Submitted:
07 February 2024
Posted:
09 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- introducing the iBVP dataset comprising RGB and thermal facial video data with signal quality assessed ground-truth PPG signals.
- presenting and validating a new rPPG framework iBVPNet for estimating BVP signal from RGB as well as thermal video frames.
- discovering MACC [24] as an effective evaluation metric to assess rPPG methods.
2. iBVP Dataset
2.1. Data Collection Protocol
2.2. Participants
2.3. Data Acquisition
2.4. Morphology and Time-Delay of PPG Signals
2.5. Pre-Processing and Signal Quality Assessment
2.6. Comparison with Existing Datasets
3. Validation of iBVP Dataset
3.1. Experiments
3.2. Evaluation Metrics
3.3. Results
4. Discussion and Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 1D-CNN | 1-dimensional convolutional neural network |
| BPM | Beats per minute |
| BVP | Blood volume pulse |
| ECG | Electrocardiogram |
| HR | Heart rate |
| PPG | Photoplethysmography |
| RGB | Color images with red, green an blue frames |
Appendix A. Detailed Results of Multifold Evaluation
Appendix A.1. RGB
| MACC (avg) | SNR (avg) | RMSE (HR) | Corr (HR) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Folds | PhysNet3D | RTrPPG | iBVPNet (Ours) | PhysNet3D | RTrPPG | iBVPNet (Ours) | PhysNet3D | RTrPPG | iBVPNet (Ours) | PhysNet3D | RTrPPG | iBVPNet (Ours) |
| 0 | 0.767 | 0.669 | 0.790 | 0.532 | 0.250 | 0.762 | 2.829 | 6.058 | 1.476 | 0.846 | 0.568 | 0.860 |
| 1 | 0.734 | 0.654 | 0.710 | 0.373 | 0.190 | 0.423 | 8.412 | 12.480 | 5.325 | 0.538 | 0.258 | 0.376 |
| 2 | 0.830 | 0.773 | 0.860 | 0.709 | 0.475 | 0.972 | 2.937 | 6.213 | 1.412 | 0.888 | 0.587 | 0.934 |
| 3 | 0.718 | 0.637 | 0.660 | 0.305 | 0.113 | 0.291 | 5.848 | 7.591 | 4.542 | 0.800 | 0.674 | 0.679 |
| 4 | 0.851 | 0.763 | 0.836 | 0.637 | 0.402 | 0.740 | 2.330 | 3.993 | 1.681 | 0.955 | 0.879 | 0.945 |
| 5 | 0.867 | 0.801 | 0.853 | 0.601 | 0.373 | 0.808 | 2.092 | 3.508 | 1.113 | 0.966 | 0.905 | 0.973 |
| 6 | 0.780 | 0.689 | 0.824 | 0.573 | 0.297 | 0.825 | 5.114 | 7.682 | 2.342 | 0.898 | 0.826 | 0.945 |
| 7 | 0.821 | 0.751 | 0.821 | 0.603 | 0.342 | 0.806 | 2.943 | 5.051 | 2.652 | 0.903 | 0.781 | 0.830 |
| 8 | 0.702 | 0.603 | 0.744 | 0.329 | 0.113 | 0.604 | 4.103 | 11.395 | 2.692 | 0.772 | 0.655 | 0.724 |
| 9 | 0.743 | 0.680 | 0.746 | 0.445 | 0.271 | 0.535 | 6.222 | 5.044 | 3.932 | 0.909 | 0.911 | 0.870 |
Appendix A.2. Thermal
| MACC (avg) | SNR (avg) | RMSE (HR) | Corr (HR) | |||||
|---|---|---|---|---|---|---|---|---|
| Folds | PhysNet3D | iBVPNet (Ours) | PhysNet3D | iBVPNet (Ours) | PhysNet3D | iBVPNet (Ours) | PhysNet3D | iBVPNet (Ours) |
| 0 | 0.377 | 0.469 | -0.099 | 0.363 | 6.496 | 3.144 | 0.092 | 0.136 |
| 1 | 0.352 | 0.403 | -0.110 | 0.109 | 6.932 | 5.557 | 0.286 | 0.065 |
| 2 | 0.389 | 0.437 | -0.071 | 0.266 | 5.599 | 4.731 | -0.139 | -0.218 |
| 3 | 0.378 | 0.409 | -0.151 | 0.171 | 5.856 | 5.037 | 0.093 | 0.589 |
| 4 | 0.367 | 0.401 | -0.120 | 0.138 | 5.475 | 5.401 | 0.065 | -0.060 |
| 5 | 0.368 | 0.442 | -0.149 | 0.232 | 5.628 | 4.856 | -0.141 | -0.046 |
| 6 | 0.350 | 0.430 | -0.114 | 0.213 | 6.815 | 5.865 | 0.014 | 0.365 |
| 7 | 0.338 | 0.386 | -0.150 | 0.113 | 5.453 | 6.015 | -0.238 | -0.247 |
| 8 | 0.358 | 0.431 | -0.144 | 0.264 | 6.409 | 4.245 | -0.063 | 0.238 |
| 9 | 0.326 | 0.322 | -0.238 | -0.279 | 8.732 | 9.152 | -0.162 | 0.129 |
References
- Hertzman, A.B. The Blood Supply of Various Skin Areas as Estimated by the Photoelectric Plethysmograph. American Journal of Physiology-Legacy Content 1938, 124, 328–340. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote Plethysmographic Imaging Using Ambient Light. Optics Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Bianchi-Berthouze, N.; Julier, S.J. DeepBreath: Deep Learning of Breathing Patterns for Automatic Stress Recognition Using Low-Cost Thermal Imaging in Unconstrained Settings. 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), 2017, pp. 456–463. [CrossRef]
- Cho, Y. Rethinking Eye-blink: Assessing Task Difficulty through Physiological Representation of Spontaneous Blinking. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Reşit Kavsaoğlu, A.; Polat, K.; Recep Bozkurt, M. A Novel Feature Ranking Algorithm for Biometric Recognition with PPG Signals. Computers in Biology and Medicine 2014, 49, 1–14. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, T.; Sun, Y.; Li, Y.; Zhao, S.; Avolio, A. Remote Photoplethysmography for Heart Rate Measurement: A Review. Biomedical Signal Processing and Control 2024, 88, 105608. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Transactions on Affective Computing 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Stricker, R.; Müller, S.; Gross, H.M. Non-Contact Video-Based Pulse Rate Measurement on a Mobile Service Robot. The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 2014, pp. 1056–1062. [CrossRef]
- Zhang, Z.; Girard, J.M.; Wu, Y.; Zhang, X.; Liu, P.; Ciftci, U.; Canavan, S.; Reale, M.; Horowitz, A.; Yang, H.; Cohn, J.F.; Ji, Q.; Yin, L. Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3438–3446.
- Niu, X.; Han, H.; Shan, S.; Chen, X. VIPL-HR: A Multi-modal Database for Pulse Estimation from Less-Constrained Face Video. Computer Vision – ACCV 2018; Jawahar, C., Li, H., Mori, G., Schindler, K., Eds.; Springer International Publishing: Cham, 2019; Lecture Notes in Computer Science, pp. 562–576. [Google Scholar] [CrossRef]
- Bobbia, S.; Macwan, R.; Benezeth, Y.; Mansouri, A.; Dubois, J. Unsupervised Skin Tissue Segmentation for Remote Photoplethysmography. Pattern Recognition Letters 2019, 124, 82–90. [Google Scholar] [CrossRef]
- Sabour, R.M.; Benezeth, Y.; De Oliveira, P.; Chappé, J.; Yang, F. UBFC-Phys: A Multimodal Database For Psychophysiological Studies of Social Stress. IEEE Transactions on Affective Computing 2023, 14, 622–636. [Google Scholar] [CrossRef]
- Revanur, A.; Li, Z.; Ciftci, U.A.; Yin, L.; Jeni, L.A. The First Vision for Vitals (V4V) Challenge for Non-Contact Video-Based Physiological Estimation. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2760–2767.
- McDuff, D.; Wander, M.; Liu, X.; Hill, B.L.; Hernandez, J.; Lester, J.; Baltrusaitis, T. SCAMPS: Synthetics for Camera Measurement of Physiological Signals, 2022, [arxiv:cs/2206. 0 4197. [CrossRef]
- Špetlík, R. Visual Heart Rate Estimation with Convolutional Neural Network. Proceedings of the British Machine Vision Conference; The British Machine Vision Association: Newcastle, UK, 2018. [Google Scholar]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A Review on Wearable Photoplethysmography Sensors and Their Potential Future Applications in Health Care. International journal of biosensors & bioelectronics 2018, 4, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Signals During Intensive Physical Exercise. IEEE Transactions on Biomedical Engineering 2015, 62, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.H.; Chang, K.Y.; Huang, C.S.; Jung, T.P. IC-U-Net: A U-Net-based Denoising Autoencoder Using Mixtures of Independent Components for Automatic EEG Artifact Removal. NeuroImage 2022, 263, 119586. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Ding, C.; Rudin, C.; Hu, X. A Self-Supervised Algorithm for Denoising Photoplethysmography Signals for Heart Rate Estimation from Wearables, 2023, [arxiv:cs, eess/2307. 0 5339. [CrossRef]
- Joshi, J.; Wang, K.; Cho, Y. PhysioKit: An Open-Source, Low-Cost Physiological Computing Toolkit for Single- and Multi-User Studies. Sensors 2023, 23, 8244. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Guo, M.H.; Chen, H.; Li, X.; Wei, K.; Lin, Z. Is Attention Better Than Matrix Decomposition?, 2021, [arxiv:cs/2109.04553]. 0 4553. [CrossRef]
- Botina-Monsalve, D.; Benezeth, Y.; Miteran, J. RTrPPG: An Ultra Light 3DCNN for Real-Time Remote Photoplethysmography. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2146–2154.
- Yu, Z.; Li, X.; Zhao, G. Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks, 2019, [arxiv:cs/1905.02419]. [CrossRef]
- Cho, Y.; Julier, S.J.; Marquardt, N.; Bianchi-Berthouze, N. Robust Tracking of Respiratory Rate in High-Dynamic Range Scenes Using Mobile Thermal Imaging. Biomedical Optics Express 2017, 8, 4480–4503. [Google Scholar] [CrossRef] [PubMed]
- Tonacci, A.; Billeci, L.; Burrai, E.; Sansone, F.; Conte, R. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors. Sensors (Basel, Switzerland) 2019, 19, 4661. [Google Scholar] [CrossRef] [PubMed]
- Birkett, M.A. The Trier Social Stress Test Protocol for Inducing Psychological Stress. Journal of Visualized Experiments : JoVE 2011, 56, 3238. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Julier, S.J.; Bianchi-Berthouze, N. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging. JMIR Mental Health 2019, 6, e10140. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.T.; Narain, J.; Ferguson, C.; Picard, R.; Maes, P. The ECHOS Platform to Enhance Communication for Nonverbal Children with Autism: A Case Study. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Logitech BRIO Webcam with 4K Ultra HD Video & HDR. https://www.logitech.com/en-gb/products/ webcams/brio-4k-hdr-webcam.html.
- FLIR A65 IR Temperature Sensor | Teledyne FLIR. https://www.flir.co.uk/products/a65?vertical=rd+ science&segment=solutions.
- Casado, C.Á.; López, M.B. Face2PPG: An Unsupervised Pipeline for Blood Volume Pulse Extraction from Faces. IEEE Journal of Biomedical and Health Informatics. [CrossRef]
- Allen, J.; Murray, A. Effects of Filtering on Multisite Photoplethysmography Pulse Waveform Characteristics. Computers in Cardiology, 2004, 2004, pp. 485–488. [Google Scholar] [CrossRef]
- Patterson, J.A.; McIlwraith, D.C.; Yang, G.Z. A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring. 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, 2009, pp. 286–291. [CrossRef]
- Huang, F.H.; Yuan, P.J.; Lin, K.P.; Chang, H.H.; Tsai, C.L. Analysis of Reflectance Photoplethysmograph Sensors. International Journal of Biomedical and Biological Engineering 2011, 5, 622–625. [Google Scholar]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Sukor, J.A.; Redmond, S.J.; Lovell, N.H. Signal Quality Measures for Pulse Oximetry through Waveform Morphology Analysis. Physiological Measurement 2011, 32, 369. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, D.; Ma, X.; Teng, G.; Wei, J. PQR Signal Quality Indexes: A Method for Real-Time Photoplethysmogram Signal Quality Estimation Based on Noise Interferences. Biomedical Signal Processing and Control 2019, 47, 88–95. [Google Scholar] [CrossRef]
- Goh, C.H.; Tan, L.K.; Lovell, N.H.; Ng, S.C.; Tan, M.P.; Lim, E. Robust PPG Motion Artifact Detection Using a 1-D Convolution Neural Network. Computer Methods and Programs in Biomedicine 2020, 196, 105596. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, X.; Shi, C.; Gao, Q.; Geng, J. A LSTM-Based Realtime Signal Quality Assessment for Photoplethysmogram and Remote Photoplethysmogram. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3831–3840.
- Guo, Z.; Ding, C.; Hu, X.; Rudin, C. A Supervised Machine Learning Semantic Segmentation Approach for Detecting Artifacts in Plethysmography Signals from Wearables. Physiological Measurement 2021, 42, 125003. [Google Scholar] [CrossRef]
- Roh, D.; Shin, H. Recurrence Plot and Machine Learning for Signal Quality Assessment of Photoplethysmogram in Mobile Environment. Sensors 2021, 21, 2188. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wu, C.; Cai, P.; Zhong, Z.; Huang, H.; Jiang, Y. Tiny-PPG: A Lightweight Deep Neural Network for Real-Time Detection of Motion Artifacts in Photoplethysmogram Signals on Edge Devices. Internet of Things 2024, 25, 101007. [Google Scholar] [CrossRef]
- Desquins, T.; Bousefsaf, F.; Pruski, A.; Maaoui, C. A Survey of Photoplethysmography and Imaging Photoplethysmography Quality Assessment Methods. Applied Sciences 2022, 12, 9582. [Google Scholar] [CrossRef]
- Moscato, S.; Lo Giudice, S.; Massaro, G.; Chiari, L. Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis. Sensors 2022, 22, 5831. [Google Scholar] [CrossRef]
- Shin, H. Deep Convolutional Neural Network-Based Signal Quality Assessment for Photoplethysmogram. Computers in Biology and Medicine 2022, 145, 105430. [Google Scholar] [CrossRef] [PubMed]
- Feli, M.; Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Liljeberg, P. An Energy-Efficient Semi-Supervised Approach for on-Device Photoplethysmogram Signal Quality Assessment. Smart Health 2023, 28, 100390. [Google Scholar] [CrossRef]
- Pereira, T.; Ding, C.; Gadhoumi, K.; Tran, N.; Colorado, R.A.; Meisel, K.; Hu, X. Deep Learning Approaches for Plethysmography Signal Quality Assessment in the Presence of Atrial Fibrillation. Physiological Measurement 2019, 40, 125002. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Sensors 2019, 19, 3079. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. Proceedings of the 20th ACM International Conference on Multimodal Interaction; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Stark, Z. Chengstark/Segade, 2024.
- Py-Feat: Python Facial Expression Analysis Toolbox — Py-Feat. https://py-feat.org/pages/intro.html#.
- Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; Zafeiriou, S. RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5203–5212.
- Li, X.; Alikhani, I.; Shi, J.; Seppanen, T.; Junttila, J.; Majamaa-Voltti, K.; Tulppo, M.; Zhao, G. The OBF Database: A Large Face Video Database for Remote Physiological Signal Measurement and Atrial Fibrillation Detection. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), 2018, pp. 242–249. [CrossRef]
- Hendrycks, D.; Mu, N.; Cubuk, E.D.; Zoph, B.; Gilmer, J.; Lakshminarayanan, B. AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, 2020, [arxiv:cs, stat/1912.02781]. [CrossRef]
- Pytorchvideo.Transforms — PyTorchVideo Documentation. https://pytorchvideo.readthedocs.io/en/latest /api/transforms/transforms.html.
- Orphanidou, C.; Bonnici, T.; Charlton, P.; Clifton, D.; Vallance, D.; Tarassenko, L. Signal-Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE Journal of Biomedical and Health Informatics 2015, 19, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Peng, W.; Li, X.; Hong, X.; Zhao, G. Remote Heart Rate Measurement From Highly Compressed Facial Videos: An End-to-End Deep Learning Solution With Video Enhancement. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 151–160.
- Hu, M.; Qian, F.; Wang, X.; He, L.; Guo, D.; Ren, F. Robust Heart Rate Estimation With Spatial–Temporal Attention Network From Facial Videos. IEEE Transactions on Cognitive and Developmental Systems 2022, 14, 639–647. [Google Scholar] [CrossRef]
- Yu, Z.; Li, X.; Niu, X.; Shi, J.; Zhao, G. AutoHR: A Strong End-to-End Baseline for Remote Heart Rate Measurement With Neural Searching. IEEE Signal Processing Letters 2020, 27, 1245–1249. [Google Scholar] [CrossRef]
- Deividbotina-Alv/Rtrppg: Python Implementation of the 3DCNN-based Real-Time rPPG Network (RTrPPG). https://github.com/deividbotina-alv/rtrppg.






| Dataset | Modality | Subjects | Tasks | No. of Videos |
Duration (min) |
Varying Illumination |
SQ Labels |
Resolution | Compression | FPS | Free Access |
|---|---|---|---|---|---|---|---|---|---|---|---|
| PURE [8] | RGB | 10 | S, M, T | 60 | 60 | Y | N | 640 x 480 | None | 30 | Yes |
| OBF* [53] | RGB, NIR | 106 | M | 200 | 1000 | N | N | 640 x 480 | None | 30 | No |
| MANHOB-HCI [7] | RGB | 27 | E | 527 | 350 | N | N | 1040 × 1392 | None | 24 | Yes |
| MMSE-HR [9] | RGB, 3D Thermal |
40 | E | 102 | 935 | N | N | RGB: 1040 × 1392; Thermal: 640 x 480 |
None | 25 | No |
| VIPL-HR [10] | RGB, NIR | 107 | S, M, T | 3130 | 1235 | Y | N | Face-cropped | MJPG | 25 | Yes |
| UBFC-rPPG [11] | RGB | 43 | S, C | 43 | 86 | Y | N | 640 x 480 | None | 30 | Yes |
| UBFC-Phys [12] | RGB | 56 | S, C, T | 168 | 504 | N | N | 1024 x 1024 | JPEG | 35 | Yes |
| iBVP (Ours) | RGB, Thermal |
30 | B, C, M | 689 | 341 (noise- removed) |
N | Y | RGB: 640 x 480; Thermal: 640 x 512 |
None | 30 | Yes |
| MACC (avg) | SNR (avg) | RMSE (HR) | Corr (HR) | |
|---|---|---|---|---|
| PhysNet3D [23] | 0.781 | 0.511 | 4.283 | 0.848 |
| RTrPPG [22] | 0.702 | 0.283 | 6.901 | 0.704 |
| iBVPNet (ours) | 0.784 | 0.677 | 2.717 | 0.813 |
| Datasets | rPPG method | RMSE | R |
|---|---|---|---|
| PURE [8] | PhysNet3D [23] | 2.60 | 0.99 |
| rPPGNet [57] | 1.21 | 1.00 | |
| SAM-rPPGNet [58] | 1.21 | 1.00 | |
| MANHOB-HCI [7] | PhysNet3D [23] | 8.76 | 0.69 |
| rPPGNet [57] | 5.93 | 0.88 | |
| VIPL-HR [10] | PhysNet3D [23] | 14.80 | 0.20 |
| AutoHR [59] | 8.68 | 0.72 | |
| iBVP Dataset (ours) | PhysNet3D [23] | 4.28 | 0.85 |
| RTrPPG [22] | 6.90 | 0.70 | |
| iBVPNet (ours) | 2.72 | 0.81 |
| MACC (avg) | SNR (avg) | RMSE (HR) | Corr (HR) | |
|---|---|---|---|---|
| PhysNet3D [23] | 0.360 | -0.135 | 6.339 | -0.019 |
| iBVPNet (ours) | 0.413 | 0.159 | 5.400 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
