Submitted:
23 February 2024
Posted:
23 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathologic Classification
2.1. Pathoologic Classification and Precancerous Leions of Cholangiocarcinoma
2.2. Pathologic Classification and Precancerous Leions of Gallbladder Cancer
3. Clinical Presentation
4. Diagnostic Tool
4.1. CT and MRI
4.1.1. Radiologic Findings of Mass-Forming Cholangiocarcinoma
4.1.2. Radiologic Findings of Periductal-Infiltrating Cholangiocarcinoma
4.1.3. Radiologic Findings of Intraductal-Growing Cholangiocarcinoma
4.1.4. Radiologic Findings of Gallbladder Cancer
4.2. PET-CT
4.2. EUS
4.3. ERCP or Percutaneous Tranhepatic Cholangiography (PTC)
4.3.1. Intraductal Ultrasound (IDUS)
4.3.2. Peroral Cholangioscopy (POC)
4.3.3. Tissue Acquisition
5. Pathologic and Molecular Diagnosis
5.1. Pathologic Diagnosis
5.2. Molecular Diagnosis
6. Approach to the Patient
6.1. Suspected iCCA
6.2. Suspeected pCCA
Patients with PSC
6.3. Suspected dCCA
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Sato, Y.; Harada, K.; Sasaki, M.; Xu, J.; Ikeda, H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol 2010, 2, 419–427. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Kakuda, Y. Pathologic classification of cholangiocarcinoma: New concepts. Best Pract Res Clin Gastroenterol 2015, 29, 277–293. [Google Scholar] [CrossRef]
- Sigel, C.S.; Drill, E.; Zhou, Y.; Basturk, O.; Askan, G.; Pak, L.M.; Vakiani, E.; Wang, T.; Boerner, T.; Do, R.K.G.; et al. Intrahepatic cholangiocarcinomas have histologically and immunophenotypically distinct small and large duct patterns. American Journal of Surgical Pathology 2018, 42, 1334–1345. [Google Scholar] [CrossRef]
- Hayashi, A.; Misumi, K.; Shibahara, J.; Arita, J.; Sakamoto, Y.; Hasegawa, K.; Kokudo, N.; Fukayama, M. Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am J Surg Pathol 2016, 40, 1021–1030. [Google Scholar] [CrossRef]
- Chung, T.; Rhee, H.; Nahm, J.H.; Jeon, Y.; Yoo, J.E.; Kim, Y.J.; Han, D.H.; Park, Y.N. Clinicopathological characteristics of intrahepatic cholangiocarcinoma according to gross morphologic type: Cholangiolocellular differentiation traits and inflammation- and proliferation-phenotypes. HPB (Oxford) 2020, 22, 864–873. [Google Scholar] [CrossRef]
- Komuta, M.; Govaere, O.; Vandecaveye, V.; Akiba, J.; Van Steenbergen, W.; Verslype, C.; Laleman, W.; Pirenne, J.; Aerts, R.; Yano, H.; et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012, 55, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, V.; Wang, Y.; Carpino, G.; Reid, L.M.; Gaudio, E.; Alvaro, D. Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology 2012, 55, 2041–2042. [Google Scholar] [CrossRef] [PubMed]
- Katabi, N.; Torres, J.; Klimstra, D.S. Intraductal tubular neoplasms of the bile ducts. American Journal of Surgical Pathology 2012, 36, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Nakanuma, Y.; Jang, K.T.; Fukushima, N.; Furukawa, T.; Hong, S.M.; Kim, H.; Lee, K.B.; Zen, Y.; Jang, J.Y.; Kubota, K. A statement by the japan-korea expert pathologists for future clinicopathological and molecular analyses toward consensus building of intraductal papillary neoplasm of the bile duct through several opinions at the present stage. J Hepatobiliary Pancreat Sci 2018, 25, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Henson, D.E.; Albores-Saavedra, J.; Corle, D. Carcinoma of the gallbladder. Histologic types, stage of disease, grade, and survival rates. Cancer 1992, 70, 1493–1497. [Google Scholar] [CrossRef]
- Adsay, V.; Jang, K.T.; Roa, J.C.; Dursun, N.; Ohike, N.; Bagci, P.; Basturk, O.; Bandyopadhyay, S.; Cheng, J.D.; Sarmiento, J.M.; et al. Intracholecystic papillary-tubular neoplasms (icpn) of the gallbladder (neoplastic polyps, adenomas, and papillary neoplasms that are >/=1.0 cm): Clinicopathologic and immunohistochemical analysis of 123 cases. Am J Surg Pathol 2012, 36, 1279–1301. [Google Scholar] [CrossRef]
- Alvaro, D.; Bragazzi, M.C.; Benedetti, A.; Fabris, L.; Fava, G.; Invernizzi, P.; Marzioni, M.; Nuzzo, G.; Strazzabosco, M.; Stroffolini, T.; et al. Cholangiocarcinoma in italy: A national survey on clinical characteristics, diagnostic modalities and treatment. Results from the "cholangiocarcinoma" committee of the italian association for the study of liver disease. Dig Liver Dis 2011, 43, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Strom, B.L.; Maislin, G.; West, S.L.; Atkinson, B.; Herlyn, M.; Saul, S.; Rodriguez-Martinez, H.A.; Rios-Dalenz, J.; Iliopoulos, D.; Soloway, R.D. Serum cea and ca 19-9: Potential future diagnostic or screening tests for gallbladder cancer? Int J Cancer 1990, 45, 821–824. [Google Scholar] [CrossRef]
- Ritts, R.E., Jr.; Nagorney, D.M.; Jacobsen, D.J.; Talbot, R.W.; Zurawski, V.R., Jr. Comparison of preoperative serum ca19-9 levels with results of diagnostic imaging modalities in patients undergoing laparotomy for suspected pancreatic or gallbladder disease. Pancreas 1994, 9, 707–716. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, M.H.; Myung, S.J.; Lim, B.C.; Park, E.T.; Yoo, K.S.; Seo, D.W.; Lee, S.K.; Min, Y.I. A new strategy for the application of ca19-9 in the differentiation of pancreaticobiliary cancer: Analysis using a receiver operating characteristic curve. Am J Gastroenterol 1999, 94, 1941–1946. [Google Scholar] [CrossRef]
- Joo, I.; Lee, J.M.; Yoon, J.H. Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: Recent advances and challenges. Radiology 2018, 288, 7–13. [Google Scholar] [CrossRef]
- Jhaveri, K.S.; Hosseini-Nik, H. Mri of cholangiocarcinoma. J Magn Reson Imaging 2015, 42, 1165–1179. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, C.H.; Kim, B.H.; Kim, W.B.; Yeom, S.K.; Kim, K.A.; Park, C.M. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2012, 36, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, Y.K.; Park, M.J.; Lee, W.J. Small intrahepatic mass-forming cholangiocarcinoma: Target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 2013, 38, 793–801. [Google Scholar] [CrossRef]
- Somoracz, A.; Tatrai, P.; Horvath, G.; Kiss, A.; Kupcsulik, P.; Kovalszky, I.; Schaff, Z. Agrin immunohistochemistry facilitates the determination of primary versus metastatic origin of liver carcinomas. Hum Pathol 2010, 41, 1310–1319. [Google Scholar] [CrossRef]
- Manfredi, R.; Masselli, G.; Maresca, G.; Brizi, M.G.; Vecchioli, A.; Marano, P. Mr imaging and mrcp of hilar cholangiocarcinoma. Abdom Imaging 2003, 28, 319–325. [Google Scholar] [CrossRef]
- Vanderveen, K.A.; Hussain, H.K. Magnetic resonance imaging of cholangiocarcinoma. Cancer Imaging 2004, 4, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Byun, J.H.; Kim, S.Y.; Lee, S.S.; Kim, H.J.; Kim, M.H.; Lee, M.G. Sclerosing cholangitis with autoimmune pancreatitis versus primary sclerosing cholangitis: Comparison on endoscopic retrograde cholangiography, mr cholangiography, ct, and mri. Acta Radiol 2013, 54, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.W.; Kim, M.J.; Chung, J.J.; Chung, J.B.; Yoo, H.S.; Lee, J.T. Radiologic findings of mirizzi syndrome with emphasis on mri. Yonsei Med J 2000, 41, 144–146. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Nundy, S. Portal biliopathy. World J Gastroenterol 2012, 18, 6177–6182. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhan, K.S.; Das, P.; Gunjan, D.; Srivastava, D.N.; Garg, P.K. Igg4-related sclerosing cholangitis: A clinical and imaging review. AJR Am J Roentgenol 2019, 213, 1221–1231. [Google Scholar] [CrossRef]
- Krasinskas, A.M.; Raina, A.; Khalid, A.; Tublin, M.; Yadav, D. Autoimmune pancreatitis. Gastroenterol Clin North Am 2007, 36, 239–257, vii. [Google Scholar] [CrossRef]
- Finkelberg, D.L.; Sahani, D.; Deshpande, V.; Brugge, W.R. Autoimmune pancreatitis. N Engl J Med 2006, 355, 2670–2676. [Google Scholar] [CrossRef]
- Lim, J.H.; Yi, C.A.; Lim, H.K.; Lee, W.J.; Lee, S.J.; Kim, S.H. Radiological spectrum of intraductal papillary tumors of the bile ducts. Korean J Radiol 2002, 3, 57–63. [Google Scholar] [CrossRef]
- Kumar, A.; Aggarwal, S. Carcinoma of the gallbladder: Ct findings in 50 cases. Abdom Imaging 1994, 19, 304–308. [Google Scholar] [CrossRef]
- Liang, J.L.; Chen, M.C.; Huang, H.Y.; Ng, S.H.; Sheen-Chen, S.M.; Liu, P.P.; Kung, C.T.; Ko, S.F. Gallbladder carcinoma manifesting as acute cholecystitis: Clinical and computed tomographic features. Surgery 2009, 146, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, A.; Barriuso, J.; Chander, A.; McNamara, M.G.; Hubner, R.A.; D, O.R.; Manoharan, P.; Valle, J.W. (18)f-fluorodeoxyglucose positron emission tomography ((18)fdg-pet) for patients with biliary tract cancer: Systematic review and meta-analysis. J Hepatol 2019, 71, 115–129. [Google Scholar] [CrossRef]
- Abu-Hamda, E.M.; Baron, T.H. Endoscopic management of cholangiocarcinoma. Semin Liver Dis 2004, 24, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Mohamadnejad, M.; DeWitt, J.M.; Sherman, S.; LeBlanc, J.K.; Pitt, H.A.; House, M.G.; Jones, K.J.; Fogel, E.L.; McHenry, L.; Watkins, J.L.; et al. Role of eus for preoperative evaluation of cholangiocarcinoma: A large single-center experience. Gastrointest Endosc 2011, 73, 71–78. [Google Scholar] [CrossRef]
- Fujita, N.; Noda, Y.; Kobayashi, G.; Kimura, K.; Yago, A. Diagnosis of the depth of invasion of gallbladder carcinoma by eus. Gastrointest Endosc 1999, 50, 659–663. [Google Scholar] [CrossRef]
- Sadamoto, Y.; Kubo, H.; Harada, N.; Tanaka, M.; Eguchi, T.; Nawata, H. Preoperative diagnosis and staging of gallbladder carcinoma by eus. Gastrointest Endosc 2003, 58, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.M.; Jiang, X.X.; Gu, H.Y.; Xu, X.; Zhang, W.; Lin, L.H.; Deng, X.; Yin, Y.; Xu, J.R. Endoscopic ultrasound-guided fine-needle aspiration biopsy in the evaluation of bile duct strictures and gallbladder masses: A systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2011, 23, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Kuroiwa, M.; Tsukamoto, Y.; Naitoh, Y.; Hirooka, Y.; Furukawa, T.; Katou, T. New technique using intraductal ultrasonography for the diagnosis of bile duct cancer. J Ultrasound Med 1994, 13, 189–195. [Google Scholar] [CrossRef]
- Tamada, K.; Ueno, N.; Ichiyama, M.; Tomiyama, T.; Nishizono, T.; Wada, S.; Oohashi, A.; Tano, S.; Aizawa, T.; Ido, K.; et al. Assessment of pancreatic parenchymal invasion by bile duct cancer using intraductal ultrasonography. Endoscopy 1996, 28, 492–496. [Google Scholar] [CrossRef]
- Choi, E.R.; Chung, Y.H.; Lee, J.K.; Lee, K.T.; Lee, K.H.; Choi, D.W.; Choi, S.H.; Heo, J.S.; Jang, K.T.; Park, S.M.; et al. Preoperative evaluation of the longitudinal extent of borderline resectable hilar cholangiocarcinoma by intraductal ultrasonography. J Gastroenterol Hepatol 2011, 26, 1804–1810. [Google Scholar] [CrossRef]
- Shah, R.J.; Langer, D.A.; Antillon, M.R.; Chen, Y.K. Cholangioscopy and cholangioscopic forceps biopsy in patients with indeterminate pancreaticobiliary pathology. Clin Gastroenterol Hepatol 2006, 4, 219–225. [Google Scholar] [CrossRef]
- Fukuda, Y.; Tsuyuguchi, T.; Sakai, Y.; Tsuchiya, S.; Saisyo, H. Diagnostic utility of peroral cholangioscopy for various bile-duct lesions. Gastrointestinal Endoscopy 2005, 62, 374–382. [Google Scholar] [CrossRef]
- Iqbal, S.; Stevens, P.D. Cholangiopancreatoscopy for targeted biopsies of the bile and pancreatic ducts. Gastrointest Endosc Clin N Am 2009, 19, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.J.; Chen, J.H.; Xu, H.J.; Yu, Q.; Liu, K. Efficacy and safety of digital single-operator cholangioscopy in the diagnosis of indeterminate biliary strictures by targeted biopsies: A systematic review and meta-analysis. Diagnostics (Basel) 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.W.; Lee, S.K.; Yoo, K.S.; Kang, G.H.; Kim, M.H.; Suh, D.J.; Min, Y.I. Cholangioscopic findings in bile duct tumors. Gastrointest Endosc 2000, 52, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Santos, S.; Morais, R.; Gaspar, R.; Rodrigues-Pinto, E.; Vilas-Boas, F.; Macedo, G. Role of peroral cholangioscopy for diagnosis and staging of biliary tumors. Dig Dis 2020, 38, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Trikudanathan, G.; Navaneethan, U.; Njei, B.; Vargo, J.J.; Parsi, M.A. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: A systematic review and meta-analysis. Gastrointest Endosc 2014, 79, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Atomi, Y.; Wada, N.; Kuroda, A.; Muto, T. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: A prospective comparative study with bile and brush cytology. American Journal of Gastroenterology 1996, 91, 465–467. [Google Scholar]
- Rabinovitz, M.; Zajko, A.B.; Hassanein, T.; Shetty, B.; Bron, K.M.; Schade, R.R.; Gavaler, J.S.; Block, G.; Van Thiel, D.H.; Dekker, A. Diagnostic value of brush cytology in the diagnosis of bile duct carcinoma: A study in 65 patients with bile duct strictures. Hepatology 1990, 12, 747–752. [Google Scholar] [CrossRef]
- Ponchon, T.; Gagnon, P.; Berger, F.; Labadie, M.; Liaras, A.; Chavaillon, A.; Bory, R. Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: Results of a prospective study. Gastrointest Endosc 1995, 42, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Gonda, T.A.; Viterbo, D.; Gausman, V.; Kipp, C.; Sethi, A.; Poneros, J.M.; Gress, F.; Park, T.; Khan, A.; Jackson, S.A.; et al. Mutation profile and fluorescence in situ hybridization analyses increase detection of malignancies in biliary strictures. Clin Gastroenterol Hepatol 2017, 15, 913–919 e911. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Njei, B.; Venkatesh, P.G.; Vargo, J.J.; Parsi, M.A. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: A systematic review and meta-analysis. Gastrointest Endosc 2014, 79, 943–950 e943. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, C.; Hoshikawa, M.; Imura, J.; Ueno, T.; Koike, J. Bile cytology: A new scoring system for improving diagnostic accuracy. Diagn Cytopathol 2019, 47, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.K.; Kim, K.H.; Lee, Y.M.; Lee, B.S.; Choi, S.Y. The usefulness of adding p53 immunocytochemistry to bile drainage cytology for the diagnosis of malignant biliary strictures. Diagn Cytopathol 2017, 45, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hao, X.; Liu, B.; Liu, S.; Yuan, Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023, 551, 117593. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Leng, K.; Yao, Y.; Kang, P.; Liao, G.; Han, Y.; Shi, G.; Ji, D.; Huang, P.; Zheng, W.; et al. A circular rna, cholangiocarcinoma-associated circular rna 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology 2021, 73, 1419–1435. [Google Scholar] [CrossRef]
- Kubicka, S.; Kuhnel, F.; Flemming, P.; Hain, B.; Kezmic, N.; Rudolph, K.L.; Manns, M.; Meier, P.N. K-ras mutations in the bile of patients with primary sclerosing cholangitis. Gut 2001, 48, 403–408. [Google Scholar] [CrossRef]
- Andresen, K.; Boberg, K.M.; Vedeld, H.M.; Honne, H.; Jebsen, P.; Hektoen, M.; Wadsworth, C.A.; Clausen, O.P.; Lundin, K.E.; Paulsen, V.; et al. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology 2015, 61, 1651–1659. [Google Scholar] [CrossRef]
- Vedeld, H.M.; Grimsrud, M.M.; Andresen, K.; Pharo, H.D.; von Seth, E.; Karlsen, T.H.; Honne, H.; Paulsen, V.; Farkkila, M.A.; Bergquist, A.; et al. Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile. Hepatology 2022, 75, 59–73. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, C.; Bai, L.; Yao, F.; Shi, S.; Zhang, Y. Value of bile soluble b7h3 for the diagnosis of malignant biliary strictures: Results of a retrospective study. Surg Oncol 2019, 28, 195–200. [Google Scholar] [CrossRef]
- Sharma, N.; Yadav, M.; Tripathi, G.; Mathew, B.; Bindal, V.; Falari, S.; Pamecha, V.; Maras, J.S. Bile multi-omics analysis classifies lipid species and microbial peptides predictive of carcinoma of gallbladder. Hepatology 2022, 76, 920–935. [Google Scholar] [CrossRef]
- Li, L.; Masica, D.; Ishida, M.; Tomuleasa, C.; Umegaki, S.; Kalloo, A.N.; Georgiades, C.; Singh, V.K.; Khashab, M.; Amateau, S.; et al. Human bile contains microrna-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis (vol 60, pg 896, 2014). Hepatology 2014, 60, 2135–2135. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Tang, L.; Wang, Y.; Wang, N.; Zhou, J.; Deng, X.; Zhong, Y.; Li, Q.; Wang, F.; Jiang, G.; et al. The diagnostic value of exosomal mirnas in human bile of malignant biliary obstructions. Dig Liver Dis 2021, 53, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Shao, S.J.; Sun, H.; Zhu, H.F.; Fang, H.X. Bile-derived exosome noncoding rnas as potential diagnostic and prognostic biomarkers for cholangiocarcinoma. Front Oncol 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wang, Y.; Nie, J.; Li, Q.; Tang, L.; Deng, X.; Wang, F.; Xu, B.; Wu, X.; Zhang, X.; et al. The diagnostic/prognostic potential and molecular functions of long non-coding rnas in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget 2017, 8, 69995–70005. [Google Scholar] [CrossRef]
- Ikeda, C.; Haga, H.; Makino, N.; Inuzuka, T.; Kurimoto, A.; Ueda, T.; Matsuda, A.; Kakizaki, Y.; Ishizawa, T.; Kobayashi, T.; et al. Utility of claudin-3 in extracellular vesicles from human bile as biomarkers of cholangiocarcinoma. Sci Rep-Uk 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Leung, J.W.; Cotton, P.B.; Layfield, L.J.; Mannon, P.J. Diagnostic utility of k-ras mutational analysis on bile obtained by endoscopic retrograde cholangiopancreatography. Gastrointestinal Endoscopy 1995, 42, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Saurin, J.C.; Joly-Pharaboz, M.O.; Pernas, P.; Henry, L.; Ponchon, T.; Madjar, J.J. Detection of ki-ras gene point mutations in bile specimens for the differential diagnosis of malignant and benign biliary strictures. Gut 2000, 47, 357–361. [Google Scholar] [CrossRef]
- Han, J.Y.; Ahn, K.S.; Kim, T.S.; Kim, Y.H.; Cho, K.B.; Shin, D.W.; Baek, W.K.; Suh, S.I.; Jang, B.C.; Kang, K.J. Liquid biopsy from bile-circulating tumor DNA in patients with biliary tract cancer. Cancers (Basel) 2021, 13. [Google Scholar] [CrossRef]
- Itoi, T.; Takei, K.; Shinohara, Y.; Takeda, K.; Nakamura, K.; Horibe, T.; Sanada, A.; Ohno, H.; Matsubayashi, H.; Saito, T.; et al. K-ras codon 12 and p53 mutations in biopsy specimens and bile from biliary tract cancers. Pathol Int 1999, 49, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Ostwald, C.; Püschel, K.; Brinkmann, B.; Plath, F.; Kröger, J.; Barten, M.; Nizze, H.; Schareck, W.D.; Hauenstein, K.; et al. Low frequency of p53 and ras mutations in bile of patients with hepato-biliary disease:: A prospective study in more than 100 patients. Eur J Clin Invest 2001, 31, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yamaguchi, Y.; Watanabe, H.; Ohtsubo, K.; Wakabayashi, T.; Sawabu, N. Usefulness of p53 gene mutations in the supernatant of bile for diagnosis of biliary tract carcinoma: Comparison with k- ras mutation. J Gastroenterol 2002, 37, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, H.; Nouso, K.; Ako, S.; Dohi, C.; Matsushita, H.; Matsumoto, K.; Kato, H.; Okada, H. Liquid biopsy of bile for the molecular diagnosis of gallbladder cancer. Cancer Biol Ther 2018, 19, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Klump, B.; Hsieh, C.J.; Dette, S.; Holzmann, K.; Kiesslich, R.; Jung, M.; Sinn, U. Promoter methylation of ink4a/arf as detected in bile-significance for the differential diagnosis in biliary disease (vol 9, pg 1773, 2003). Clin Cancer Res 2003, 9, 2877–2877. [Google Scholar]
- Zhang, Y.; Yang, B.; Du, Z.; Gao, Y.T.; Wang, Y.J.; Jing, X.; Bai, T. Identification and validation of specific methylation profile in bile for differential diagnosis of malignant biliary stricture. Clin Biochem 2010, 43, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Lee, K.; Kim, B.H.; Cho, N.Y.; Jang, J.Y.; Kim, Y.T.; Kim, D.; Jang, J.J.; Kang, G.H. Bile-based detection of extrahepatic cholangiocarcinoma with quantitative DNA methylation markers and its high sensitivity. J Mol Diagn 2012, 14, 256–263. [Google Scholar] [CrossRef]
- He, S.; Zeng, F.; Yin, H.; Wang, P.; Bai, Y.; Song, Q.; Chu, J.; Huang, Z.; Liu, Y.; Liu, H.; et al. Molecular diagnosis of pancreatobiliary tract cancer by detecting mutations and methylation changes in bile samples. EClinicalMedicine 2023, 55, 101736. [Google Scholar] [CrossRef]
- Shen, N.J.; Zhang, D.D.; Yin, L.; Qiu, Y.H.; Liu, J.; Yu, W.L.; Fu, X.H.; Zhu, B.; Xu, X.Y.; Duan, A.Q.; et al. Bile cell-free DNA as a novel and powerful liquid biopsy for detecting somatic variants in biliary tract cancer. Oncol Rep 2019, 42, 549–560. [Google Scholar] [CrossRef]
- Gou, Q.; Zhang, C.Z.; Sun, Z.H.; Wu, L.G.; Chen, Y.; Mo, Z.Q.; Mai, Q.C.; He, J.; Zhou, Z.X.; Shi, F.; et al. Cell-free DNA from bile outperformed plasma as a potential alternative to tissue biopsy in biliary tract cancer. Esmo Open 2021, 6. [Google Scholar] [CrossRef]
- Uchida, N.; Tsutsui, K.; Ezaki, T.; Fukuma, H.; Kobara, H.; Kamata, H.; Aritomo, Y.; Masaki, T.; Watanabe, S.; Kobayashi, S.; et al. Combination of assay of human telomerase reverse transcriptase mrna and cytology using bile obtained by endoscopic transpapillary catheterization into the gallbladder for diagnosis of gallbladder carcinoma. American Journal of Gastroenterology 2003, 98, 2415–2419. [Google Scholar] [CrossRef]
- Shigehara, K.; Yokomuro, S.; Ishibashi, O.; Mizuguchi, Y.; Arima, Y.; Kawahigashi, Y.; Kanda, T.; Akagi, I.; Tajiri, T.; Yoshida, H.; et al. Real-time pcr-based analysis of the human bile micrornaome identifies as a potential diagnostic biomarker for biliary tract cancer. Plos One 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Baraniskin, A.; Nopel-Dunnebacke, S.; Schumacher, B.; Gerges, C.; Bracht, T.; Sitek, B.; Meyer, H.E.; Gerken, G.; Dechene, A.; Schlaak, J.F.; et al. Analysis of u2 small nuclear rna fragments in the bile differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Dig Dis Sci 2014, 59, 1436–1441. [Google Scholar] [CrossRef]
- Voigtlander, T.; Gupta, S.K.; Thum, S.; Fendrich, J.; Manns, M.P.; Lankisch, T.O.; Thum, T. Micrornas in serum and bile of patients with primary sclerosing cholangitis and/or cholangiocarcinoma. Plos One 2015, 10, e0139305. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Kim, M.J.; Han, J.H.; Yun, J.; Kim, H.K.; Yang, Y.; Kim, K.B.; Park, S.M. Bile-derived circulating extracellular mir-30d-5p and mir-92a-3p as potential biomarkers for cholangiocarcinoma. Hepatob Pancreat Dis 2020, 19, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.; Correa-Gallego, C.; Li, Y.; Nelson, J.; Alseidi, A.; Helton, W.S.; Allen, P.J.; D’Angelica, M.I.; DeMatteo, R.P.; Fong, Y.M.; et al. The role of biliary carcinoembryonic antigen-related cellular adhesion molecule 6 (ceacam6) as a biomarker in cholangiocarcinoma. Plos One 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Dumonceau, J.M.; Antinori, P.; Annessi-Ramseyer, I.; Frossard, J.L.; Hochstrasser, D.F.; Delhaye, M.; Lescuyer, P. Bile carcinoembryonic cell adhesion molecule 6 (ceam6) as a biomarker of malignant biliary stenoses. Bba-Proteins Proteom 2014, 1844, 1018–1025. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Zhang, Q.; Jin, B.; Zhu, M.; Zhang, Z. Identification of bile survivin and carbohydrate antigen 199 in distinguishing cholangiocarcinoma from benign obstructive jaundice. Biomark Med 2017, 11, 11–18. [Google Scholar] [CrossRef]
- Matsuda, A.; Kuno, A.; Kawamoto, T.; Matsuzaki, H.; Irimura, T.; Ikehara, Y.; Zen, Y.; Nakanuma, Y.; Yamamoto, M.; Ohkohchi, N.; et al. Agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology 2010, 52, 174–182. [Google Scholar] [CrossRef]
- Matull, W.R.; Andreola, F.; Loh, A.; Adiguzel, Z.; Deheragoda, M.; Qureshi, U.; Batra, S.K.; Swallow, D.M.; Pereira, S.P. Muc4 and muc5ac are highly specific tumour-associated mucins in biliary tract cancer. Br J Cancer 2008, 98, 1675–1681. [Google Scholar] [CrossRef]
- Danese, E.; Ruzzenente, O.; Ruzzenente, A.; Iacono, C.; Bertuzzo, F.; Gelati, M.; Conci, S.; Bendinelli, S.; Bonizzato, G.; Guglielmi, A.; et al. Assessment of bile and serum mucin5ac in cholangiocarcinoma: Diagnostic performance and biologic significance. Surgery 2014, 156, 1218–1224. [Google Scholar] [CrossRef]
- Koopmann, J.; Thuluvath, P.J.; Zahurak, M.L.; Kristiansen, T.Z.; Pandey, A.; Schulick, R.; Argani, P.; Hidalgo, M.; Iacobelli, S.; Goggins, M.; et al. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 2004, 101, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Gutierrez, N.G.; Jegadeesan, R.; Venkatesh, P.G.; Poptic, E.; Liu, X.; Sanaka, M.R.; Jang, S.; Vargo, J.J.; Parsi, M.A. Vascular endothelial growth factor levels in bile distinguishes pancreatic cancer from other etiologies of biliary stricture: A pilot study. Dig Dis Sci 2013, 58, 2986–2992. [Google Scholar] [CrossRef] [PubMed]
- Ayaru, L.; Stoeber, K.; Webster, G.J.; Hatfield, A.R.; Wollenschlaeger, A.; Okoturo, O.; Rashid, M.; Williams, G.; Pereira, S.P. Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in bile aspirates. Br J Cancer 2008, 98, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Harada, K.; Sasaki, M.; Yasaka, T.; Nakanuma, Y. Heat shock proteins 27 and 70 are potential biliary markers for the detection of cholangiocarcinoma. Am J Pathol 2012, 180, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, W.Z.; Wu, J.D.; Feng, B.; Chen, W.; Wang, M.; Tang, J.C.; Wang, F.Q.; Cheng, F.; Pu, L.Y.; et al. Comparative proteomic profiling of human bile reveals ssp411 as a novel biomarker of cholangiocarcinoma. Plos One 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Budzynska, A.; Nowakowska-Dulawa, E.; Marek, T.; Boldys, H.; Nowak, A.; Hartleb, M. Differentiation of pancreatobiliary cancer from benign biliary strictures using neutrophil gelatinase-associated lipocalin. J Physiol Pharmacol 2013, 64, 109–114. [Google Scholar] [PubMed]
- Zabron, A.A.; Horneffer-van der Sluis, V.M.; Wadsworth, C.A.; Laird, F.; Gierula, M.; Thillainayagam, A.V.; Vlavianos, P.; Westaby, D.; Taylor-Robinson, S.D.; Edwards, R.J.; et al. Elevated levels of neutrophil gelatinase-associated lipocalin in bile from patients with malignant pancreatobiliary disease. Am J Gastroenterol 2011, 106, 1711–1717. [Google Scholar] [CrossRef]
- Chiang, K.C.; Yeh, T.S.; Wu, R.C.; Pang, J.H.S.; Cheng, C.T.; Wang, S.Y.; Juang, H.H.; Yeh, C.N. Lipocalin 2 (lcn2) is a promising target for cholangiocarcinoma treatment and bile lcn2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep-Uk 2016, 6. [Google Scholar] [CrossRef]
- Sato, Y.; Harada, K.; Sasaki, M.; Nakanuma, Y. Clinicopathological significance of s100 protein expression in cholangiocarcinoma. J Gastroenterol Hepatol 2013, 28, 1422–1429. [Google Scholar] [CrossRef]
- Laohaviroj, M.; Potriquet, J.; Jia, X.; Suttiprapa, S.; Chamgramol, Y.; Pairojkul, C.; Sithithaworn, P.; Mulvenna, J.; Sripa, B. A comparative proteomic analysis of bile for biomarkers of cholangiocarcinoma. Tumour Biol 2017, 39, 1010428317705764. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, X.Z.; Wu, H.C.; Shiesh, S.C. The value of biliary amylase and hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein i (hip/pap-i) in diagnosing biliary malignancies. Clin Biochem 2005, 38, 520–525. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tsai, W.L.; Wu, H.C.; Syu, M.J.; Wu, C.C.; Shiesh, S.C. Diagnostic role of biliary pancreatic elastase for cholangiocarcinoma in patients with cholestasis. Clin Chim Acta 2008, 390, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Dhar, D.K.; Damink, S.W.M.O.; Brindley, J.H.; Godfrey, A.; Chapman, M.H.; Sandanayake, N.S.; Andreola, F.; Mazurek, S.; Hasan, T.; Malago, M.; et al. Pyruvate kinase m2 is a novel diagnostic marker and predicts tumor progression in human biliary tract cancer. Cancer 2013, 119, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y.; Ahn, K.S.; Baek, W.K.; Suh, S.I.; Kim, Y.H.; Kim, T.S.; Kang, K.J. Usefulness of bile as a biomarker via ferroptosis and cysteine prenylation in cholangiocarcinoma; role of diagnosis and differentiation from benign biliary disease. Surgical Oncology-Oxford 2020, 34, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Razumilava, N.; Gleeson, F.C.; Gores, G.J. Awareness of tract seeding with endoscopic ultrasound tissue acquisition in perihilar cholangiocarcinoma. Am J Gastroenterol 2015, 110, 200. [Google Scholar] [CrossRef] [PubMed]
- Pelsang, R.E.; Johlin, F.C. A percutaneous biopsy technique for patients with suspected biliary or pancreatic cancer without a radiographic mass. Abdominal Imaging 1997, 22, 307–310. [Google Scholar] [CrossRef]
- Vogel, A.; Bridgewater, J.; Edeline, J.; Kelley, R.K.; Klumpen, H.J.; Malka, D.; Primrose, J.N.; Rimassa, L.; Stenzinger, A.; Valle, J.W.; et al. Biliary tract cancer: Esmo clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 2023, 34, 127–140. [Google Scholar] [CrossRef]
- Borger, D.R.; Tanabe, K.K.; Fan, K.C.; Lopez, H.U.; Fantin, V.R.; Straley, K.S.; Schenkein, D.P.; Hezel, A.F.; Ancukiewicz, M.; Liebman, H.M.; et al. Frequent mutation of isocitrate dehydrogenase and in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 2012, 17, 72–79. [Google Scholar] [CrossRef]
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat Genet 2015, 47, 1003–1010. [Google Scholar] [CrossRef]
- Valle, J.W.; Kelley, R.K.; Nervi, B.; Oh, D.Y.; Zhu, A.X. Biliary tract cancer. Lancet 2021, 397, 428–444. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y.K.; Park, M.J.; Lee, M.H.; Kim, S.H.; Lee, W.J.; Rhim, H.C. Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced mri. J Magn Reson Imaging 2012, 36, 881–889. [Google Scholar] [CrossRef]
- Chong, Y.S.; Kim, Y.K.; Lee, M.W.; Kim, S.H.; Lee, W.J.; Rhim, H.C.; Lee, S.J. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced mri. Clin Radiol 2012, 67, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.M.; Ribero, D.; O’Reilly, E.M.; Kokudo, N.; Miyazaki, M.; Pawlik, T.M. Intrahepatic cholangiocarcinoma: Expert consensus statement. Hpb 2015, 17, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Claessen, M.M.; Vleggaar, F.P.; Tytgat, K.M.; Siersema, P.D.; van Buuren, H.R. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol 2009, 50, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Fevery, J.; Kalloo, A.; Nagorney, D.M.; Boberg, K.M.; Shneider, B.; Gores, G.J.; American Association for the Study of Liver, D. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010, 51, 660–678. [Google Scholar] [CrossRef] [PubMed]
- Tischendorf, J.J.; Hecker, H.; Kruger, M.; Manns, M.P.; Meier, P.N. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: A single center study. Am J Gastroenterol 2007, 102, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.; Lymp, J.; Angulo, P.; Gores, G.J.; Larusso, N.; Lindor, K.D. The value of serum ca 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci 2005, 50, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Moreno Luna, L.E.; Kipp, B.; Halling, K.C.; Sebo, T.J.; Kremers, W.K.; Roberts, L.R.; Barr Fritcher, E.G.; Levy, M.J.; Gores, G.J. Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures. Gastroenterology 2006, 131, 1064–1072. [Google Scholar] [CrossRef]
- Boberg, K.M.; Jebsen, P.; Clausen, O.P.; Foss, A.; Aabakken, L.; Schrumpf, E. Diagnostic benefit of biliary brush cytology in cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2006, 45, 568–574. [Google Scholar] [CrossRef]
| Title 1 | Growth pattern | Precancerous lesion | Main etiology |
|---|---|---|---|
| iCCA – small duct type | Mass-forming | None | Chronic hepatitis Cirrhosis |
| iCCA – large duct type | Periductal infiltrating | BilIN | Hepatolithiasis Liver flukes PSC |
| Intraductal growing | IPNB, MCN, ITNB | ||
| pCCA - dCCA | Flat or nodular sclerosing | BilIN | |
| Intraductal papillary | IPNB, MCN, ITNB |
| Biomarkers | n | ROC-AUC | Sensitivity (%) | Specificity (%) | Reference |
|---|---|---|---|---|---|
|
Exosomal cargoes MicroRNA (miR-191, miR-486-3p, miR-1274b, miR-16 & miR-484) MicroRNA (miR-483-5p, miR-126-3p) MicroRNA (miR-141-3p, miR-200a-3p, miR-200c-3p, miR-200b-3p and ENST00000588480.1) LncRNA (ENST00000588480.1 & ENST00000517758.1) Circle-RNA (circ-CCAC1) Protein (Claudin-3/CLDN3) |
|||||
|
96 92 100 91 |
0.81, 0.74 0.757~0.869 0.709 |
0.67 0.811, 0.73 0.63~0.83 0.829 |
0.69 0.811, 0.865 0.6~0.867 0.589 |
[63] [64] [65] [66] |
|
|
316 20 |
0.857 0.945 |
0.875 |
0.875 |
[57] [67] |
|
|
DNA K-ras mutation K-ras mutation KRAS K-ras mutation & p53 mutation K-ras mutation & p53 mutation K-ras mutation & p53 mutation TP53, ERBB2, and KRAS KRAS, TP53, CDKN2A, SMAD4, BRAF Promotor methylation INK4a/ARF Promotor methylation of COD1, CNRIP1, SEPT9 & VIM Methylation of DKK3, p16, SFRP2, DKK2, NPTX2 and ppENK CCND2, CDH13, GRIN2B, RUNX3, and TWIST1 Gene mutations in KRAS, TP53, SMAD4, and CDNK2A; Methylation changes in SOX17, 3-OST-2, NXPH1, SEPT9 and TERT 150 tumor-related genes (Wildly target) 520 tumor-related genes (Wildly target) RNA Human telomerase reverse transcriptase mRNA miR-9, miR-145, miR-944 RNU2-1f miR-412, miR640, miR-1537 & miR-3189 miR-30d-5, miR-92a-3p |
|||||
|
20 115 46 43 109 50 49 42 60 243 80 125 241 10 28 20 18 23 83 106 |
0.667 0.738 0.742 0.564/ 0.508 0.783, 0.750 0.733 0.955 0.737/ 0.715 0.84~0.98 0.775 0.765~0.975 0.856 0.78~0.81 0.730, 0.652 |
0.33 0.25 0.476 0.526 0.279/ 0.047 0.567, 0.5 0.467 0.909 0.536/ 0.462 0.67~0.96 0.773 0.71~0.83 0.92 0.947 0.955 0.833 0.67 0.5~0.67 0.811, 0.657 |
1 0.96 1 0.958 0.848/ 0.970 1, 1 1 1 0.937/ 0.969 0.93~0.98 0.778 0.94 0.98 0.999 1 0.91 0.89~0.92 0.605, 0.667 |
[68] [69] [70] [71] [72] [73] [74] [70] [75] [60] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] |
|
|
Protein CEACAM6 CEACAM6 SVV, CA199 MUC1 MUC4 MUC5AC Mac-2BP VEGF MCM2, MCM5 HSP27 & HSP70 SSP411 NGAL NGAL LCN2/NGAL S100P sB7-H3 α-1-antitrpysin Amylase PE-3B/amylase M2-PK GSH, hydrogen peroxide, GPx, Fe2+, FNTA |
|||||
|
73 41 102 68 134 46 78 53 42 20 67 40 38 144 24 323 8 239 68 167 46 |
0.74 0.92 0.78, 0.75 0.85 0.85 0.70 0.89 0.80 0.86, 0.81 0.913* 0.74 0.76 0.81 0.861 0.878 0.833 0.751 0.877 0.683~0.852 |
87.5 83.3 67.3, 96.4 90.0 27 75 69 99.3 90, 80 90.0 77.3 94 87 92.9 81.2 80 66 81.8 90.3 67.9~100 |
69.1 93.1 80.9, 46.7 76.3 93 76.9 67 88.9 90, 80 83.3 77.2 55 75 70 81.6 75 74 89.3 84.3 52.9~76.5 |
[86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [61] [101] [102] [103] [104] [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
