) CD34; CD38; CD45RA; CD123; PD-L1; flow cytometry; t-SNE; high-dimensional space analyses; classification; dimensionality reduction; immunophenotyping

Subject

Medicine and Pharmacology, Hematology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.