Submitted:
28 February 2024
Posted:
29 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Assessments
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Study Participants
3.2. The Relationship between Baseline Cognitive Function and CRW at the Follow-Up Endpoint
3.3. The Relationship between CRW and Cognitive Improvements during the 6-Month Treatment
| ΔBVMT-R Delayed Recall | Standardized Beta-coefficient | T | p | |
| CRW | 0.121 | 2.101 | 0.036 | |
| Gender | 0.081 | 1.415 | 0.158 | |
| Age | -0.019 | -0.333 | 0.740 | |
| Education years | -0.071 | -1.258 | 0.209 | |
| ΔPANSS Total scores | -0.222 | -2.146 | 0.033 | |
| PANSS Total scores T1 | -0.122 | -1.151 | 0.250 | |
| Treatment groups | 0.143 | 1.464 | 0.144 | |
| Antipsychotic dose (in olanzapine equivalent) | 0.140 | 1.606 | 0.109 |
| ΔSpatial Span | Standardized Beta-coefficient | T | p | |
| CRW | 0.099 | 1.707 | 0.089 | |
| Gender | -0.023 | -0.393 | 0.694 | |
| Age | 0.090 | 1.578 | 0.116 | |
| Education years | -0.044 | -0.769 | 0.442 | |
| ΔPANSS Total scores | 0.143 | 1.369 | 0.172 | |
| PANSS Total scores T1 | 0.215 | 2.005 | 0.046 | |
| Treatment groups | -0.030 | -0.309 | 0.757 | |
| Antipsychotic dose (in olanzapine equivalent) | -0.008 | -0.090 | 0.929 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of Metabolic Syndrome and Its Components in People with Schizophrenia and Related Psychotic Disorders, Bipolar Disorder and Major Depressive Disorder: A Systematic Review and Meta-Analysis. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2015, 14, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet Lond. Engl. 2014, 384, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Aoki, R.; Saito, T.; Ninomiya, K.; Shimasaki, A.; Ashizawa, T.; Ito, K.; Ikeda, M.; Iwata, N. Shared Genetic Components between Metabolic Syndrome and Schizophrenia: Genetic Correlation Using Multipopulation Data Sets. Psychiatry Clin. Neurosci. 2022, 76, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Vancampfort, D.; Sweers, K.; van Winkel, R.; Yu, W.; De Hert, M. Prevalence of Metabolic Syndrome and Metabolic Abnormalities in Schizophrenia and Related Disorders--a Systematic Review and Meta-Analysis. Schizophr. Bull. 2013, 39, 306–318. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic Syndrome in Psychiatric Patients: Overview, Mechanisms, and Implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Mazereel, V.; Detraux, J.; Vancampfort, D.; van Winkel, R.; De Hert, M. Impact of Psychotropic Medication Effects on Obesity and the Metabolic Syndrome in People With Serious Mental Illness. Front. Endocrinol. 2020, 11, 573479. [Google Scholar] [CrossRef]
- Liu, N.H.; Daumit, G.L.; Dua, T.; Aquila, R.; Charlson, F.; Cuijpers, P.; Druss, B.; Dudek, K.; Freeman, M.; Fujii, C.; et al. Excess Mortality in Persons with Severe Mental Disorders: A Multilevel Intervention Framework and Priorities for Clinical Practice, Policy and Research Agendas. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2017, 16, 30–40. [Google Scholar] [CrossRef]
- Campforts, B.; Drukker, M.; Crins, J.; van Amelsvoort, T.; Bak, M. Association between Antipsychotic Medication and Clinically Relevant Weight Change: Meta-Analysis. BJPsych Open 2023, 9, e18. [Google Scholar] [CrossRef]
- Pérez-Iglesias, R.; Martínez-García, O.; Pardo-Garcia, G.; Amado, J.A.; Garcia-Unzueta, M.T.; Tabares-Seisdedos, R.; Crespo-Facorro, B. Course of Weight Gain and Metabolic Abnormalities in First Treated Episode of Psychosis: The First Year Is a Critical Period for Development of Cardiovascular Risk Factors. Int. J. Neuropsychopharmacol. 2014, 17, 41–51. [Google Scholar] [CrossRef]
- Green, M.F. Impact of Cognitive and Social Cognitive Impairment on Functional Outcomes in Patients with Schizophrenia. J. Clin. Psychiatry 2016, 77 (Suppl 2), 8–11. [Google Scholar] [CrossRef]
- McCleery, A.; Ventura, J.; Kern, R.S.; Subotnik, K.L.; Gretchen-Doorly, D.; Green, M.F.; Hellemann, G.S.; Nuechterlein, K.H. Cognitive Functioning in First-Episode Schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) Profile of Impairment. Schizophr. Res. 2014, 157, 33–39. [Google Scholar] [CrossRef]
- Dickinson, D.; Ragland, J.D.; Gold, J.M.; Gur, R.C. General and Specific Cognitive Deficits in Schizophrenia: Goliath Defeats David? Biol. Psychiatry 2008, 64, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, J.M.; Karcher, N.R.; Barch, D.M. Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. Neuropsychol. Rev. 2018, 28, 509–533. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.-J.; Hei, G.-R.; Yang, Y.; Liu, C.-C.; Xiao, J.-M.; Long, Y.-J.; Huang, J.; Zhao, J.-P.; Wu, R.-R. The Association Between Cognitive Deficits and Clinical Characteristic in First-Episode Drug Naïve Patients With Schizophrenia. Front. Psychiatry 2021, 12, 638773. [Google Scholar] [CrossRef]
- Nielsen, R.E.; Levander, S.; Kjaersdam Telléus, G.; Jensen, S.O.W.; Østergaard Christensen, T.; Leucht, S. Second-Generation Antipsychotic Effect on Cognition in Patients with Schizophrenia--a Meta-Analysis of Randomized Clinical Trials. Acta Psychiatr. Scand. 2015, 131, 185–196. [Google Scholar] [CrossRef]
- Assuncao, N.; Sudo, F.K.; Drummond, C.; de Felice, F.G.; Mattos, P. Metabolic Syndrome and Cognitive Decline in the Elderly: A Systematic Review. PloS One 2018, 13, e0194990. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; Michaelides, M.P.; Constantinidou, F. The Role of Metabolic Syndrome Factors on Cognition Using Latent Variable Modeling: The Neurocognitive Study on Aging. J. Clin. Exp. Neuropsychol. 2018, 40, 1030–1043. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Z.; Wei, Q.; Lv, H.; Wu, R.; Zhao, J. The Relationship between Obesity and Neurocognitive Function in Chinese Patients with Schizophrenia. BMC Psychiatry 2013, 13, 109. [Google Scholar] [CrossRef]
- Lindenmayer, J.P.; Khan, A.; Kaushik, S.; Thanju, A.; Praveen, R.; Hoffman, L.; Cherath, L.; Valdez, G.; Wance, D. Relationship between Metabolic Syndrome and Cognition in Patients with Schizophrenia. Schizophr. Res. 2012, 142, 171–176. [Google Scholar] [CrossRef]
- Depp, C.A.; Strassnig, M.; Mausbach, B.T.; Bowie, C.R.; Wolyniec, P.; Thornquist, M.H.; Luke, J.R.; McGrath, J.A.; Pulver, A.E.; Patterson, T.L.; et al. Association of Obesity and Treated Hypertension and Diabetes with Cognitive Ability in Bipolar Disorder and Schizophrenia. Bipolar Disord. 2014, 16, 422–431. [Google Scholar] [CrossRef]
- Goughari, A.S.; Mazhari, S.; Pourrahimi, A.M.; Sadeghi, M.M.; Nakhaee, N. Associations between Components of Metabolic Syndrome and Cognition in Patients with Schizophrenia. J. Psychiatr. Pract. 2015, 21, 190–197. [Google Scholar] [CrossRef]
- Luckhoff, H.K.; Kilian, S.; Olivier, M.R.; Phahladira, L.; Scheffler, F.; du Plessis, S.; Chiliza, B.; Asmal, L.; Emsley, R. Relationship between Changes in Metabolic Syndrome Constituent Components over 12 Months of Treatment and Cognitive Performance in First-Episode Schizophrenia. Metab. Brain Dis. 2019, 34, 469–476. [Google Scholar] [CrossRef]
- Lowe, C.J.; Reichelt, A.C.; Hall, P.A. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends Cogn. Sci. 2019, 23, 349–361. [Google Scholar] [CrossRef]
- Martin, A.A.; Davidson, T.L. Human Cognitive Function and the Obesogenic Environment. Physiol. Behav. 2014, 136, 185–193. [Google Scholar] [CrossRef]
- Bond, D.J.; Torres, I.J.; Lee, S.S.; Kozicky, J.-M.; Silveira, L.E.; Dhanoa, T.; Lam, R.W.; Yatham, L.N. Lower Cognitive Functioning as a Predictor of Weight Gain in Bipolar Disorder: A 12-Month Study. Acta Psychiatr. Scand. 2017, 135, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yuan, Y.-B.; Yu, X.; Zhao, J.-P.; Wang, C.-Y.; Lu, Z.; Yang, F.-D.; Deng, H.; Wu, Y.-F.; Ungvari, G.S. The Chinese First-Episode Schizophrenia Trial: Background and Study Design. East Asian Arch. Psychiatry 2014, 24, 169–173. [Google Scholar] [PubMed]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B. Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0) New York. NY Biom. Res. Dep. N. Y. State Psychiatr. Inst. 1995. [Google Scholar]
- SI, T.; Yang, J.; Shu, L. The Reliability, Validity of PANSS and Its Implication. Chin. Ment. Health J. 2004, 18, 45–47. [Google Scholar]
- Heaton, R.K.; Cysique, L.A.; Jin, H.; Shi, C.; Yu, X.; Letendre, S.; Franklin, D.R.; Ake, C.; Vigil, O.; Atkinson, J.H.; et al. Neurobehavioral Effects of Human Immunodeficiency Virus Infection among Former Plasma Donors in Rural China. J. Neurovirol. 2008, 14, 536–549. [Google Scholar] [CrossRef]
- Shi, C.; Yu, X.; Wu, Z.; Heaton, R.; Hua, J.; Marcotte, T. Neuropsychological Feasibility Study among HIV+/AIDS Subjects in China. Chin. Ment. Health J. 2005, 19, 11–14. [Google Scholar]
- Huang, B.-J.; Pu, C.-C.; Miao, Q.; Ma, K.; Cheng, Z.; Shi, C.; Yu, X. Neurocognitive Trajectories and Their Clinical Implications in First-Episode Schizophrenia after One Year of Antipsychotic Treatment. Schizophr. Res. 2022, 241, 292–297. [Google Scholar] [CrossRef]
- Bobes, J.; Rejas, J.; Garcia-Garcia, M.; Rico-Villademoros, F.; García-Portilla, M.P.; Fernández, I.; Hernández, G.; EIRE Study Group. Weight Gain in Patients with Schizophrenia Treated with Risperidone, Olanzapine, Quetiapine or Haloperidol: Results of the EIRE Study. Schizophr. Res. 2003, 62, 77–88. [Google Scholar] [CrossRef]
- Pu, C.; Qiu, Y.; Zhou, T.; Yang, F.; Lu, Z.; Wang, C.; Deng, H.; Zhao, J.; Shi, C.; Yu, X. Gender Differences of Neurocognitive Functioning in Patients with First-Episode Schizophrenia in China. Compr. Psychiatry 2019, 95, 152132. [Google Scholar] [CrossRef]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 2016, 42 (Suppl 1), S90–S94. [Google Scholar] [CrossRef]
- Bora, E.; Murray, R.M. Meta-Analysis of Cognitive Deficits in Ultra-High Risk to Psychosis and First-Episode Psychosis: Do the Cognitive Deficits Progress over, or after, the Onset of Psychosis? Schizophr. Bull. 2014, 40, 744–755. [Google Scholar] [CrossRef]
- Vázquez-Bourgon, J.; Pérez-Iglesias, R.; Ortiz-García de la Foz, V.; Suárez Pinilla, P.; Díaz Martínez, Á.; Crespo-Facorro, B. Long-Term Metabolic Effects of Aripiprazole, Ziprasidone and Quetiapine: A Pragmatic Clinical Trial in Drug-Naïve Patients with a First-Episode of Non-Affective Psychosis. Psychopharmacology (Berl.) 2018, 235, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Stinson, E.J.; Krakoff, J.; Gluck, M.E. Depressive Symptoms and Poorer Performance on the Stroop Task Are Associated with Weight Gain. Physiol. Behav. 2018, 186, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Storch Jakobsen, A.; Speyer, H.; Nørgaard, H.C.B.; Hjorthøj, C.; Krogh, J.; Mors, O.; Nordentoft, M. Associations between Clinical and Psychosocial Factors and Metabolic and Cardiovascular Risk Factors in Overweight Patients with Schizophrenia Spectrum Disorders - Baseline and Two-Years Findings from the CHANGE Trial. Schizophr. Res. 2018, 199, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Spetter, M.S. Cognitive Control of Eating: The Role of Memory in Appetite and Weight Gain. Curr. Obes. Rep. 2018, 7, 50–59. [Google Scholar] [CrossRef]
- Zhang, Z.; Coppin, G. To What Extent Memory Could Contribute to Impaired Food Valuation and Choices in Obesity? Front. Psychol. 2018, 9, 2523. [Google Scholar] [CrossRef]
- Dipasquale, S.; Pariante, C.M.; Dazzan, P.; Aguglia, E.; McGuire, P.; Mondelli, V. The Dietary Pattern of Patients with Schizophrenia: A Systematic Review. J. Psychiatr. Res. 2013, 47, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Gluck, M.E.; Viswanath, P.; Stinson, E.J. Obesity, Appetite, and the Prefrontal Cortex. Curr. Obes. Rep. 2017, 6, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Snelleksz, M.; Rossell, S.L.; Gibbons, A.; Nithianantharajah, J.; Dean, B. Evidence That the Frontal Pole Has a Significant Role in the Pathophysiology of Schizophrenia. Psychiatry Res. 2022, 317, 114850. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.Y.; Liu, J.; Lee, T.M.C.; Tao, J.; Wong, A.W.K.; Chau, B.K.H.; Chen, L.; Chan, C.C.H. Fronto-Cerebellar Connectivity Mediating Cognitive Processing Speed. NeuroImage 2021, 226, 117556. [Google Scholar] [CrossRef]
- Whitelock, V.; Nouwen, A.; van den Akker, O.; Higgs, S. The Role of Working Memory Sub-Components in Food Choice and Dieting Success. Appetite 2018, 124, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.M.; Redden, J.P. Remembering Satiation: The Role of Working Memory in Satiation. J. Consum. Res. 2017, 44, 633–650. [Google Scholar] [CrossRef]
- Byrne, M.E.; Tanofsky-Kraff, M.; Lavender, J.M.; Parker, M.N.; Shank, L.M.; Swanson, T.N.; Ramirez, E.; LeMay-Russell, S.; Yang, S.B.; Brady, S.M.; et al. Bridging Executive Function and Disinhibited Eating among Youth: A Network Analysis. Int. J. Eat. Disord. 2021, 54, 721–732. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic Response Is Associated With Antipsychotic-Induced Weight Gain in Drug-Naive First-Episode Patients With Schizophrenia: An 8-Week Prospective Study. J. Clin. Psychiatry 2021, 82, 20m13469. [Google Scholar] [CrossRef]
- Luckhoff, H.; Phahladira, L.; Scheffler, F.; Asmal, L.; du Plessis, S.; Chiliza, B.; Kilian, S.; Emsley, R. Weight Gain and Metabolic Change as Predictors of Symptom Improvement in First-Episode Schizophrenia Spectrum Disorder Patients Treated over 12 months. Schizophr. Res. 2019, 206, 171–176. [Google Scholar] [CrossRef]
- Aznar, S.; Hervig, M.E.-S. The 5-HT2A Serotonin Receptor in Executive Function: Implications for Neuropsychiatric and Neurodegenerative Diseases. Neurosci. Biobehav. Rev. 2016, 64, 63–82. [Google Scholar] [CrossRef]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharm. Basel Switz. 2021, 14, 238. [Google Scholar] [CrossRef]
- Chen, W.; Cai, W.; Hoover, B.; Kahn, C.R. Insulin Action in the Brain: Cell Types, Circuits, and Diseases. Trends Neurosci. 2022, 45, 384–400. [Google Scholar] [CrossRef]
- Agarwal, S.M.; Kowalchuk, C.; Castellani, L.; Costa-Dookhan, K.A.; Caravaggio, F.; Asgariroozbehani, R.; Chintoh, A.; Graff-Guerrero, A.; Hahn, M. Brain Insulin Action: Implications for the Treatment of Schizophrenia. Neuropharmacology 2020, 168, 107655. [Google Scholar] [CrossRef] [PubMed]
- El-Missiry, A.; Elbatrawy, A.; El Missiry, M.; Moneim, D.A.; Ali, R.; Essawy, H. Comparing Cognitive Functions in Medication Adherent and Non-Adherent Patients with Schizophrenia. J. Psychiatr. Res. 2015, 70, 106–112. [Google Scholar] [CrossRef]
- Wu, H.; Siafis, S.; Hamza, T.; Schneider-Thoma, J.; Davis, J.M.; Salanti, G.; Leucht, S. Antipsychotic-Induced Weight Gain: Dose-Response Meta-Analysis of Randomized Controlled Trials. Schizophr. Bull. 2022, 48, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Hidese, S.; Matsuo, J.; Ishida, I.; Hiraishi, M.; Teraishi, T.; Ota, M.; Hattori, K.; Kunugi, H. Relationship of Handgrip Strength and Body Mass Index With Cognitive Function in Patients With Schizophrenia. Front. Psychiatry 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- ian, Y.; Liu, D.; Wang, D.; Wang, J.; Xu, H.; Dai, Q.; Andriescue, E.C.; Wu, H.E.; Xiu, M.; Chen, D.; et al. Obesity in Chinese Patients with Chronic Schizophrenia: Prevalence, Clinical Correlates and Relationship with Cognitive Deficits. Schizophr. Res. 2020, 215, 270–276. [Google Scholar] [CrossRef]
- Bora, E.; Akdede, B.B.; Alptekin, K. The Relationship between Cognitive Impairment in Schizophrenia and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Psychol. Med. 2017, 47, 1030–1040. [Google Scholar] [CrossRef]
- MacKenzie, N.E.; Kowalchuk, C.; Agarwal, S.M.; Costa-Dookhan, K.A.; Caravaggio, F.; Gerretsen, P.; Chintoh, A.; Remington, G.J.; Taylor, V.H.; Müeller, D.J.; et al. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front. Psychiatry 2018, 9, 622. [Google Scholar] [CrossRef]
- Mohorko, N.; Černelič-Bizjak, M.; Poklar-Vatovec, T.; Grom, G.; Kenig, S.; Petelin, A.; Jenko-Pražnikar, Z. Weight Loss, Improved Physical Performance, Cognitive Function, Eating Behavior, and Metabolic Profile in a 12-Week Ketogenic Diet in Obese Adults. Nutr. Res. N. Y. N 2019, 62, 64–77. [Google Scholar] [CrossRef]
- Adamowicz, K.; Mazur, A.; Mak, M.; Samochowiec, J.; Kucharska-Mazur, J. Metabolic Syndrome and Cognitive Functions in Schizophrenia-Implementation of Dietary Intervention. Front. Psychiatry 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kimhy, D.; Vakhrusheva, J.; Bartels, M.N.; Armstrong, H.F.; Ballon, J.S.; Khan, S.; Chang, R.W.; Hansen, M.C.; Ayanruoh, L.; Lister, A.; et al. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial. Schizophr. Bull. 2015, 41, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.; Campbell, E.; Dray, J.; Bartlem, K.; Wye, P.; Hanly, G.; Gibson, L.; Fehily, C.; Bailey, J.; Wynne, O.; et al. Systematic Review of Lifestyle Interventions to Improve Weight, Physical Activity and Diet among People with a Mental Health Condition. Syst. Rev. 2022, 11, 198. [Google Scholar] [CrossRef]
- Stevens, H.; Smith, J.; Bussey, L.; Innerd, A.; McGeechan, G.; Fishburn, S.; Giles, E. Weight Management Interventions for Adults Living with Overweight or Obesity and Severe Mental Illness: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2023, 130, 536–552. [Google Scholar] [CrossRef] [PubMed]
| N=333 | Baseline Mean (SD) |
6-month follow-up Mean (SD) | t | p |
| Processing speed | ||||
| TRAIL A | 49.82 (23.26) | 40.01 (16.77) | 9.613 | <0.001 |
| CTT1 | 57.21 (29.34) | 46.89 (27.64) | 6.764 | <0.001 |
| Animals-Naming | 17.02 (5.58) | 17.00 (5.58) | 0.085 | 0.932 |
| Stroop Word | 79.39 (21.30) | 82.43 (18.18) | -3.221 | 0.001 |
| Stroop Color | 54.00 (16.91) | 56.58 (14.48) | -3.734 | <0.001 |
| Vocabulary learning and memory | ||||
| HVLT-R Learning (total 3 trials) | 22.16 (6.41) | 22.52 (5.35) | -1.054 | 0.293 |
| HVLT-R delayed recall | 7.57 (2.93) | 7.49 (2.70) | 0.454 | 0.650 |
| Visual learning and memory | ||||
| BVMT-R Learning (total 3 trials) | 22.18 (7.50) | 24.01 (6.89) | -5.039 | <0.001 |
| BVMT-R delayed recall | 8.97 (2.94) | 9.41 (2.45) | -2.949 | 0.003 |
| Working memory and attention | ||||
| Spatial Span | 14.98 (3.81) | 16.05 (3.48) | -5.911 | <0.001 |
| PASAT | 31.01 (11.00) | 37.16 (9.52) | -12.162 | <0.001 |
| Executive function | ||||
| CTT2 | 119.58 (58.24) | 95.63 (36.53) | 8.850 | <0.001 |
| Stroop Unconscious | 31.34 (11.33) | 34.01 (10.06) | -5.605 | <0.001 |
| Fine motor function | ||||
| Peg-SD | 85.46 (28.65) | 77.52 (17.25) | 5.860 | <0.001 |
| Peg-SN | 95.02 (32.64) | 90.02 (24.85) | 3.164 | 0.002 |
| Body Weight | 58.54 (11.18) | 64.89 (11.14) | -21.147 | <0.001 |
| OR | 95% CI | p | |
| Model 1 | |||
| Processing speed T1 | 0.837 | (0.735, 0.954) | 0.007 |
| Gender | 0.703 | (0.417, 1.183) | 0.185 |
| Age | 0.972 | (0.936, 1.008) | 0.129 |
| BMI T1 | 0.769 | (0.702, 0.844) | <0.001 |
| Treated with olanzapine | 2.884 | (1.648, 5.050) | <0.001 |
| Model 2 | |||
| Working memory and attention T1 | 0.889 | (0.794, 0.996) | 0.043 |
| Gender | 0.771 | (0.462, 1.285) | 0.318 |
| Age | 0.985 | (0.951, 1.021) | 0.402 |
| BMI T1 | 0.769 | (0.701, 0.844) | <0.001 |
| Treated with olanzapine | 2.851 | (1.632, 4.981) | <0.001 |
| Model 3 | |||
| Executive function T1 | 0.863 | (0.777, 0.958) | 0.006 |
| Gender | 0.724 | (0.430, 1.218) | 0.223 |
| Age | 0.969 | (0.933, 1.006) | 0.099 |
| BMI T1 | 0.768 | (0.699, 0.843) | <0.001 |
| Treated with olanzapine | 2.831 | (1.622, 4.943) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).