Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

System Identification using Self-Adaptive Filtering Applied to Second-Order Gradient Materials

Version 1 : Received: 8 February 2024 / Approved: 8 February 2024 / Online: 9 February 2024 (00:14:04 CET)

A peer-reviewed article of this Preprint also exists.

Kletschkowski, T. System Identification Using Self-Adaptive Filtering Applied to Second-Order Gradient Materials. Dynamics 2024, 4, 254-271. Kletschkowski, T. System Identification Using Self-Adaptive Filtering Applied to Second-Order Gradient Materials. Dynamics 2024, 4, 254-271.

Abstract

For many engineering applications it is sufficient to use the concept of simple materials. However, higher gradients of the kinematic variables are taken into account to model materials with internal length scales as well as to describe localization effects using gradient theories in finite plasticity or fluid mechanics. In many approaches length scale parameter have been introduced that are related to a specific micro structure. An alternative approach is possible, if a thermodynamically consistent framework is used for material modelling as shown in the present contribution. However, even if sophisticated and thermodynamically consistent material models can be established there are still not yet standard experiments to determine higher order material constants. In order to contribute to this ongoing discussion system identification based on the method of self-adaptive filtering is proposed in this paper. To evaluate the effectiveness of this approach it has been applied to second-order gradient materials considering longitudinal vibrations. Based on thermodynamically consistent models that have been solved numerically it has been possible to prove that system identification based on self-adaptive filtering can be used effectively for both narrow-band and broadband signals in the field of second-order gradient materials. It has also been found that the differences identified for simple materials and gradient materials allow for condition monitoring and detection of gradient effects in the material behavior.

Keywords

Self-adaptive Filtering, Gradient Material, Second-Order Gradient Elasticity.

Subject

Physical Sciences, Applied Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.