Submitted:
22 February 2024
Posted:
22 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Materials and Methods
- Collimation error:
- Non-standard temperature error:
- Earth curvature and atmospheric refraction:
- Disclosure error:
| Section | Route | Correction of Systematic errors (mm) | Disclosure (m) | ΔHN | LSM | ||
|---|---|---|---|---|---|---|---|
| Collimation | Earth curvature and atmospheric refraction | Non-standard temperature | |||||
| CP-A1 | 1 | -0.268 | 0.312 | -0.010 | -0.001 | -48.557 | -48.549 |
| 2 | 0.175 | 1.137 | -0.009 | -0.001 | |||
| 3 | -0.238 | 1.170 | -0.007 | 0.000 | |||
| CP-A2 | 1 | -0.280 | 0.358 | -0.004 | -0.001 | -28.732 | -28.737 |
| 2 | 0.243 | 1.190 | -0.005 | -0.001 | |||
| 3 | 0.331 | 1.575 | -0.007 | 0.000 | |||
| CP-A3 | 1 | 0.050 | 0.315 | -0.025 | -0.002 | -71.820 | -71.816 |
| 2 | 0.231 | 1.349 | -0.019 | 0.005 | |||
| 3 | 0.140 | 1.049 | 0.009 | 0.005 | |||
| CP-A4 | 1 | -0.686 | 0.517 | 0.000 | 0.001 | 0.576 | 0.573 |
| 2 | 0.173 | 1.148 | 0.001 | -0.004 | |||
| 3 | 0.289 | 1.385 | 0.001 | 0.001 | |||
3. Results
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sjöberg, L.E. On the geoid and orthometric height vs. quasigeoid and normal height. J. Géod. Sci. 2018, 8, 115–120. [Google Scholar] [CrossRef]
- Novak, P.; Fernando, S. On correct definition and use of normal heights in geodesy. Stud. Geophys. Geod. 2024, 1–24. [Google Scholar] [CrossRef]
- Szelachowska, M.; Godah, W.; Krynski, J. Contribution of GRACE Satellite Mission to the Determination of Orthometric/Normal Heights Corrected for Their Dynamics—A Case Study of Poland. Remote. Sens. 2022, 14, 4271. [Google Scholar] [CrossRef]
- Li, J.; Shen, W.; Zhou, X. Direct regional quasi-geoid determination using EGM2008 and DEM: A case study for Mainland China and its vicinity areas. Geodesy Geodyn. 2015, 6, 437–443. [Google Scholar] [CrossRef]
- Morozova, K.; Jäger, R.; Zarins, A.; Balodis, J.; Varna, I.; Silabriedis, G. Evaluation of quasi-geoid model based on astrogeodetic measurements: case of Latvia. J. Appl. Geodesy 2021, 15, 319–327. [Google Scholar] [CrossRef]
- Foroughi, I.; Tenzer, R. Comparison of different methods for estimating the geoid-to-quasi-geoid separation. Geophys. J. Int. 2017, 210, 1001–1020. [Google Scholar] [CrossRef]
- Odera, P.A. Evaluation of the recent high-degree combined global gravity-field models for geoid modelling over Kenya. Geodesy Cartogr. 2020, 46, 48–54. [Google Scholar] [CrossRef]
- Pavlov, N.S.; Sannikova, A.P. Prerequisites of geodetic surveying of technical status of trunk gas pipeline's underwater crossings. Marksheyderiya i Nedropol'zovaniye 2016, 2, 61–63. (In Russian) [Google Scholar]
- Abeho, D.R.; Hipkin, R.; Tulu, B.B. Evaluation of EGM2008 by means of GPS Levelling Uganda. South Afr. J. Geomatics 2014, 3, 272–284. [Google Scholar] [CrossRef]
- Yahaya, S.I.; El Azzab, D. Assessment of recent GOCE-based global geopotential models and EGM2008 in Niger Republic. Geodesy Cartogr. 2019, 45, 116–125. [Google Scholar] [CrossRef]
- Izvoltova, J.; Dasa, B.; Jakub, C.; Stanislav, H. Preprocessing of Gravity Data. Computation 2022, 10, 82. [Google Scholar] [CrossRef]
- Isik, M.S.; Çevikalp, M.R.; Erol, B.; Erol, S. Improvement of GOCE-Based Global Geopotential Models for Gravimetric Geoid Modeling in Turkey. Geosciences 2022, 12, 432. [Google Scholar] [CrossRef]
- Menegbo, E. Determination of orthometric elevations using GNSS-derived height with the EGM2008 geoid height model. Int. J. Adv. Geosci. 2017, 5, 13–18. [Google Scholar] [CrossRef]
- Khudyakov, G.I. Development of methods of analytical geometry of a sphere for solving geodesy and navigation tasks. J. Min. Inst. 2017, 223, 70–81. [Google Scholar] [CrossRef]
- Liang, W.; Pail, R.; Xu, X.; Li, J. A new method of improving global geopotential models regionally using GNSS/levelling data. Geophys. J. Int. 2020, 221, 542–549. [Google Scholar] [CrossRef]
- Erol, S.; Erol, B.; Ayan, T. A general review of the deformation monitoring techniques and a case study: analyzing deformations using GPS/levelling. In XXth ISPRS congress, vol. 7, no. 5, p. 12. 2004.
- Gusev, N.; Blishchenko, A.A.; Sannikova, A.P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. J. Min. Inst. 2022, 254, 173–179. [Google Scholar] [CrossRef]
- Albayrak, M.; Özlüdemir, M.T.; Aref, M.M.; Halicioglu, K. Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geodesy Geodyn. 2020, 11, 163–173. [Google Scholar] [CrossRef]
- Svitlana, N.; Roman, M.; Grygoriy, S.; Vira, S. Use of Different Geodesic Methods for Determining Heights. In International Conference Building Innovations; Springer International Publishing: Cham, Switzerland, 2022; pp. 473–487. [Google Scholar]
- Vystrchil, M.G.; Gusev, V.N.; Sukhov, A.K. A method of determining the errors of segmented grid models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey. J. Min. Inst. 2023, 262, 562–570. (In Russian) [Google Scholar]
- Petrov, S. Compatible processing of results of high precision geometric levelling and inclination measurements. Mod. Achiev. Geod. Sci. Ind. 2015, 1, 29. [Google Scholar]
- Eliseeva, N.N.; Zubov, A.V.; Gusev, V.N. The application of search optimization methods in solving geodetic problems. Geodesy Aerophotosurveying 2020, 64, 491–498. [Google Scholar] [CrossRef]
- Soycan, M. Improving EGM2008 by GPS and leveling data at local scale. Boletim de Ciências geodésicas 2014, 20, 3–18. (In Portuguese) [Google Scholar] [CrossRef]
- Herbert, T.; Olatunji, R.I. Comparative Analysis of Change between Ellipsoidal Height Differences and Equivalent Orthometric Height Difference. Ghana J. Geogr. 2020, 12, 132–144. [Google Scholar] [CrossRef]
- Yilmaz, N. Assessment of latest global gravity field models by GNSS/Levelling Geoid. Int. J. Eng. Geosci. 2023, 8, 111–118. [Google Scholar] [CrossRef]
- Ziggah, Y.Y.; Yakubu, I.; Kumi-Boateng, B. Analysis of methods for ellipsoidal height estimation–the case of a local geodetic reference network. Ghana Min. J. 2016, 16, 1–9. [Google Scholar] [CrossRef]
- Kuzin, A.A.; Palkin, P.O. Coordinate method for determining position in geodetic monitoring of cracks. J. Physics 2021, 1728, 012010. [Google Scholar] [CrossRef]
- Eshagh, M.; Zoghi, S. Local error calibration of EGM08 geoid using GNSS/levelling data. J. Appl. Geophys. 2016, 130, 209–217. [Google Scholar] [CrossRef]
- Filmer, M.S.; Featherstone, W.E.; Kuhn, M. The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J. Geodesy 2010, 84, 501–513. [Google Scholar] [CrossRef]
- Koks, D. A study of the EGM2008 model of Earth's gravitational field. J. Navig. 2022, 75, 1017–1034. [Google Scholar] [CrossRef]





| Point | ϕ | λ | h(m) |
|---|---|---|---|
| Zone (A) | |||
| A1 | N33°31'04.23088" | E35°40'19.02209" | 879.954 |
| A2 | N33°31'01.24131" | E35°40'19.23139" | 881.054 |
| A3 | N33°31'00.71578" | E35°40'05.80162" | 885.348 |
| A4 | N33°31'05.25177" | E35°40'08.02764" | 885.476 |
| CP | N33°31'01.69385" | E35°40'13.54181" | 882.446 |
| Zone (B) | |||
| A1 | N33°43'39.48678" | E35°28'28.34842" | 276.318 |
| A2 | N33°43'10.03531" | E35°28'17.11964" | 242.384 |
| A3 | N33°43'04.36187" | E35°27'42.56322" | 152.402 |
| A4 | N33°43'37.40257" | E35°27'53.33982" | 193.289 |
| CP | N33°43'22.26857" | E35°28'00.94609" | 192.591 |
| Zone (C) | |||
| A1 | N34°36'52.51739" | E36°07'53.08944" | 212.957 |
| A2 | N34°36'39.53158" | E36°08'13.63695" | 193.228 |
| A3 | N34°36'12.38280" | E36°08'00.49453" | 236.286 |
| A4 | N34°36'34.61689" | E36°07'08.98025" | 163.769 |
| CP | N34°36'34.27561" | E36°07'55.86680" | 164.500 |
| Point | ζ (h - HN) | N (EGM2008) | ||||
|---|---|---|---|---|---|---|
| Zone A | Zone B | Zone C | Zone A | Zone B | Zone C | |
| CP | 24.827 | 23.136 | 25.861 | 25.245 | 23.189 | 25.248 |
| A1 | 24.836 | 23.529 | 25.769 | 25.254 | 23.260 | 25.271 |
| A2 | 24.836 | 23.174 | 25.852 | 25.253 | 23.256 | 25.319 |
| A3 | 24.816 | 23.092 | 25.831 | 25.234 | 23.142 | 25.341 |
| A4 | 24.819 | 23.079 | 25.703 | 25.239 | 23.140 | 25.231 |
| Zone (A) | Zone (B) | Zone (C) | |
|---|---|---|---|
| Coefficient | -0.4182 | -0.1021 | 0.5212 |
| Check point | ϕ | λ | h | HN | Geoid height (N) | Orthometric height |
|---|---|---|---|---|---|---|
| 1 | 35.66919 | 33.51608 | 883.009 | 857.965 | 25.66 | 857.34 |
| 2 | 35.66930 | 33.51757 | 884.935 | 859.637 | 25.66 | 859.27 |
| 3 | 35.67127 | 33.51815 | 879.181 | 853.828 | 25.65 | 853.53 |
| 4 | 35.67133 | 33.51651 | 879.411 | 854.252 | 25.66 | 853.76 |
| 5 | 35.47342 | 33.72284 | 265.147 | 238.731 | 26.68 | 238.47 |
| 6 | 35.46775 | 33.71645 | 201.866 | 175.286 | 26.73 | 175.14 |
| 7 | 35.45836 | 33.72328 | 80.887 | 54.162 | 26.81 | 54.08 |
| 8 | 35.47109 | 33.72965 | 222.225 | 195.670 | 26.69 | 195.53 |
| 9 | 36.13131 | 34.6029 | 236.914 | 213.032 | 23.44 | 213.48 |
| 10 | 36.12046 | 34.607 | 141.587 | 117.808 | 23.42 | 118.17 |
| 11 | 36.12918 | 34.61443 | 208.496 | 184.433 | 23.42 | 185.08 |
| 12 | 36.14072 | 34.61285 | 206.589 | 182.840 | 23.44 | 183.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
