Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Design of a Flexure-based Flywheel for Storage of Angular Momentum and Kinetic Energy

Version 1 : Received: 14 February 2024 / Approved: 15 February 2024 / Online: 15 February 2024 (09:36:04 CET)

A peer-reviewed article of this Preprint also exists.

Flückiger, P.; Cosandier, F.; Schneegans, H.; Henein, S. Design of a Flexure-Based Flywheel for the Storage of Angular Momentum and Kinetic Energy. Machines 2024, 12, 232. Flückiger, P.; Cosandier, F.; Schneegans, H.; Henein, S. Design of a Flexure-Based Flywheel for the Storage of Angular Momentum and Kinetic Energy. Machines 2024, 12, 232.

Abstract

The flywheel is a widespread mechanical component used for the storage of kinetic energy and angular momentum. It typically consists of a cylindrical inertia rotating about its axis on rolling bearings, which involves undesired friction, lubrication, and wear. This paper presents an alternative mechanism that is functionally equivalent to a classical flywheel while relying exclusively on limited-stroke flexure-joints. This novel 1-degrees-of-freedom zero-stiffness mechanism has no wear and requires no lubrication: it is thus compatible with extreme environments, such as vacuum, cryogenics, or ionizing radiation. The mechanism is composed of two coupled pivoting rigid bodies whose individual angular momenta vary during motion but whose sum is constant at all times when the pivoting rate is constant. The quantitative comparison of the flexure-based flywheel to classical ones based on a hollow cylinder as inertia shows that the former stores typically 6 times less angular momentum and kinetic energy for the same mass while occupying typically 10 times more volume. The freedom of design of the shape of the rigid bodies offers the possibility of modifying the ratio of the kinetic energy stored versus angular momentum, which is not possible with classical flywheels. For example, a flexure-based flywheel with rigid pivoting bodies in the shape of thin discs stores 100 times more kinetic energy than a classical flywheel with the same angular momentum. A proof-of-concept prototype was successfully built and characterized in terms of reaction moment generation, which validates the presented analytical model.

Keywords

flexure mechanism; flywheel; energy storage; angular momentum

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.