Submitted:
06 February 2024
Posted:
06 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Concept of evanescent field ratio
3. Deciphering Evanescent Wave Patterns in Diverse WG Geometries
4. Choice of a suitable platform for sensing applications
5. Applications
5.1. Evanescent field absorption gas sensors
5.2. Biosensing applications
| Device type | Platform | Application | Sensitivity | Reference |
| Ridge WG | Silicon-on-insulator | Gas sensing | - | [99] |
| Slot WG and Subwavelength grating slot WG | Silicon-on-insulator | Gas sensing |
|
[100] |
| Double slot WG based MZI | Polymer | Biosensing | 2.39 ×105 nm/RIU | [101] |
| Slot WG | Si3N4 | Biosensing | 212 nm/RIU | [102] |
| Rib WG | Silicon-on-sapphire | Gas sensing | - | [70] |
| Modified ridge WG | Silicon-on-insulator | Gas sensing | 0.0175 mW/gas conc. | [34] |
| Horizontal slot WG | Silicon-on-insulator | Biosensing | 893.5 nm/RIU | [103] |
| Hybrid plasmonic WG-based ring resonator | Silicon-on-insulator | Biosensing | 580 nm/RIU | [104] |
| Hybrid plasmonic WG-based ring resonator | Silicon-on-insulator |
|
|
[84] |
| Double slot hybrid plasmonic WG based MZI structure | Silicon-on-insulator | Biosensing | 1061 nm/RIU | [105] |
| Racetrack ring resonator | Silica-titania | Biosensing | 142.5 nm/RIU | [11] |
| Subwavelength grating structure | Silica-titania | Biosensing | 120 nm/RIU | [41] |
| Planar optical WG | Polymer | Biosensing | 0.75 pixel/nM | [106] |
| SWG hybrid plasmonic WG | SOI | Biosensing | 1000 nm/RIU | [107] |
| Plasmonic WG loaded with functional polymer | Gold | Gas sensing | 226 pm/ppm | [108] |
| Polymer WG coupled surface plasmon | Polymer | Biosensing | 4518.14 nm/RIU | [109] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- M. A. Butt, N. L. Kazanskiy, S. N. Khonina, G. S. Voronkov, E. P. Grakhova, and R. V. Kutluyarov, ‘A Review on Photonic Sensing Technologies: Status and Outlook’, Biosensors, vol. 13, no. 5, Art. no. 5, May 2023. [CrossRef]
- S. Ghosh, T. Dar, C. Viphavakit, C. Pan, N. Kejalakshmy, and B. M. A. Rahman, ‘Compact Photonic SOI Sensors’, in Computational Photonic Sensors, M. F. O. Hameed and S. Obayya, Eds., Cham: Springer International Publishing, 2019, pp. 343–383. [CrossRef]
- M. Vlk et al., ‘Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy’, Light Sci. Appl., vol. 10, no. 1, Art. no. 1, Jan. 2021. [CrossRef]
- M. A. Butt and R. Piramidowicz, ‘Standard slot waveguide and double hybrid plasmonic waveguide configurations for enhanced evanescent field absorption methane gas sensing’, Photonics Lett. Pol., vol. 14, no. 1, Art. no. 1, Mar. 2022. [CrossRef]
- M. A. Butt, S. A. Degtyarev, S. N. Khonina, and N. L. Kazanskiy, ‘An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength’, J. Mod. Opt., vol. 64, no. 18, pp. 1892–1897, Oct. 2017. [CrossRef]
- H. Tai, H. Tanaka, and T. Yoshino, ‘Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser’, Opt. Lett., vol. 12, no. 6, pp. 437–439, Jun. 1987. [CrossRef]
- M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, ‘Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors’, Measurement, vol. 211, p. 112601, Apr. 2023. [CrossRef]
- C. Liu et al., ‘Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings’, Opt. Commun., vol. 464, p. 125496, Jun. 2020. [CrossRef]
- S. Singh, B. Chaudhary, A. Upadhyay, D. Sharma, N. Ayyanar, and S. A. Taya, ‘A review on various sensing prospects of SPR based photonic crystal fibers’, Photonics Nanostructures - Fundam. Appl., vol. 54, p. 101119, May 2023. [CrossRef]
- N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, ‘A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications’, Micromachines, vol. 14, no. 5, Art. no. 5, May 2023. [CrossRef]
- M. A. Butt, M. Shahbaz, and R. Piramidowicz, ‘Racetrack Ring Resonator Integrated with Multimode Interferometer Structure Based on Low-Cost Silica–Titania Platform for Refractive Index Sensing Application’, Photonics, vol. 10, no. 9, Art. no. 9, Sep. 2023. [CrossRef]
- ‘Waveguide Mach-Zehnder biosensor with laser diode pumped integrated single-mode silicon nitride organic hybrid solid-state laser - ScienceDirect’. Accessed: Jan. 26, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956566321008538.
- K. R. Kribich et al., ‘Novel chemical sensor/biosensor platform based on optical multimode interference (MMI) couplers’, Sens. Actuators B Chem., vol. 107, no. 1, pp. 188–192, May 2005. [CrossRef]
- ‘Sensors | Free Full-Text | Integrated Lab-on-a-Chip Optical Biosensor Using Ultrathin Silicon Waveguide SOI MMI Device’. Accessed: Jan. 26, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/20/17/4955.
- ‘Biosensors | Free Full-Text | A Fiber Bragg Grating Sensor Based on Cladding Mode Resonance for Label-Free Biosensing’. Accessed: Jan. 26, 2024. [Online]. Available: https://www.mdpi.com/2079-6374/13/1/97.
- D. Gowdhami, V. R. Balaji, M. Murugan, S. Robinson, and G. Hegde, ‘Photonic crystal based biosensors: an overview’, ISSS J. Micro Smart Syst., vol. 11, no. 1, pp. 147–167, Jun. 2022. [CrossRef]
- ‘Biosensors | Free Full-Text | Silicon Integrated Dual-Mode Interferometer with Differential Outputs’. Accessed: Jan. 26, 2024. [Online]. Available: https://www.mdpi.com/2079-6374/7/3/37.
- C. Peng et al., ‘Optical Waveguide Refractive Index Sensor for Biochemical Sensing’, Appl. Sci., vol. 13, no. 6, Art. no. 6, Jan. 2023. [CrossRef]
- Y. H. Isayama, ‘Design and numerical demonstration of a multimode interference sensor using engineered slot-waveguides’, Opt. Quantum Electron., vol. 56, no. 3, p. 304, Dec. 2023. [CrossRef]
- K. Li, S. Li, Z. Yin, and J. Li, ‘Experimental study of SPR sensor performance enhancement by metal oxides’, Infrared Phys. Technol., vol. 136, p. 105021, Jan. 2024. [CrossRef]
- ‘Modeling of Mach-Zehnder Interferometric Sensors Employing Ring-Resonator Circuits for Slow-Light Enhancement | IEEE Journals & Magazine | IEEE Xplore’. Accessed: Feb. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10313014.
- Abdalwareth, G. Flachenecker, M. Angelmahr, and W. Schade, ‘Optical fiber evanescent hydrogen sensor based on palladium nanoparticles coated Bragg gratings’, Sens. Actuators Phys., vol. 361, p. 114594, Oct. 2023. [CrossRef]
- M. Londero, M. Delgado-Pinar, C. Cuadrado-Laborde, and M. V. Andrés, ‘Resonant Couplings in U-Shaped Fibers for Biosensing’, J. Light. Technol., vol. 41, no. 13, pp. 4230–4237, Jul. 2023. [CrossRef]
- S. Shafaay, S. Mohamed, and M. Swillam, ‘Mid-Infrared Gas Sensing Based on Electromagnetically Induced Transparency in Coupled Plasmonic Resonators’, Sensors, vol. 23, no. 22, Art. no. 22, Jan. 2023. [CrossRef]
- B. Wang et al., ‘On-Chip Fluorescent Sensor for Chemical Vapor Detection’, Adv. Mater. Technol., vol. 8, no. 19, p. 2300609, 2023. [CrossRef]
- T. Tian et al., ‘Sensitivity-Enhanced and Compact Refractometer Based on Double Assembled Long-Period Fiber Gratings With Tapered Fiber Structure’, IEEE Sens. J., vol. 23, no. 18, pp. 21279–21284, Sep. 2023. [CrossRef]
- Y. Zhu et al., ‘Microfiber evanescent-field photothermal gas detection using acoustic-induced mode-dependent frequency shift’, Nanophotonics, vol. 12, no. 16, pp. 3229–3242, Aug. 2023. [CrossRef]
- J. Canning, W. Padden, D. Boskovic, M. Naqshbandi, H. de Bruyn, and M. J. Crossley, ‘Manipulating and controlling the evanescent field within optical waveguides using high index nanolayers [Invited]’, Opt. Mater. Express, vol. 1, no. 2, pp. 192–200, Jun. 2011. [CrossRef]
- C. Consani, C. Ranacher, A. Tortschanoff, T. Grille, P. Irsigler, and B. Jakoby, ‘Evanescent-Wave Gas Sensing Using an Integrated Thermal Light Source’, Proceedings, vol. 1, no. 4, Art. no. 4, 2017. [CrossRef]
- N. Punjabi, J. Satija, and S. Mukherji, ‘Evanescent Wave Absorption Based Fiber-Optic Sensor - Cascading of Bend and Tapered Geometry for Enhanced Sensitivity’, in Sensing Technology: Current Status and Future Trends III, A. Mason, S. C. Mukhopadhyay, and K. P. Jayasundera, Eds., in Smart Sensors, Measurement and Instrumentation. , Cham: Springer International Publishing, 2015, pp. 25–45. [CrossRef]
- ‘Sensors | Free Full-Text | Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review’. Accessed: Feb. 04, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/8/2/711.
- S. Kumar, A. Kumari, and B. Pradhan, ‘Analysis of evanescent field of TE and TM mode in the grounded slab metamaterial waveguide structure’, Optik, vol. 126, no. 23, pp. 3706–3712, Dec. 2015. [CrossRef]
- M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, ‘Enhancement of evanescent field ratio in a silicon strip waveguide by incorporating a thin metal film’, Laser Phys., vol. 29, no. 7, p. 076202, May 2019. [CrossRef]
- S. N. Khonina, N. L. Kazanskiy, and M. A. Butt, ‘Evanescent Field Ratio Enhancement of a Modified Ridge Waveguide Structure for Methane Gas Sensing Application’, IEEE Sens. J., vol. 20, no. 15, pp. 8469–8476, Aug. 2020. [CrossRef]
- C. Consani, F. Dubois, and G. Auböck, ‘Figures of merit for mid-IR evanescent-wave absorption sensors and their simulation by FEM methods’, Opt. Express, vol. 29, no. 7, pp. 9723–9736, Mar. 2021. [CrossRef]
- C. Ranacher, C. Consani, R. Jannesari, T. Grille, and B. Jakoby, ‘Numerical Investigations of Infrared Slot Waveguides for Gas Sensing’, Proceedings, vol. 2, no. 13, Art. no. 13, 2018. [CrossRef]
- L. Torrijos-Morán, A. Griol, and J. García-Rupérez, ‘Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors’, Opt. Lett., vol. 44, no. 19, pp. 4702–4705, Oct. 2019. [CrossRef]
- N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, ‘Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application’, Sensors, vol. 20, no. 12, Art. no. 12, Jan. 2020. [CrossRef]
- Y. Sun, G. Hu, and Y. Cui, ‘Subwavelength grating waveguide racetrack-based refractive index sensor with improved figure of merit’, Appl. Opt., vol. 59, no. 33, pp. 10613–10617, Nov. 2020. [CrossRef]
- K. Awasthi, N. Malviya, and A. Kumar, ‘Silicon Subwavelength Grating Slot Waveguide based Optical Sensor for Label Free Detection of Fluoride Ion in Water’, IETE Tech. Rev., vol. 0, no. 0, pp. 1–12, 2023. [CrossRef]
- M. A. Butt, C. Tyszkiewicz, K. Wojtasik, P. Karasiński, A. Kaźmierczak, and R. Piramidowicz, ‘Subwavelength Grating Waveguide Structures Proposed on the Low-Cost Silica–Titania Platform for Optical Filtering and Refractive Index Sensing Applications’, Int. J. Mol. Sci., vol. 23, no. 12, Art. no. 12, Jan. 2022. [CrossRef]
- N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, ‘Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review’, Phys. E Low-Dimens. Syst. Nanostructures, vol. 117, p. 113798, Mar. 2020. [CrossRef]
- M. G. Scullion, A. Di Falco, and T. F. Krauss, ‘Slotted photonic crystal cavities with integrated microfluidics for biosensing applications’, Biosens. Bioelectron., vol. 27, no. 1, pp. 101–105, Sep. 2011. [CrossRef]
- M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, ‘Recent advances in photonic crystal optical devices: A review’, Opt. Laser Technol., vol. 142, p. 107265, Oct. 2021. [CrossRef]
- M. A. Butt, ‘Integrated Optics: Platforms and Fabrication Methods’, Encyclopedia, vol. 3, no. 3, Art. no. 3, Sep. 2023. [CrossRef]
- S. Itabashi et al., ‘Silicon Photonics Devices Based on SOI Structures’, ECS Trans., vol. 35, no. 5, p. 227, Apr. 2011. [CrossRef]
- D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, ‘Silicon Nitride in Silicon Photonics’, Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, Dec. 2018. [CrossRef]
- Hermans, M. V. Daele, J. Dendooven, S. Clemmen, C. Detavernier, and R. Baets, ‘Integrated silicon nitride electro-optic modulators with atomic layer deposited overlays’, Opt. Lett., vol. 44, no. 5, pp. 1112–1115, Mar. 2019. [CrossRef]
- S. M. Garner et al., ‘Three-dimensional integrated optics using polymers’, IEEE J. Quantum Electron., vol. 35, no. 8, pp. 1146–1155, Aug. 1999. [CrossRef]
- J. I. Frish et al., ‘Rapid photolithographic fabrication of high density optical interconnects using refractive index contrast polymers’, Opt. Mater. Express, vol. 12, no. 5, pp. 1932–1944, May 2022. [CrossRef]
- M. Nedeljkovic et al., ‘Silicon photonic devices and platforms for the mid-infrared’, Opt. Mater. Express, vol. 3, no. 9, pp. 1205–1214, Sep. 2013. [CrossRef]
- ‘Integrated Bragg waveguides as an efficient optical notch filter on silicon nitride platform - IOPscience’. Accessed: Dec. 03, 2023. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/917/6/062042.
- D. de Felipe et al., ‘Recent Developments in Polymer-Based Photonic Components for Disruptive Capacity Upgrade in Data Centers’, J. Light. Technol., vol. 35, no. 4, pp. 683–689, Feb. 2017.
- R. T. Chen, ‘Polymer-based photonic integrated circuits’, Opt. Laser Technol., vol. 25, no. 6, pp. 347–365, Dec. 1993. [CrossRef]
- M. Schell and D. de Felipe, ‘Polymer based photonic integration for sensors, communication, and active optical PCB’, in 2017 IEEE CPMT Symposium Japan (ICSJ), Nov. 2017, pp. 185–188. [CrossRef]
- M. Al-Amri, ‘Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications’, Polymers, vol. 15, no. 15, Art. no. 15, Jan. 2023. [CrossRef]
- Kargar and C.-Y. Chao, ‘Design and optimization of waveguide sensitivity in slot microring sensors’, JOSA A, vol. 28, no. 4, pp. 596–603, Apr. 2011. [CrossRef]
- M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, ‘Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 µm and 3.392 µm wavelength’, Appl. Opt., vol. 59, no. 26, pp. 7821–7828, Sep. 2020. [CrossRef]
- Q. Liu et al., ‘Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide’, Sens. Actuators B Chem., vol. 188, pp. 681–688, Nov. 2013. [CrossRef]
- Lau, M. A. Swillam, and A. S. Helmy, ‘Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers’, Opt. Express, vol. 18, no. 26, p. 27048, Dec. 2010. [CrossRef]
- J. Juan-Colás, S. Johnson, and T. F. Krauss, ‘Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review’, Sensors, vol. 17, no. 9, Art. no. 9, Sep. 2017. [CrossRef]
- R. P. Potdar, Y. B. Khollam, S. F. Shaikh, R. W. Raut, B. Pandit, and P. S. More, ‘Evanescent wave sensor for potassium ion detection with special reference to agricultural application’, J. Photochem. Photobiol. Chem., vol. 441, p. 114707, Jul. 2023. [CrossRef]
- M. A. Butt, G. S. Voronkov, E. P. Grakhova, R. V. Kutluyarov, N. L. Kazanskiy, and S. N. Khonina, ‘Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors’, Biosensors, vol. 12, no. 11, Art. no. 11, Nov. 2022. [CrossRef]
- S. Dhall, B. R. Mehta, A. K. Tyagi, and K. Sood, ‘A review on environmental gas sensors: Materials and technologies’, Sens. Int., vol. 2, p. 100116, Jan. 2021. [CrossRef]
- V. M. Fthenakis and V. Zakkay, ‘A theoretical study of absorption of toxic gases by spraying’, J. Loss Prev. Process Ind., vol. 3, no. 2, pp. 197–206, Apr. 1990. [CrossRef]
- L. Feng, J. Wang, Y. Chen, and C. Ding, ‘Detection and Early Warning of Toxic Gases Based on Semiconductor Wireless Sensors’, J. Sens., vol. 2021, p. e6988676, Nov. 2021. [CrossRef]
- H. Tai, Z. Duan, Y. Wang, S. Wang, and Y. Jiang, ‘Paper-Based Sensors for Gas, Humidity, and Strain Detections: A Review’, ACS Appl. Mater. Interfaces, vol. 12, no. 28, pp. 31037–31053, Jul. 2020. [CrossRef]
- ‘The HITRAN2016 molecular spectroscopic database - ScienceDirect’. Accessed: Feb. 05, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022407317301073?via%3Dihub.
- T. Jin, J. Zhou, and P. Tai Lin, ‘Real-time and non-destructive hydrocarbon gas sensing using mid-infrared integrated photonic circuits’, RSC Adv., vol. 10, no. 13, pp. 7452–7459, 2020. [CrossRef]
- M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, ‘Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 μm wavelength for evanescent field gas absorption sensor’, Optik, vol. 168, pp. 692–697, Sep. 2018. [CrossRef]
- K. Xie, X. Zhang, X. Zhang, H. Jin, and J. Jian, ‘A slot microring sensor with feedback spiral waveguide for trace gas CH4 sensing in mid-infrared region’, Optoelectron. Lett., vol. 15, no. 1, pp. 1–5, Jan. 2019. [CrossRef]
- ‘Germanium-on-Glass waveguides for Mid-IR photonics’. Accessed: Jan. 31, 2024. [Online]. Available: https://opg.optica.org/abstract.cfm?uri=photonics-2016-Th3A.18.
- ‘Mid-infrared photonics in silicon and germanium | Nature Photonics’. Accessed: Jan. 31, 2024. [Online]. Available: https://www.nature.com/articles/nphoton.2010.171.
- ‘Verification of Ge-on-insulator structure for a mid-infrared photonics platform’. Accessed: Jan. 31, 2024. [Online]. Available: https://opg.optica.org/ome/fulltext.cfm?uri=ome-8-2-440&id=380890.
- ‘Sensors | Free Full-Text | Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection’. Accessed: Jan. 31, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/17/10/2221.
- ‘An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film’. Accessed: Jan. 31, 2024. [Online]. Available: https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-11-11859&id=199658.
- V. Chandra and R. Ranjan, ‘Performance analysis of different slot waveguide structures for evanescent field based gas sensor applications’, Opt. Quantum Electron., vol. 53, no. 8, p. 457, Aug. 2021. [CrossRef]
- ‘Chemosensors | Free Full-Text | Current Trends in Photonic Biosensors: Advances towards Multiplexed Integration’. Accessed: Feb. 01, 2024. [Online]. Available: https://www.mdpi.com/2227-9040/10/10/398.
- H. Altug, S.-H. Oh, S. A. Maier, and J. Homola, ‘Advances and applications of nanophotonic biosensors’, Nat. Nanotechnol., vol. 17, no. 1, Art. no. 1, Jan. 2022. [CrossRef]
- M. A. Butt, S. A. Fomchenkov, and N. L. Kazanskiy, ‘A fair comparison of spectral properties of Slot and Hybrid plasmonic micro-ring resonators’, J. Phys. Conf. Ser., vol. 1410, no. 1, p. 012119, Dec. 2019. [CrossRef]
- ‘Silicon-on-Insulator microring resonator for sensitive and label-free biosensing’. Accessed: Jan. 26, 2024. [Online]. Available: https://opg.optica.org/oe/fulltext.cfm?uri=oe-15-12-7610&id=138262.
- ‘High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics’. Accessed: Jan. 26, 2024. [Online]. Available: https://opg.optica.org/oe/fulltext.cfm?uri=oe-20-11-12261&id=233353.
- M. Abdelghaffar et al., ‘Highly sensitive V-shaped SPR PCF biosensor for cancer detection’, Opt. Quantum Electron., vol. 55, no. 5, p. 472, Apr. 2023. [CrossRef]
- M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, ‘Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator’, Waves Random Complex Media, vol. 30, no. 2, pp. 292–299, Apr. 2020. [CrossRef]
- M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, ‘Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads’, Lab. Chip, vol. 11, no. 12, pp. 2042–2044, Jun. 2011. [CrossRef]
- ‘Biosensors | Free Full-Text | An Optimization Framework for Silicon Photonic Evanescent-Field Biosensors Using Sub-Wavelength Gratings’. Accessed: Feb. 01, 2024. [Online]. Available: https://www.mdpi.com/2079-6374/12/10/840.
- ‘Performance of ultra-thin SOI-based resonators for sensing applications’. Accessed: Feb. 01, 2024. [Online]. Available: https://opg.optica.org/oe/fulltext.cfm?uri=oe-22-12-14166&id=289504.
- H. Sohlström, K. B. Gylfason, and D. Hill, ‘Real-time label-free biosensing with integrated planar waveguide ring resonators’, in Silicon Photonics and Photonic Integrated Circuits II, SPIE, May 2010, pp. 78–92. [CrossRef]
- K. B. Gylfason et al., ‘On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array’, Opt. Express, vol. 18, no. 4, pp. 3226–3237, Feb. 2010. [CrossRef]
- ‘Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator | IEEE Journals & Magazine | IEEE Xplore’. Accessed: Feb. 01, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/5232865.
- A. Barrios et al., ‘Label-free optical biosensing with slot-waveguides’, Opt. Lett., vol. 33, no. 7, pp. 708–710, Apr. 2008. [CrossRef]
- J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, ‘Conformational analysis of proteins with a dual polarisation silicon microring’, Opt. Express, vol. 22, no. 3, pp. 2807–2820, Feb. 2014. [CrossRef]
- ‘A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide - Wang - 2013 - Journal of Biophotonics - Wiley Online Library’. Accessed: Feb. 01, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201300012.
- J. Flueckiger et al., ‘Sub-wavelength grating for enhanced ring resonator biosensor’, Opt. Express, vol. 24, no. 14, pp. 15672–15686, Jul. 2016. [CrossRef]
- Yuan, Y. Dong, Y. Liu, and T. Li, ‘Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section’, Sensors, vol. 15, no. 9, Art. no. 9, Sep. 2015. [CrossRef]
- ‘Refractive index sensor of Mach–Zehnder interferometer based on thermo-optic effect of SOI waveguide - ScienceDirect’. Accessed: Jan. 27, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030402616304144.
- X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J.-J. He, ‘High-sensitivity optical biosensor based on cascaded Mach–Zehnder interferometer and ring resonator using Vernier effect’, Opt. Lett., vol. 39, no. 22, pp. 6363–6366, Nov. 2014. [CrossRef]
- G. Ruiz-Vega et al., ‘Rapid and direct quantification of the SARS-CoV-2 virus with an ultrasensitive nanobody-based photonic nanosensor’, Sens. Diagn., vol. 1, no. 5, pp. 983–993, Sep. 2022. [CrossRef]
- H. Zhao et al., ‘On-chip mid-infrared silicon-on-insulator waveguide methane sensor using two measurement schemes at 3.291 μm’, Front. Chem., vol. 10, 2022, Accessed: Feb. 05, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fchem.2022.953684.
- Y. Song, B. Li, H. Zhang, M. Li, Q. Li, and J.-J. He, ‘Silicon Waveguide Sensors for Carbon Dioxide Gas Sensing in the Mid-Infrared Region’, Photonics, vol. 10, no. 2, Art. no. 2, Feb. 2023. [CrossRef]
- S. Prasanna Kumaar and A. Sivasubramanian, ‘Design of a high-sensitivity polymer double-slot waveguide sensor for point-of-care biomedical applications’, Sens. Int., vol. 5, p. 100255, Jan. 2024. [CrossRef]
- C. A. Barrios, ‘Optical Slot-Waveguide Based Biochemical Sensors’, Sensors, vol. 9, no. 6, pp. 4751–4765, 2009. [CrossRef]
- C. Viphavakit, M. Komodromos, C. Themistos, W. S. Mohammed, K. Kalli, and B. M. A. Rahman, ‘Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization’, Appl. Opt., vol. 54, no. 15, pp. 4881–4888, May 2015. [CrossRef]
- L. Zhou, X. Sun, X. Li, and J. Chen, ‘Miniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide’, Sensors, vol. 11, no. 7, Art. no. 7, Jul. 2011. [CrossRef]
- X. Sun, D. Dai, L. Thylén, and L. Wosinski, ‘High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide’, Opt. Express, vol. 23, no. 20, pp. 25688–25699, Oct. 2015. [CrossRef]
- J.-G. Walter, L. S. M. Alwis, B. Roth, and K. Bremer, ‘All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D’, Sensors, vol. 20, no. 23, Art. no. 23, Jan. 2020. [CrossRef]
- M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, ‘Modal Characteristics of Refractive Index Engineered Hybrid Plasmonic Waveguide’, IEEE Sens. J., vol. 20, no. 17, pp. 9779–9786, Sep. 2020. [CrossRef]
- M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, ‘On-chip symmetrically and asymmetrically transformed plasmonic Bragg grating formation loaded with a functional polymer for filtering and CO2 gas sensing applications’, Measurement, vol. 201, p. 111694, Sep. 2022. [CrossRef]
- L. Ji, S. Yang, R. Shi, Y. Fu, J. Su, and C. Wu, ‘Polymer Waveguide Coupled Surface Plasmon Refractive Index Sensor: A Theoretical Study’, Photonic Sens., vol. 10, no. 4, pp. 353–363, Dec. 2020. [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).