Submitted:
28 February 2024
Posted:
29 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction and Investigation Goal
2. Critique of Current Literature
3. Research Philosophy
3.1. Theory of Predatory Fields in Science
- ▪
-
Postulates
- −
- Let A the space or domain in which scientific fields and technologies evolve
- −
- Let α1, α2, …, αj, …, αn scientific fields or technologies that birth, evolve and decline in A over time
- −
- Let τ a new scientific field or technology that emerges suddenly in A
- ▪
- Prediction
3.2. Research Design
- ▪
- Case study to test the prediction of predatory research field or technology: research fields and technologies of transformers and Convolutional Neural Network (CNN)
- ▪
- Measures and sources of data
- ▪
- Logic structure of search
- A)
- Search strategy for Transformers
- ☐
-
Transformers, period under study 2017-2023Domain Restricted for Transformers is called DTRDTR= ("machine learning" OR "data science" OR "artificial intelligence")AND("large language models" OR "LLM" OR "Natural Language Processing" OR "Natural Languages" OR "Sentiment Analysis" OR "Text Mining" OR "Question Answering Systems" OR "Semantic Web" OR "Chatbot" OR "Knowledge Representation" OR "Natural Language Understanding" OR "Text-mining" OR "Opinion Mining" OR "Topic Modeling" OR "Word Embedding")OrDTR= (D) AND ("large language models" OR "LLM" OR "Natural Language Processing" OR "Natural Languages" OR "Sentiment Analysis" OR "Text Mining" OR "Question Answering Systems" OR "Semantic Web" OR "Chatbot" OR "Knowledge Representation" OR "Natural Language Understanding" OR "Text-mining" OR "Opinion Mining" OR "Topic Modeling" OR "Word Embedding")In order to detect the impact of Transformers (TRF) in science that is also used with other terms, the query is given by:TRF= (DTR) AND ("bert" OR "chatgpt" OR "transformer" OR "attention mechanism"). This set TFR includes the technology with predatory behaviour.The complement of set TRF is TRFC :TRFC = (DTR) AND NOT ("bert" OR "chatgpt" OR "transformer" OR "attention mechanism").This set included the technologies that have been predated by TRF.Of course, TRF+ TRFC =DTR
- B)
- Search strategy for CNN
- ☐
- Convolutional Neural networks, in short CNN, period under study before 2017, year of the emergence of Transformers
- Domain Restricted for CNN is called DCNN
- DCNN= ("machine learning" OR "data science" OR "artificial intelligence")
- AND
- ("computer vision" OR "image recognition" OR "Image Processing" OR "Object Detection" OR "Image Segmentation" OR "Image Enhancement" OR "Object Recognition" OR "Image Analysis" OR "Image Classification" OR "Images Classification" OR "Face Recognition" OR "Machine Vision" OR "Image Interpretation" OR "Gesture Recognition" OR "Machine-vision" OR "Augmented Reality")
- Or
- DCNN= (D) AND ("computer vision" OR "image recognition" OR "Image Processing" OR "Object Detection" OR "Image Segmentation" OR "Image Enhancement" OR "Object Recognition" OR "Image Analysis" OR "Image Classification" OR "Images Classification" OR "Face Recognition" OR "Machine Vision" OR "Image Interpretation" OR "Gesture Recognition" OR "Machine-vision" OR "Augmented Reality")
- In order to detect the impact of CNN, the query is given by:
- CNN=(DCNN) AND ("convolutional neural network" OR "CNN"). This set CNN includes the technology with predatory behaviour.
- The complement of set CNN is CNN C is
- CNN C = (DCNN) AND NOT ("convolutional neural network" OR "CNN"). This set included the technologies that have been predated by CNN.
- Moreover, CNN+CNNC=DCNN
- ▪
- Samples
- Set of Transformers TRF: 4,322 scientific documents (all data available from 1961 to 2023).
- Complement of set TRF, TRFC : 55,120 scientific documents (all data available from 1972 to 2023).
- Set of CNN: 21,967 scientific documents (all data available from 1997 to 2023).
- Complement set of CNN, CNN C: 91,056 scientific documents (all data available from 1965 to 2023).
- ▪
- Data and information analysis procedures
4. Analysis of Data and Test of the Prediction
4.1. Pattens of Temporal Change
| Transformers | Domain excluded Transformers, representing all Preys | |
| Publications | Rate% | Rate % |
| rTRF = Exponential growth 2016-2023 | 80.58 | 13.83 |
| r’TRF = Exponential growth 2021-2023 | 32.51 | −1.00 |
| CNN | Domain excluded CNN with all Preys | |
| Publications | Rate% | Rate % |
| r CNN= Exponential growth 1997-2015 | 23.52 | 13.27 |
| r’CNN = Exponential growth 2015-2023 | 47.05 | 26.79 |
| r’’CNN = Exponential growth 1997-2023 | 32.51 | 15.27 |
| Dependent variable Publications | Constant α |
Coefficient β |
R2 | F | Period |
| Log10 Pubs Transformers | 0.45*** | 0.38*** (0.034) |
0.95 (0.222) |
125.47*** | 2016-2023 |
| Log10 Pubs not transformers | 3.29*** | 0.08*** (0.011) |
0.89 (0.068) |
50.45*** | |
| Log10 Pubs CNN | −0.81*** | 0.16*** (0.015) |
0.83 (0.584) |
113.40*** | 1997-2023 |
| Log10 Pubs not CNN | 2.24*** | 0.07*** (0.004) |
0.91 (0.177) |
247.00*** |


4.2. Patterns of Morphological Change of Transformers and CNN in the Domain of LLM


5. Discussions
5.1. Explanations of Results
5.2. Deduction for General Properties of Predatory Research Field
- a)
-
Let PTi a research field i having predatory behaviourLet Prj research fields that are preys in the inter-related domain D of i; j=1, 2, …, m(PTi, Prj )⊆Dt=year of emergence of PTiσi=growth rate of predator PTiτ j =growth rate of pray Pr jA predatory behaviour of PTi in the domain D is when at t+nσi>0, and σi >2 τ j , ∀ j=1, 2, …, m
- b)
- Predatory research fields is always associated with some comparable established research fields/technologies (pray ) in markets.
- c)
- The long-run behavior and evolution of any predatory technology is not independent of from the behavior of other comparable technologies.
- d)
- In the short run, predatory research fields/technologies destroy with a rapid growth alternative technologies and lay the foundations for radical shifts driven by clusters of radical innovations.
- e)
- A predatory behaviour, in a short period of time, increases its share in the related domain occupying the space of alternative technologies/research fields and laying the foundation to be a dominant research field/technology for supporting a major scientific and technological change.
- f)
- In the long run, predatory research field/technology has a series of technological advances of its own resulting from various major and minor innovations that pave the technological direction to be a dominant technology over other established technologies/research field in markets.
6. Conclusions
5.1. Theoretical Implications
5.2. Managerial and Policy Implications
5.3. Limitations and Ideas for Future Research
Acknowledgments
References
- Adner R (2002) When are technologies disruptive: a demand-based view of the emergence of competition. 6: Strateg Manag J 23.
- Adner R, Zemsky P (2005) Disruptive technologies and the emergence of competition. 2: RAND J Econ 36(2 (Summer)).
- Amarlou, A. , & Coccia, M. Estimation of diffusion modelling of unhealthy nanoparticles by using natural and safe microparticles. Nanochemistry Research 2023, 8, 117–121. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bontempi, E.; Coccia, M.; Quina, M.; Shaaban, M. Sustainable strategic materials recovery, what’s next? Next Sustainability, VSI: Sustainable strategic materials recovery_Editorial, n. 100006. 2023. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bontempi, E.; Coccia, M.; Quina, M.; Shaaban, M. Sustainable strategic materials recovery, what’s next? Next Sustainability, VSI: Sustainable strategic materials recovery_Editorial, n. 100006. 2023. [Google Scholar] [CrossRef]
- Arthur B., W. 2009. The Nature of Technology. What it is and How it Evolves. Free Press, Simon & Schuster, London.
- Assael, Yannis; Sommerschield, Thea; Shillingford, Brendan; Bordbar, Mahyar; Pavlopoulos, John; Chatzipanagiotou, Marita; Androutsopoulos, Ion; Prag, Jonathan; de Freitas, Nando (2022). Restoring and attributing ancient texts using deep neural networks. Nature. 2: 603 (7900), 7900.
- Barton, C.M. Complexity, Social Complexity, and Modeling. J. Archaeol. Method Theory 2014, 21, 306–324. [Google Scholar] [CrossRef]
- Basalla, G. 1988. The History of Technology. Cambridge University Press, Cambridge.
- Batra, K. , Zorn, K.M., Foil, D.H., (...), Lane, T.R., Ekins, S. 2021. Quantum Machine Learning Algorithms for Drug Discovery Applications, Journal of Chemical Information and Modeling, 61(6), pp. 2641. [Google Scholar]
- Bettencourt, L.M.; Kaiser, D.I.; Kaur, J. Scientific discovery and topological transitions in collaboration networks. J. Inf. 2009, 3, 210–221. [Google Scholar] [CrossRef]
- Börner, K.; Glänzel, W.; Scharnhorst, A.; Besselaar, P.v.D. Modeling science: studying the structure and dynamics of science. Scientometrics 2011, 89, 347–348. [Google Scholar] [CrossRef]
- Calabrese, G.; Coccia, M.; Rolfo, S. Strategy and market management of new product development and incremental innovation: evidence from Italian SMEs. Int. J. Prod. Dev. 2005, 2, 170. [Google Scholar] [CrossRef]
- Carberry, D. , Nourbakhsh A., Karon, J., (...), Andersson, M.P., Mansouri, S.S.2021. Building Knowledge Capacity for Quantum Computing in Engineering Education, Computer Aided Chemical Engineering 50, pp. 2065. [Google Scholar]
- Cavallo, E.; Ferrari, E.; Coccia, M. Likely technological trajectories in agricultural tractors by analysing innovative attitudes of farmers. Int. J. Technol. Policy Manag. 2015, 15, 158. [Google Scholar] [CrossRef]
- Coccia, M. (2019) Theories of Revolution. In: Farazmand A. (eds) Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. [CrossRef]
- Coccia, M. Metrics of R&D performance and management of public research labs, “IEMC” 03 Proceedings. Managing Technologically Driven Organizations: The Human Side of Innovation and Change. 2003; 231–235. [Google Scholar] [CrossRef]
- Coccia, M. Spatial Metrics of the Technological Transfer: Analysis and Strategic Management. Technol. Anal. Strat. Manag. 2004, 16, 31–51. [Google Scholar] [CrossRef]
- Coccia, M. A scientometric model for the assessment of scientific research performance within public institutes. Scientometrics 2005, 65, 307–321. [Google Scholar] [CrossRef]
- Coccia, M. Measuring intensity of technological change: The seismic approach. Technol. Forecast. Soc. Chang. 2005, 72, 117–144. [Google Scholar] [CrossRef]
- Coccia, M. New organisational behaviour of public research institutions: lessons learned from Italian case study. Int. J. Bus. Innov. Res. 2008, 2, 402. [Google Scholar] [CrossRef]
- Coccia, M. Spatial mobility of knowledge transfer and absorptive capacity: analysis and measurement of the impact within the geoeconomic space. J. Technol. Transf. 2007, 33, 105–122. [Google Scholar] [CrossRef]
- Coccia, M. What is the optimal rate of R&D investment to maximize productivity growth? Technol. Forecast. Soc. Chang. 2009, 76, 433–446. [Google Scholar] [CrossRef]
- Coccia, M. Foresight of technological determinants and primary energy resources of future economic long waves. Int. J. Foresight Innov. Policy 2010, 6, 225. [Google Scholar] [CrossRef]
- Coccia, M. Public and private R&D investments as complementary inputs for productivity growth. Int. J. Technol. Policy Manag. 2010, 10, 73. [Google Scholar] [CrossRef]
- Coccia, M. Spatial patterns of technology transfer and measurement of its friction in the geo-economic space. Int. J. Technol. Transf. Commer. 2010, 9, 255. [Google Scholar] [CrossRef]
- Coccia, M. Evolutionary trajectories of the nanotechnology research across worldwide economic players. Technol. Anal. Strat. Manag. 2012, 24, 1029–1050. [Google Scholar] [CrossRef]
- Coccia, M. Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: the effects on strategic management of the R&D corporate change. Technol. Anal. Strat. Manag. 2014, 26, 733–749. [Google Scholar] [CrossRef]
- Coccia, M. Socio-cultural origins of the patterns of technological innovation: What is the likely interaction among religious culture, religious plurality and innovation? Towards a theory of socio-cultural drivers of the patterns of technological innovation. Technol. Soc. 2014, 36, 13–25. [Google Scholar] [CrossRef]
- Coccia, M. General sources of general purpose tech. in complex societies: Theory of global leadership-driven innovation, warfare and human dev. Technol. Soc. 2015, 42, 199–226. [Google Scholar] [CrossRef]
- Coccia, M. Spatial relation between geo-climate zones and technological outputs to explain the evolution of technology. Int. J. Transitions Innov. Syst. 2015, 4. [Google Scholar] [CrossRef]
- Coccia, M. Technological paradigms and trajectories as determinants of the R&D corporate change in drug discovery industry. Int. J. Knowl. Learn. 2015, 10, 29. [Google Scholar] [CrossRef]
- Coccia, M. Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organisational performance in the discovery process of R&D labs. Technol. Anal. Strat. Manag. 2016, 28, 381–395. [Google Scholar] [CrossRef]
- Coccia, M. 2017. Sources of disruptive technologies for industrial change. L’industria –rivista di economia e politica industriale, vol. 38, n. 1, pp. 97-120. [CrossRef]
- Coccia, M. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technol. Anal. Strat. Manag. 2017, 29, 1048–1061. [Google Scholar] [CrossRef]
- Coccia, M. The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies. J. Soc. Adm. Sci. 2017, 4, 291–303. [Google Scholar] [CrossRef]
- Coccia, M. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy's Mobile User Objective System. Technol. Forecast. Soc. Chang. 2017, 116, 331–339. [Google Scholar] [CrossRef]
- Coccia, M. 2017a. Disruptive firms and industrial change, Journal of Economic and Social Thought, vol. 4, n. 4, pp. 437-450. [CrossRef]
- Coccia, M. Varieties of capitalism's theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances. Int. J. Public Sect. Perform. Manag. 2017, 3, 148. [Google Scholar] [CrossRef]
- Coccia, M. A Theory of the General Causes of Long Waves: War, General Purpose Technologies, and Economic Change. Technol. Forecast. Soc. Chang. 2018, 128, 287–295. [Google Scholar] [CrossRef]
- Coccia, M. 2018. An introduction to the methods of inquiry in social sciences, J. Adm. Soc. Sci. - JSAS – vol. 5, n. 2, pp. 116-126. [CrossRef]
- Coccia, M. 2018. Classification of innovation considering technological interaction, Journal of Economics Bibliography, vol. 5, n. 2, pp. 76-93. [CrossRef]
- Coccia, M. 2018. Competition between basic and applied research in the organizational behaviour of public research labs, J. Econ. Lib., vol. 5, n. 2, pp. 118-133. [CrossRef]
- Coccia, M. General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology. Scientometrics 2018, 117, 1265–1283. [Google Scholar] [CrossRef]
- Coccia, M. Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations. J. Technol. Transf. 2018, 43, 792–814. [Google Scholar] [CrossRef]
- Coccia, M. 2018a. An introduction to the theories of institutional change, Journal of Economics Library, vol. 5, n. 4, pp. 337-344. [CrossRef]
- Coccia, M. Theorem of not independence of any technological innovation. J. Econ. Bibliogr. 2018, 5, 29–35. [Google Scholar] [CrossRef]
- Coccia, M. A theory of classification and evolution of technologies within a Generalised Darwinism. Technol. Anal. Strat. Manag. 2019, 31, 517–531. [Google Scholar] [CrossRef]
- Coccia, M. 2019. Artificial intelligence technology in oncology: a new technological paradigm. ArXiv.org e-Print archive, Cornell University, USA. Permanent arXiv available at http://arxiv.org/abs/1905. 0687. [Google Scholar]
- Coccia, M. 2019. Comparative Institutional Changes. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer. [CrossRef]
- Coccia, M. 2019. Intrinsic and extrinsic incentives to support motivation and performance of public organizations, Journal of Economics Bibliography, vol. 6, no. 1, pp. 20-29. [CrossRef]
- Coccia, M. 2019. New Patterns of Technological Evolution: Theory and Practice, ©KSP Books, ISBN: 978-605-7602-88-6.
- Coccia, M. 2019. Technological Parasitism. Journal of Economic and Social Thought, vol. 6, no. 3, pp. 173-209. [CrossRef]
- Coccia, M. The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting. Technol. Forecast. Soc. Chang. 2019, 141, 289–304. [Google Scholar] [CrossRef]
- Coccia, M. 2019. Theories of the evolution of technology based on processes of competitive substitution and multi-mode interaction between technologies. Journal of Economics Bibliography, vol. 6, n. 2, pp. 99-109. [CrossRef]
- Coccia, M. What Is Technology and Technology Change? A New Conception with Systemic-Purposeful Perspective for Technology Analysis. J. Soc. Adm. Sci. 2019, 6, 145–169. [Google Scholar] [CrossRef]
- Coccia, M. Why do nations produce science advances and new technology? Technol. Soc. 2019, 59, 101124. [Google Scholar] [CrossRef]
- Coccia, M. Asymmetry of the technological cycle of disruptive innovations. Technol. Anal. Strat. Manag. 2020, 32, 1462–1477. [Google Scholar] [CrossRef]
- Coccia, M. 2020. Comparative Concepts of Technology for Strategic Management. In: Farazmand A. (eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer Nature. [CrossRef]
- Coccia, M. Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technol. Soc. 2020, 60, 101198. [Google Scholar] [CrossRef]
- Coccia, M. 2020. Destructive Technologies for Industrial and Corporate Change. In: Farazmand A. (eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. [CrossRef]
- Coccia, M. Fishbone diagram for technological analysis and foresight. Int. J. Foresight Innov. Policy 2020, 14, 225. [Google Scholar] [CrossRef]
- Coccia, M. The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics. Scientometrics 2020, 124, 451–487. [Google Scholar] [CrossRef]
- Coccia, M. 2021. Effects of human progress driven by technological change on physical and mental health, STUDI DI SOCIOLOGIA, 2021, N. 2, pp. 113-132. [CrossRef]
- Coccia, M. 2021. Technological Innovation. The Blackwell Encyclopedia of Sociology. Edited by George Ritzer and Chris Rojek. John Wiley & Sons, Ltd. [CrossRef]
- Coccia, M. 2022. Disruptive innovations in quantum technologies for social change. Journal of Economics Bibliography, vol. 9, n.1, pp. 21-39. [CrossRef]
- Coccia, M. Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technol. Anal. Strat. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Coccia, M. Probability of discoveries between research fields to explain scientific and technological change. Technol. Soc. 2022, 68, 101874. [Google Scholar] [CrossRef]
- Coccia, M. High potential of technology to face new respiratory viruses: mechanical ventilation devices for effective healthcare to next pandemic emergencies. Technol. Soc. 2023, 73, 102233. [Google Scholar] [CrossRef]
- Coccia, M. 2023. Innovation Failure: Typologies for appropriate R&D management. Journal of Social and Administrative Sciences - J. Adm. Soc. Sci. - JSAS - vol. 10, n.1-2 (March-June), pp.10-30. [CrossRef]
- Coccia, M. New directions of technologies pointing the way to a sustainable global society. Sustain. Futur. 2023, 5. [Google Scholar] [CrossRef]
- Coccia, M. New Perspectives in Innovation Failure Analysis: A taxonomy of general errors and strategic management for reducing risks. Technol. Soc. 2023, 75. [Google Scholar] [CrossRef]
- Coccia, M. New Perspectives in Innovation Failure Analysis: A taxonomy of general errors and strategic management for reducing risks. Technol. Soc. 2023, 75. [Google Scholar] [CrossRef]
- Coccia, M. 2023. Promising technologies for fostering simultaneous environmental and socioeconomic sustainability. Journal of Economic and Social Thought - J. Econ. Soc. Thoug. – JEST, vol. 10, n.1-2 (March-June), pp. 28-47. [CrossRef]
- Coccia, M. , 2018. Disruptive firms and technological change, Quaderni IRCrES-CNR, vol., 3, n. 1, pp. 3-18. [CrossRef]
- Coccia, M. , Bellitto M. 2018. Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, vol. 5, n. 2, pp. 160-178. [CrossRef]
- Coccia, M. , Benati I. 2018. Comparative Models of Inquiry, A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer. [CrossRef]
- Coccia, M. , Benati I. 2018. Comparative Studies. Global Encyclopedia of Public Administration, Public Policy, and Governance –section Bureaucracy (edited by Ali Farazmand). Chapter No. 1197-1, pp. 1-7. [CrossRef]
- Coccia, M.; Bontempi, E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. Environ. Res. 2023, 229, 115938. [Google Scholar] [CrossRef]
- Coccia, M.; Falavigna, G.; Manello, A. The impact of hybrid public and market-oriented financing mechanisms on the scientific portfolio and performances of public research labs: a scientometric analysis. Scientometrics 2015, 102, 151–168. [Google Scholar] [CrossRef]
- Coccia, M.; Finardi, U. New technological trajectories of non-thermal plasma technology in medicine. Int. J. Biomed. Eng. Technol. 2013, 11, 337. [Google Scholar] [CrossRef]
- Coccia, M.; Finardi, U.; Margon, D. Current trends in nanotechnology research across worldwide geo-economic players. J. Technol. Transf. 2012, 37, 777–787. [Google Scholar] [CrossRef]
- Coccia, M. , Ghazinoori S., Roshani S. 2023. Evolutionary Pathways of Ecosystem Literature in Organization and Management Studies. Research Square. [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry. IEEE Trans. Eng. Manag. 2022, 71, 2270–2280. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry. IEEE Trans. Eng. Manag. 2024, 71, 2270–2280. [Google Scholar] [CrossRef]
- Coccia, M. , Rolfo S. 2000. Ricerca pubblica e trasferimento tecnologico: il caso della regione Piemonte in Rolfo S. (eds) Innovazione e piccole imprese in Piemonte, FrancoAngeli Editore, Milano (Italy), pp. 236-256. 9: ISBN, 9788. [Google Scholar]
- Coccia, M.; Rolfo, S. Strategic change of public research units in their scientific activity. Technovation 2008, 28, 485–494. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. General laws of funding for scientific citations: how citations change in funded and unfunded research between basic and applied sciences. J. Data Inf. Sci. 2024. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Scientific Developments and New Technological Trajectories in Sensor Research. Sensors 2021, 21, 7803. [Google Scholar] [CrossRef]
- Coccia, M.; Wang, L. Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy. Technol. Forecast. Soc. Chang. 2015, 94, 155–169. [Google Scholar] [CrossRef]
- Coccia, M.; Wang, L. Evolution and convergence of the patterns of international scientific collaboration. Proc. Natl. Acad. Sci. 2016, 113, 2057–2061. [Google Scholar] [CrossRef]
- Coccia, M.; Watts, J. A theory of the evolution of technology: Technological parasitism and the implications for innovation magement. J. Eng. Technol. Manag. 2020, 55, 101552. [Google Scholar] [CrossRef]
- Coccia, M. 2024. Variability in Research Topics Driving Different Technological Trajectories. Preprints 2024, 2024020603. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. Research funding and citations in papers of Nobel Laureates in Physics, Chemistry and Medicine, 2019-2020. J. Data Inf. Sci. 2024. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Sensor Research for Clarifying the Dynamics and Properties of Future Directions. Sensors 2022, 22, 9419. [Google Scholar] [CrossRef]
- Coe M., M. 2021. Basketry, cordage, and perishable artifact manufacture at Bonneville Estates Rockshelter: Diachronic technological variation. J. Ir. Archaeol. 1013; 64. [Google Scholar]
- Cowan, R. 1989. Technological Variety And Competition: Issues Of Diffusion And Intervention, Working Papers 89-23, C.V. Starr Center for Applied Economics, New York University.
- Cozzens, S.; Gatchair, S.; Kang, J.; Kim, K.-S.; Lee, H.J.; Ordóñez, G.; Porter, A. Emerging technologies: quantitative identification and measurement. Technol. Anal. Strateg. Manag. 2010, 22, 361–376. [Google Scholar] [CrossRef]
- Crane, D. 1972. Invisible Colleges: Diffusion of Knowledge in Scientific Communities. Chicago: University of Chicago Press.
- Tosi, M.D.L.; dos Reis, J.C. Understanding the evolution of a scientific field by clustering and visualizing knowledge graphs. J. Inf. Sci. 2020, 48, 71–89. [Google Scholar] [CrossRef]
- Dawkins, R. 1983. Universal Darwinism. In: Bendall, D.S. (ed.), Evolution from Molecules to Man. Cambridge University Press, Cambridge, pp. 403 - 425.
- Dell Technologies 2023. Transformer (machine learning model). Available online: https://infohub.delltechnologies.com/l/generative-ai-in-the-enterprise/transformer-models/(accessed December 2023).
- Duncan, R. (1976). The ambidextrous organization: Designing dual structures for innovation. Killman, R. H., L. R. Pondy, and D. Sleven (eds.) The Management of Organization. New York: North Holland. 167-188.
- Farrell CJ (1993a) A theory of technological. Technol Forecast Soc Chang 44(2); 161–178.
- Farrell CJ (1993b) Survival of the fittest technologies: CDs, disposable razors and unleaded petrol would have made Charles Darwin smile. They have all seen off rivals in the economic jungle. 3: New Scientist 137 (), 6 February.
- Fisher JC, Pry RH (1971) A simple substitution model of technological change. 7: Technol Forecast Soc Chang 3(2–3).
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B.; et al. Science of science. Science 2018, 359. [Google Scholar] [CrossRef] [PubMed]
- Glänzel, W.; Thijs, B. Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics 2012, 91, 399–416. [Google Scholar] [CrossRef]
- Guimerà, R.; Uzzi, B.; Spiro, J.; Amaral, L.A.N. Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance. Science 2008, 308, 697–702. [Google Scholar] [CrossRef]
- Hicks, D.; Isett, K.R. Powerful numbers: Exemplary quantitative studies of science that had policy impact. Quant. Sci. Stud. 2020, 1, 969–982. [Google Scholar] [CrossRef]
- Hodgson, G.M. Darwinism in economics: from analogy to ontology. J. Evol. Econ. 2002, 12, 259–281. [Google Scholar] [CrossRef]
- Hodgson G., M. , Knudsen T., 2006. Why we need a generalized Darwinism, and why generalized Darwinism is not enough. Journal of Economic Behavior and Organization 61(1), pp. 1-19.
- Iacopini, I.; Milojević, S.; Latora, V. Network Dynamics of Innovation Processes. Phys. Rev. Lett. 2018, 120, 048301. [Google Scholar] [CrossRef]
- Kariampuzha, W.Z.; Alyea, G.; Qu, S.; Sanjak, J.; Mathé, E.; Sid, E.; Chatelaine, H.; Yadaw, A.; Xu, Y.; Zhu, Q. Precision information extraction for rare disease epidemiology at scale. J. Transl. Med. 2023, 21, 1–18. [Google Scholar] [CrossRef]
- Kauffman, S.; Macready, W. Technological evolution and adaptive organizations: Ideas from biology may find applications in economics. Complexity 1995, 1, 26–43. [Google Scholar] [CrossRef]
- Kauffman, S.A. , 1996. Investigations: the Nature of Autonomous Agents and the Worlds They Mutually Create. SFI Working Papers. Santa Fe Institute, USA.
- Kuhn, T.S. , 1962, The Structure of Scientific Revolutions, Chicago: University of Chicago Press.
- Lakatos, I. , Worrall J., Currie, G. 1980. Eds., The Methodology of Scientific Research Programmes: Volume 1: Philosophical Papers. Cambridge: Cambridge University Press.
- Levit, G., U. Hossfeld, and U. Witt. 2011. “Can Darwinism be “Generalized” and of What use Would This be?” Journal of Evolutionary Economics 21 (4): 545–562.
- Coccia, M. A theory of classification and evolution of technologies within a Generalised Darwinism. Technol. Anal. Strat. Manag. 2019, 31, 517–531. [Google Scholar] [CrossRef]
- Coccia, M. Asymmetry of the technological cycle of disruptive innovations. Technol. Anal. Strat. Manag. 2020, 32, 1462–1477. [Google Scholar] [CrossRef]
- M. Coccia, “Classification of innovation considering technological interaction,” Journal of Economics Bibliography, vol. 5, n. 2, pp. 76-93, 2018. [CrossRef]
- M. Coccia, “Comparative Institutional Changes,” in Global Encyclopedia of Public Administration, Public Policy, and Governance, A. Farazmand, Ed., Cham: Springer International Publishing, 2019a, pp. 1–6. [CrossRef]
- M. Coccia, “Destructive Technologies for Industrial and Corporate Change,” in Global Encyclopedia of Public Administration, Public Policy, and Governance, A. Farazmand, Ed., Cham: Springer International Publishing, 2020b, pp. 1–7. [CrossRef]
- Coccia, M. New Perspectives in Innovation Failure Analysis: A taxonomy of general errors and strategic management for reducing risks. Technol. Soc. 2023, 75. [Google Scholar] [CrossRef]
- Coccia, M. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia. Technovation 2012, 32, 370–379. [Google Scholar] [CrossRef]
- Coccia, M. Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organisational performance in the discovery process of R&D labs. Technol. Anal. Strat. Manag. 2015, 28, 381–395. [Google Scholar] [CrossRef]
- Coccia, M. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technol. Anal. Strat. Manag. 2017, 29, 1048–1061. [Google Scholar] [CrossRef]
- M. Coccia, “Technological Innovation,” in The Blackwell Encyclopedia of Sociology, 1st ed., G. Ritzer, Ed., Wiley, 2021, pp. 1–6. [CrossRef]
- Coccia, M. Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technol. Anal. Strat. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Coccia, M. Why do nations produce science advances and new technology? Technol. Soc. 2019, 59, 101124. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry. IEEE Trans. Eng. Manag. 2022, 71, 2270–2280. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Scientific Developments and New Technological Trajectories in Sensor Research. Sensors 2021, 21, 7803. [Google Scholar] [CrossRef] [PubMed]
- March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2, 71-87.
- March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2, 71-87.
- Mario Coccia, “Sources of disruptive technologies for industrial change,” L’industria, no. 1, pp. 97–120, 2017a. [CrossRef]
- Mehdi, Y. (2023) Reinventing search with a new AI-powered Microsoft Bing and Edge, your copilot for the web, Microsoft Feb 7, 2023, (https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/, accessed 24). 20 February.
- Menon, P. (2023). Introduction to Large Language Models and the Transformer Architecture. Medium. https://rpradeepmenon.medium.com/introduction-to-large-language-models-and-the-transformer-architecture-534408ed7e61. (accessed on 19 February 2024).
- Monechi, B.; Ruiz-Serrano. ; Tria, F.; Loreto, V. Waves of novelties in the expansion into the adjacent possible. PLOS ONE 2017, 12, e0179303. [Google Scholar] [CrossRef]
- Mosleh, M.; Roshani, S.; Coccia, M. Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics 2022, 127, 1931–1951. [Google Scholar] [CrossRef]
- Mulkay, M.J. Three Models of Scientific Development. Sociol. Rev. 1975, 23, 509–526. [Google Scholar] [CrossRef]
- Nelson, R. Evolutionary social science and universal Darwinism. J. Evol. Econ. 2006, 16, 491–510. [Google Scholar] [CrossRef]
- Nonaka, I. , and Nishiguchi, T. (2001). Knowledge Emergence: Social, Technical, and Evolutionary Dimensions of Knowledge Creation. Oxford: Oxford University Press.
- Nonaka, I.; Toyama, R. The knowledge-creating theory revisited: knowledge creation as a synthesizing process. Knowl. Manag. Res. Pr. 2003, 1, 2–10. [Google Scholar] [CrossRef]
- Noyons E. C., M. , van Raan A. F. J. 1998. Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. Journal of the American Society for Information Science 49, 68–81.
- Núñez-Delgado, A.; Zhang, Z.; Bontempi, E.; Coccia, M.; Race, M.; Zhou, Y. Editorial on the Topic “New Research on Detection and Removal of Emerging Pollutants”. Materials 2023, 16, 725. [Google Scholar] [CrossRef]
- Open AI 2015. "Introducing OpenAI". OpenAI. , 2015. Archived from the original on August 8, 2017. 12 December 2022; 23.
- OpenAI (2022). Introducing ChatGPT. Available online: https://openai.com/blog/chatgpt (accessed on 4 December 2023).
- Oppenheimer, R. 1955. "Analogy in Science." Sixty-Third annual meeting of the American Psychological Association, San Francisco, CA, 4 September.
- Pagliaro, M.; Coccia, M. How self-determination of scholars outclasses shrinking public research lab budgets, supporting scientific production: a case study and R&D management implications. Heliyon 2021, 7, e05998. [Google Scholar] [CrossRef] [PubMed]
- Pinaya, Walter H. L.; Graham, Mark S.; Kerfoot, Eric; Tudosiu, Petru-Daniel; Dafflon, Jessica; Fernandez, Virginia; Sanchez, Pedro; Wolleb, Julia; da Costa, Pedro F.; Patel, Ashay (2023). "Generative AI for Medical Imaging: extending the MONAI Framework". arXiv:2307. 1520.
- Pistorius CWI, Utterback JM (1997) Multi-mode interaction among technologies. 6: Res Policy 26(1).
- Price, D. 1986. Little science, big science. Columbia University Press.
- Raisch, S.; Birkinshaw, J. Organizational Ambidexterity: Antecedents, Outcomes, and Moderators. J. Manag. 2008, 34, 375–409. [Google Scholar] [CrossRef]
- Roco, M. , Bainbridge, W. 2002. Converging Technologies for Improving Human Performance: Integrating From the Nanoscale. Journal of Nanoparticle Research 4, 281–295 (2002).
- Roshani, S.; Coccia, M.; Mosleh, M. Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech Innov. J. 2022, 3, 356–375. [Google Scholar] [CrossRef]
- Roshani, S.; Bagherylooieh, M.-R.; Mosleh, M.; Coccia, M. What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics 2021, 126, 7859–7874. [Google Scholar] [CrossRef]
- Saha, S. (2018) A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way, Medium. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed 19 february 2024).
- Sahal, D. 1981. Patterns of Technological Innovation. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.
- Scharnhorst, A. , Borner, K. & Besselaar, P. 2012. Models of Science Dynamics: Encounters Between Complexity Theory and Information Sciences. Springer Verlag.
- Schubert, C. 2014. ““Generalized Darwinism” and the Quest for an Evolutionary Theory of Policy-Making.” Journal of Evolutionary Economics 24 (3): 479–513.
- Schuster, P. Major transitions in evolution and in technology. Complexity 2016, 21, 7–13. [Google Scholar] [CrossRef]
- Scopus 2023. Start exploring. Documents. Available online: https://www.scopus.com/search/form.uri?display=basic (accessed on 9 November 2023).
- Small, H.; Garfield, E. The geography of science: disciplinary and national mappings. J. Inf. Sci. 1985, 11, 147–159. [Google Scholar] [CrossRef]
- Solée, R.V.; Valverde, S.; Casals, M.R.; Kauffman, S.A.; Farmer, D.; Eldredge, N. The evolutionary ecology of technological innovations. Complexity 2013, 18, 15–27. [Google Scholar] [CrossRef]
- Stoelhorst, J.W. The explanatory logic and ontological commitments of generalized Darwinism. J. Econ. Methodol. 2008, 15, 343–363. [Google Scholar] [CrossRef]
- Sun, X.; Kaur, J.; Milojević, S.; Flammini, A.; Menczer, F. Social Dynamics of Science. Sci. Rep. 2013, 3, 1069. [Google Scholar] [CrossRef]
- Teece, D. J. , Pisano, G., Shuen, A. 1997. Dynamic Capabilities and Strategic Management. Strategic Management Journal, 18(7), 509–533. http://www.jstor. 3088. [Google Scholar]
- Tojin, T. Eapen,Daniel J. Finkenstadt,Josh Folk,and Lokesh Venkataswamy 2023. How Generative AI Can Augment Human Creativity". Harvard Business Review. June-August, 2023.
- Tria, F.; Loreto, V.; Servedio, V.D.P.; Strogatz, S.H. The dynamics of correlated novelties. Sci. Rep. 2014, 4, srep05890. [Google Scholar] [CrossRef]
- Utterback J., M. , Pistorius C., Yilmaz E. 2019. The Dynamics of Competition and of the Diffusion of Innovations. MIT Sloan School Working Paper 5519-18. 20 February 2019. [Google Scholar]
- van Raan, A. F. J. 1990. Fractal dimension of co-citations. Nature 347, 626.
- Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017). "Attention is All you Need" (PDF). Advances in Neural Information Processing Systems. Curran Associates, Inc. 30.
- Wagner, A. , Rosen W. 2014. Spaces of the possible: universal Darwinism and the wall between technological and biological innovation. Journal of the Royal Society Interface, 11, pp.1-11.
- Wagner, C. 2008. The new invisible college: Science for development. Brookings Institution Press.
- Wright, G. 1997. Towards A More Historical Approach to Technological Change, The Economic Journal, vol. 107, September, pp. 1560-1566.
- Ziman, J. (Ed.) 2000. Technological innovation as an evolutionary process. Cambridge University Press, Cambridge, MA.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
