Preprint
Article

On the Conjecture over Dimensions of Associated Lie Algebra to the Isolated Singularities

Altmetrics

Downloads

69

Views

19

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 February 2024

Posted:

06 February 2024

You are already at the latest version

Alerts
Abstract
Lie algebra plays an important role in the study of singularity theory and other field of sciences. Finding numerous invariants linked with isolated singularities is always a main interest in the classification theory of isolated singularities. Any Lie algebra that characterizes simple singularity produces a natural question. The study of properties such as to find the dimensions of newly defined algebra is a remarkable work. Hussain, Yau and Zuo \cite{HYZ10} have been found a new class of Lie algebra \texorpdfstring{ $ \mathcal{L}_ k (V)$}{LG}, \texorpdfstring{$k\geq 1$}{LG} i.e., Der ($M_{k}(V), M_{k}(V)$) and purposed a conjecture over its dimension $\delta_{k}(V)$ for $k\geq0$. Later they proved it true for $k$ up to $k=1,2,3,4,5$. In this work, the main concern is whether it's true for a higher value of $k$. According to this, we calculate first, the dimension of Lie algebra \texorpdfstring{$\mathcal{L}_ k (V)$}{LG} for $k=6$ and then compute the upper estimate conjecture of fewnomial isolated singularities. Along with, we also justify the inequality conjecture: \texorpdfstring{$\delta_{k+1}(V) < \delta_{k}(V)$}{LG} for $k=6$. Our calculated results are innovative and a new addition to the study of singularity theory.
Keywords: 
Subject: Physical Sciences  -   Mathematical Physics

1. Introduction

A mathematical structure known as a Lie algebra is made up of vector spaces and a particular binary operation known as the Lie bracket which used to measure the "twist" between two infinitesimal transformations geometrically. Lie algebras are essential to many branches of mathematics and science. In quantum mechanics and particle physics, they are widely used, and in physical phenomena, they arise as symmetry groups. In this regard, Brieskorn established the relationship between Lie algebras and simple singularities. Recent studies have investigated relations between finite-dimensional solvable Lie algebras and isolated hypersurface singularities in complex analysis. In different areas of science and mathematics, singularities have arisen naturally. That’s why singularity theory has become the interlinking path between the various applications of mathematics with its conclusive parts. As an example, it coordinates regular polyhedra theory and simple Lie algebra with the optimal caustics investigations, and relates knot theory to wave fronts of hyperbolic PDE, while it also connects commutative algebra to the theory of solids shape. In most problems of singularity theory, the core aim is to determine the dependence of various physical phenomena while deal with the geometric objects.
The germs of holomorphic functions are widely accepted to be at the origin of C n and O n . Naturally, the O n can be used to identify the algebra of n indeterminate power series. Yau takes into account the Lie algebras derived from the moduli algebra A ( V ) : = O n / ( g , g y 1 , , g y n ) , where L ( V ) define as Der ( A ( V ) , A ( V ) ) and V denote the isolated hypersurface singularity. Lie algebra L ( V ) is a famous solvable finite-dimensional algebra ([1,2,3]). Yau algebra of V is used in singularity theory to distinguish L ( V ) from the other types of Lie algebra ([4,5]). The complex analytical set of isolated hypersurface singularities and the finite set of solvable dimensional Lie algebras (nilpotent) have many new natural connections that Hussain, Yau, Zuo, and their research associates have discovered in recent years ([6,7,8,9,10,11,12]). They have presented three distinct methods for connecting isolated hypersurface singularities to Lie algebra.
These associations are helpful to understand the solvable Lie algebra (nilpotent), from a geometric point of view [8]. A lot of work has been done by Yau and his research collaborates, from 1980s [8,12,13,14,15,16,17,18,19,20,21,22,23].
Let a holomorphic function g : ( C n , 0 ) ( C , 0 ) associated to the isolated hypersurface singularity ( V , 0 ) and its multiplicity denoted as m u l t ( g ) . The L k ( V ) [24] defined as:
Let ideal J k ( g ) generated by < k g y i 1 y i k | 1 i 1 , , i k n > and m u l t ( g ) = m , 1 k m . Then M k ( V ) : = O n / ( g + J 1 ( g ) + + J k ( g ) ) define the k-th local algebra and L k ( V ) denoted the derivations Lie algebras and its dimension denoted as δ k ( V ) . It is further note that the L k ( V ) is the generalization of Yau algebra. Further detail can be check from ([12,24]).
In [24], the sharp upper estimate and inequality conjectures introduced in following pattern:
Conjecture 1. 
[24] Let δ k ( { y 1 α 1 + + y n α n = 0 } ) = h k ( α 1 , , α n ) , 0 k n and ( V , 0 ) = { ( y 1 , y 2 , , y n ) C n : g ( y 1 , y 2 , , y n ) = 0 } , ( n 2 ) be an isolated singularity with weight type ( w 1 , w 2 , , w n ; 1 ) . Then δ k ( V ) h k ( 1 / w 1 , , 1 / w n ) .
Conjecture 2. 
[24] using the above notations, suppose ( V , 0 ) defined by g O n , n 2 . Then
δ ( k + 1 ) ( V ) < δ k ( V ) , k 1 .
The Conjecture 1 have been proved for binomial and trinomial singularities when k = 1 , 2 , 3 , 4 ([11,17,20,24,25]) and the Conjecture 2 also have been proved for k = 1 , 2 , 3 ([24,25]).
The main results of this paper is to prove the Conjecture 1 and 2) for binomial and trinomial singularities for particular value of k. The key findings of this paper following as:
Theorem 3. 
For ( V , 0 ) = { ( y 1 , y 2 , , y n ) C n : y 1 α 1 + + y n α n = 0 } , ( n 2 ; α l 7 , 1 j n )
δ 6 ( V ) = h 6 ( α 1 , , α n ) = j = 1 n α j 7 α j 6 l = 1 n ( α l 6 ) .
Theorem 4. 
For binomial singularity ( V , 0 ) defined by g ( y 1 , y 2 ) a weighted homogeneous polynomial with m u l t ( g ) 8 and weight type ( w 1 , w 2 ; 1 ) ,
δ 6 ( V ) h 6 ( 1 w 1 , 1 w 2 ) = l = 1 2 1 w l 7 1 w l 6 j = 1 2 ( 1 w j 6 ) .
Theorem 5. 
For binomial singularity ( V , 0 ) defined by g ( y 1 , y 2 ) a weighted homogeneous polynomial with m u l t ( g ) 8 and weight type ( w 1 , w 2 ; 1 ) ,
δ 6 ( V ) < δ 5 ( V ) .
Theorem 6. 
For feunomial singularity ( V , 0 ) defined by g ( y 1 , y 2 , y 3 ) a weighted homogeneous polynomial with m u l t ( g ) 8 and weight type ( w 1 , w 2 , w 3 ; 1 ) , Then
δ 6 ( V ) h 6 ( 1 w 1 , 1 w 2 , 1 w 3 ) = l = 1 3 1 w l 7 1 w l 6 j = 1 3 ( 1 w j 6 ) .
Theorem 7. 
For trinomial singularity ( V , 0 ) defined by g ( y 1 , y 2 , y 3 ) a weighted homogeneous polynomial with m u l t ( g ) 8 and weight type ( w 1 , w 2 , w 3 ; 1 ) . Then
δ 6 ( V ) < δ 5 ( V ) .

2. Preliminaries

Proposition 1. 
Analytically, the series Type A., Type B., and Type C. are the homogeneous fewnomial Isolated singularity g having mult ( g ) 3
Type A. y 1 α 1 + y 2 α 2 + + y n 1 α n 1 + y n α n , n 1 ,
Type B. y 1 α 1 y 2 + y 2 α 2 y 3 + + y n 1 α n 1 y n + y n α n , n 2 ,
Type C. y 1 α 1 y 2 + y 2 α 2 y 3 + + y n 1 α n 1 y n + y n α n y 1 , n 2 .
Corollary 1. 
Analytically, the series A, B, and C are the Homogeneous fewnomial Isolated binomial singularities g having mult ( g ) 3
A: y 1 α 1 + y 2 α 2 ,
B: y 1 α 1 y 2 + y 2 α 2 ,
C: y 1 α 1 y 2 + y 2 α 2 y 1 .
Proposition 2. ([28]) Analytically g ( y 1 , y 2 , y 3 ) , mult ( g ) 3 is,
Type 1. y 1 α 1 + y 2 α 2 + y 3 α 3 ,
Type 2. y 1 α 1 y 2 + y 2 α 2 y 3 + y 3 α 3 ,
Type 3. y 1 α 1 y 2 + y 2 α 2 y 3 + y 3 α 3 y 1 ,
Type 4. y 1 α 1 + y 2 α 2 + y 3 α 3 y 1 ,
Type 5. y 1 α 1 y 2 + y 2 α 2 y 1 + y 3 α 3 .

3. Proof of theorems

Before going to the proof of main theorems, first we will prove some propositions.
Proposition 3. 
For ( V , 0 ) defined by g = y 1 α 1 + y 2 α 2 + + y n α n ( α l 8 , l = 1 , 2 , , n ) with weight type ( 1 α 1 , 1 α 2 , , 1 α n ; 1 ) ,
δ 6 ( V ) = j = 1 n α j 7 α j 6 l = 1 n ( α l 6 ) .
Proof. 
l = 1 n ( α l 6 ) be the dimension of moduli algebra M 6 ( V ) and monomial basis are of the form
{ y 1 l 1 y 2 l 2 y n l n , 0 l 1 α 1 7 , 0 l 2 α 2 7 , , 0 l n α n 7 } ,
with following relations:
y 1 α 1 6 = 0 , y 2 α 2 6 = 0 , y 3 α 3 6 = 0 , , y n α n 6 = 0 .
This implies
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 l n = 0 α n 7 α l 1 , l 2 , , l n i y 1 l 1 y 2 l 2 y n l n , j = 1 , 2 , , n .
Using 1 we may determine a derivation of M 6 ( V ) as
α 0 , l 2 , l 3 , , , l n 1 = 0 ; 0 l 2 α 2 7 , 0 l 3 α 3 7 , , 0 l n α n 7 ; α l 1 , 0 , l 3 , , , l n 2 = 0 ; 0 l 1 α 1 7 , 0 l 3 α 3 7 , , 0 l n α n 7 ; α l 1 , l 2 , 0 , , l n 3 = 0 ; 0 l 1 α 1 7 , 0 l 2 α 2 7 , , 0 l n α n 7 ; α l 1 , l 2 , l 3 , , l n 1 , 0 n = 0 ; 0 l 1 α 1 7 , 0 l 2 α 2 7 , , 0 l n 1 α n 1 7 .
The derivation basis are of the form
y 1 l 1 y 2 l 2 y n l n 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 , 0 l 3 α 3 7 , , 0 l n α n 7 ; y 1 l 1 y 2 l 2 y n l n 2 , 0 l 1 α 1 7 , 1 l 2 α 2 7 , 0 l 3 α 3 7 , , 0 l n α n 7 ; y 1 l 1 y 2 l 2 y n l n 3 , 0 l 1 α 1 7 , 0 l 2 α 2 7 , 1 l 3 α 3 7 , 0 l 4 α 4 7 , 0 l 5 α 5 7 , 0 l 6 α 6 7 , , 0 l n α n 7 ; y 1 l 1 y 2 l 2 y n l n n , 0 l 1 α 1 7 , 0 l 2 α 2 7 , 0 l 3 α 3 7 , , 1 l n α n 7 .
This implies
δ 6 ( V ) = j = 1 n α j 7 α j 6 l = 1 n ( α l 6 ) .
Remark 1. 
For weighted isolated homogeneous fewnomial singularity ( V , 0 ) of type A defined by g = y 1 α 1 + y 2 α 2 ( α 1 8 , α 2 8 ) with weight type ( 1 α 1 , 1 α 2 ; 1 ) the Proposition 3 implies
δ 6 ( V ) = 2 α 1 α 2 13 ( α 1 + α 2 ) + 84 .
Proposition 4. 
For isolated binomial singularity ( V , 0 ) of type B defined by g = y 1 α 1 y 2 + y 2 α 2 ( α 1 7 , α 2 8 ) with weight type ( α 2 1 α 1 α 2 , 1 α 2 ; 1 ) ,
δ 6 ( V ) = 2 α 1 α 2 13 ( α 1 + α 2 ) + 87 .
For m u l t ( g ) 8 ,
2 α 1 α 2 13 ( α 1 + α 2 ) + 87 2 α 1 α 2 2 α 2 1 13 ( α 1 α 2 α 2 1 + α 2 ) + 84 .
Proof. 
α 1 α 2 6 ( α 1 + α 2 ) + 37 be the dimension of
M 6 ( V ) = C { y 1 , y 2 } / ( g y 1 y 1 y 1 y 1 y 1 , g y 2 y 2 y 2 y 2 y 2 , g y 1 y 2 y 2 y 2 y 2 , g y 1 y 1 y 2 y 2 y 2 , g y 1 y 1 y 1 y 2 y 2 , g y 1 y 1 y 1 y 1 y 2 )
and monomial basis are of the form
{ y 1 l 1 y 2 l 2 , 0 l 1 α 1 7 ; 0 l 2 α 2 7 ; y 1 α 1 6 } .
This implies,
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 α l 1 , l 2 i y 1 l 1 y 2 l 2 + α α 1 6 , 0 i y 1 α 1 6 , i = 1 , 2 .
The basis of L 6 ( V ) are
y 1 l 1 y 2 l 2 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 ; y 1 l 1 y 2 l 2 2 , 0 l 1 α 1 7 , 1 l 2 α 2 7 ;
y 2 α 2 7 1 ; y 1 α 1 6 1 ; y 1 α 1 6 2 .
We get following formula
δ 6 ( V ) = 2 α 1 α 2 13 ( α 1 + α 2 ) + 87 .
Finally we need to show that
2 α 1 α 2 13 ( α 1 + α 2 ) + 87 2 α 1 α 2 2 α 2 1 13 ( α 1 α 2 α 2 1 + α 2 ) + 84 .
After solving 3 we have α 1 ( α 2 10 ) + α 2 ( α 1 6 ) + 6 0 . □
Proposition 5. 
For isolated binomial singularity ( V , 0 ) of type C defined by g = y 1 α 1 y 2 + y 2 α 2 y 1 ( α 1 7 , α 2 7 ) with weight type ( α 2 1 α 1 α 2 1 , α 1 1 α 1 α 2 1 ; 1 ) ,
δ 6 ( V ) = 2 α 1 α 2 13 ( α 1 + α 2 ) + 90 ; α 1 8 , α 2 8 α 2 3 ; α 1 = 7 , α 2 7 .
For m u l t ( g ) 8 ,
2 α 1 α 2 13 ( α 1 + α 2 ) + 90 2 ( α 1 α 2 1 ) 2 ( α 1 1 ) ( α 2 1 ) 13 ( α 1 α 2 1 ) ( α 1 + α 2 2 ( α 1 1 ) ( α 2 1 ) ) + 84 .
Proof. 
The Moduli algebra has dimenssion α 1 α 2 6 ( α 1 + α 1 ) + 38 . The monomial basis of
M 5 ( V ) = C { y 1 , y 2 } / ( g y 1 y 1 y 1 y 1 y 1 , g y 2 y 2 y 2 y 2 y 2 , g y 1 y 2 y 2 y 2 y 2 , g y 1 y 1 y 2 y 2 y 2 , g y 1 y 1 y 1 y 2 y 2 , g y 1 y 1 y 1 y 1 y 2 )
are of the form
{ y 1 l 1 y 2 l 2 , 0 l 1 α 1 7 ; 0 l 2 α 2 7 ; y 1 α 1 6 ; y 2 α 2 6 } .
This implies,
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 α l 1 , l 2 i y 1 l 1 y 2 l 2 + α α 1 6 , 0 i y 1 α 1 6 + α 0 , α 2 6 i y 2 α 2 6 , i = 1 , 2 .
The derivation basis are of the form
y 1 l 1 y 2 l 2 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 ; y 1 l 1 y 2 l 2 2 , 0 l 1 α 1 7 , 1 l 2 α 2 7 ;
y 2 α 2 7 1 ; y 2 α 2 6 1 ; y 1 α 1 6 1 ; y 2 α 2 6 2 ; y 1 α 1 7 2 ; y 1 α 1 6 2 .
This implies,
δ 6 ( V ) = 2 α 1 α 2 13 ( α 1 + α 2 ) + 90 .
For α 1 = 7 , α 2 7 , we get L 6 ( V ) as
y 2 l 2 2 , 1 l 2 α 2 6 ; y 2 α 2 6 1 ; y 1 1 ; y 1 2 .
Next we will prove that
2 α 1 α 2 13 ( α 1 + α 2 ) + 90 2 ( α 1 α 2 1 ) 2 ( α 1 1 ) ( α 2 1 ) 13 ( α 1 α 2 1 ) ( α 1 + α 2 2 ( α 1 1 ) ( α 2 1 ) ) + 84 .
After solving 5 we have
α 1 α 2 2 [ ( α 2 5 ) ( α 1 5 ) α 1 ( α 2 8 ) ] + α 2 3 + 4 α 1 2 α 2 + 10 α 2 2 ( α 1 6 ) + 6 α 1 α 2 ( α 1 6 )
+ 3 α 1 2 ( α 2 6 ) + α 1 α 2 ( α 1 6 ) + 15 α 1 + 2 ( α 2 6 ) 0 .
Similarly, the conjecture 1 hold true for α 1 = 7 , α 2 7 .
Remark 2. 
For fewnomial surface isolated singularity ( V , 0 ) of the type 1 defined by g = y 1 α 1 + y 2 α 2 + y 3 α 3 ( α 1 8 , α 2 8 , α 3 8 ) with weight type ( 1 α 1 , 1 α 2 , 1 α 3 ; 1 ) . From Proposition 3, we get
δ 6 ( V ) = 3 α 1 α 2 α 3 + 120 ( α 1 + α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 756 .
Proposition 6. 
For fewnomial surface isolated singularity ( V , 0 ) of the type 2 defined by g = y 1 α 1 y 2 + y 2 α 2 y 3 + y 3 α 3 ( α 1 7 , α 2 7 , α 3 8 ) with weight type ( 1 α 3 + α 2 α 3 α 1 α 2 α 3 , α 3 1 α 2 α 3 , 1 α 3 ; 1 ) ,
δ 6 ( V ) = 3 α 1 α 2 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 124 ( α 1 + α 3 ) + 120 α 2 807 ; α 1 7 , α 2 8 , α 3 8 2 α 1 α 3 9 α 1 11 α 3 + 47 ; α 1 7 , α 2 = 7 , α 3 8 .
For α 1 7 , α 2 8 , α 3 8 , we need to prove following inequality:
3 α 1 α 2 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 124 ( α 1 + α 3 ) + 120 α 2 807 3 α 1 α 2 2 α 3 3 ( 1 α 3 + α 2 α 3 ) ( α 3 1 ) 19 ( α 1 α 2 2 α 3 2 ( 1 α 3 + α 2 α 3 ) ( α 3 1 ) + α 1 α 2 α 3 2 1 α 3 + α 2 α 3 + α 2 α 3 2 α 3 1 ) + 120 ( α 1 α 2 α 3 1 α 3 + α 2 α 3 + α 2 α 3 α 3 1 + α 3 ) 756 .
Proof. 
The Moduli algebra has dimension α 1 α 2 α 3 6 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 37 ( α 1 + α 3 ) + 36 α 2 228 . The monomial basis of M 6 ( V ) are of the form:
{ y 1 l 1 y 2 l 2 y 3 l 3 , 0 l 1 α 1 7 ; 0 l 2 α 2 7 ; 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 , 0 l 3 α 3 7 ; y 1 l 1 y 3 α 3 6 , 0 l 1 α 1 7 } .
This implies,
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 l 3 = 0 α 3 7 α l 1 , l 2 , l 3 i y 1 l 1 y 2 l 2 y 3 l 3 + l 1 = 0 α 1 7 α l 1 , 0 , α 3 6 i y 1 l 1 y 3 α 3 6 + l 3 = 0 α 3 7 α α 1 6 , 0 , l 3 i y 3 l 3 y 1 α 1 6 , i = 1 , 2 , 3 .
The derivation basis are of the form
y 1 l 1 y 2 l 2 y 3 l 3 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 1 , 0 l 3 α 3 7 , y 2 α 2 7 y 3 l 3 1 , 1 l 3 α 3 7 ; y 1 l 1 y 2 α 2 6 1 , 0 l 1 α 1 7 , y 1 l 1 y 2 l 2 y 3 l 3 2 , 0 l 1 α 1 7 , 1 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 2 , 0 l 3 α 3 7 , y 1 l 1 y 2 α 2 6 2 , 0 l 1 α 1 7 ; y 1 l 1 y 3 α 3 7 2 , 1 l 1 α 1 7 , y 1 l 1 y 2 l 2 y 3 l 3 3 , 0 l 1 α 1 7 , 0 l 2 α 2 7 , 1 l 3 α 3 7 , y 1 l 1 y 2 α 2 6 3 , 0 l 1 α 1 7 , y 1 α 1 6 y 3 l 3 3 , 1 l 3 α 3 7 .
We get
δ 6 ( V ) = 3 α 1 α 2 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 124 ( α 1 + α 3 ) + 120 α 2 807 .
For α 1 7 , α 2 = 7 , α 3 8 , we get the following basis:
y 1 l 1 y 3 l 3 1 , 1 l 1 α 1 6 , 0 l 3 α 3 7 ; y 1 l 1 y 2 1 , 0 l 1 α 1 7 , y 1 l 1 y 2 2 , 0 l 1 α 1 7 ; y 1 l 1 y 3 α 3 7 2 , 1 l 1 α 1 6 , y 1 l 1 y 3 l 3 3 , 0 l 1 α 1 6 , 1 l 3 α 3 7 ; y 1 l 1 y 2 3 , 0 l 1 α 1 7 .
We get
δ 6 ( V ) = 2 α 1 α 3 9 α 1 11 α 3 + 47 .
For α 1 7 , α 2 8 , α 3 8 , we need to prove following inequality:
3 α 1 α 2 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 124 ( α 1 + α 3 ) + 120 α 2 807 3 α 1 α 2 2 α 3 3 ( 1 α 3 + α 2 α 3 ) ( α 3 1 ) 19 ( α 1 α 2 2 α 3 2 ( 1 α 3 + α 2 α 3 ) ( α 3 1 ) + α 1 α 2 α 3 2 1 α 3 + α 2 α 3 + α 2 α 3 2 α 3 1 ) + 120 ( α 1 α 2 α 3 1 α 3 + α 2 α 3 + α 2 α 3 α 3 1 + α 3 ) 756 .
After simplification we get
( α 1 5 ) 3 ( α 2 7 ) α 3 + ( α 2 6 ) α 1 α 3 ( ( α 3 5 ) ( α 1 7 ) + ( α 2 5 ) ( α 3 5 ) ) + α 2 ( 3 α 3 6 ) ( α 1 5 ) + α 2 ( α 1 4 ) + 6 0 .
Similarly, one can prove that for α 1 7 , α 2 = 7 , α 3 8 the conjecture 1 hold true. □
Proposition 7. 
For isolated fewnomial surface singularity ( V , 0 ) of type 3 defined by g = y 1 α 1 y 2 + y 2 α 2 y 3 + y 3 α 3 y 1 ( α 1 7 , α 2 7 , α 3 7 ) with weight type
( 1 α 3 + α 2 α 3 1 + α 1 α 2 α 3 , 1 α 1 + α 1 α 3 1 + α 1 α 2 α 3 , 1 α 2 + α 1 α 2 1 + α 1 α 2 α 3 ; 1 )
,
δ 6 ( V ) = 3 α 1 α 2 α 3 + 124 ( α 1 + α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 831 ; α 1 8 , α 2 8 , α 3 8 2 α 2 α 3 11 α 2 9 α 3 + 51 ; α 1 = 7 , α 2 8 , α 3 7 2 α 1 α 3 9 α 1 11 α 3 + 51 ; α 1 7 , α 2 = 7 , α 3 7 2 α 1 α 2 11 α 1 9 α 2 + 51 ; α 1 8 , α 2 8 , α 3 = 7
Assuming that α 1 8 , α 2 8 , α 3 8 , then we need to prove following inequality:
3 α 1 α 2 α 3 + 124 ( α 1 + α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 831 3 ( 1 + α 1 α 2 α 3 ) 3 ( 1 α 3 + α 2 α 3 ) ( 1 α 1 + α 1 α 3 ) ( 1 α 2 + α 1 α 2 ) + 120 ( 1 + α 1 α 2 α 3 1 α 3 + α 2 α 3 + 1 + α 1 α 2 α 3 1 α 1 + α 1 α 3 + 1 + α 1 α 2 α 3 1 α 2 + α 1 α 2 ) 19 ( ( 1 + α 1 α 2 α 3 ) 2 ( 1 α 3 + α 2 α 3 ) ( 1 α 1 + α 1 α 3 ) + ( 1 + α 1 α 2 α 3 ) 2 ( 1 α 1 + α 1 α 3 ) ( 1 α 2 + α 1 α 2 ) + ( 1 + α 1 α 2 α 3 ) 2 ( 1 α 3 + α 2 α 3 ) ( 1 α 2 + α 1 α 2 ) ) 756 .
Proof. ( α 1 α 2 α 3 6 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 37 ( α 1 + α 2 + α 3 ) 234 ) be the dimension of M 5 ( V ) and monomial basis are of the form
{ y 1 l 1 y 2 l 2 y 3 l 3 , 0 l 1 α 1 7 ; 0 l 2 α 2 7 ; 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 , 0 l 3 α 3 7 ; y 2 l 2 y 3 α 3 6 , 0 l 2 α 2 7 ; y 1 l 1 y 2 α 2 6 , 0 l 1 α 1 7 } .
This implies,
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 l 3 = 0 α 3 7 α l 1 , l 2 , l 3 i y 1 l 1 y 2 l 2 y 3 l 3 + l 1 = 0 α 1 7 α l 1 , α 2 6 , 0 i y 1 l 1 y 2 α 2 6 + l 3 = 0 α 3 7 α α 1 6 , 0 , l 3 i y 1 α 1 6 y 3 l 3 + l 2 = 0 α 2 7 α 0 , l 2 , α 3 6 i y 2 l 2 y 3 α 3 6 , i = 1 , 2 , 3 .
The derivation basis are of the form
y 1 l 1 y 2 l 2 y 3 l 3 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 , 0 l 3 α 3 7 ; y 2 l 2 y 3 α 3 6 1 , 0 l 2 α 2 7 , y 2 α 2 7 y 3 l 3 1 , 1 l 3 α 3 7 ; y 1 l 1 y 2 α 2 6 1 , 0 l 1 α 1 7 ; y 1 α 1 6 y 3 l 3 1 , 0 l 3 α 3 7 , y 1 l 1 y 2 l 2 y 3 l 3 2 , 0 l 1 α 1 7 , 1 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 2 , 0 l 3 α 3 7 , y 1 l 1 y 2 α 2 6 2 , 0 l 1 α 1 7 ; y 1 l 1 y 3 α 3 7 2 , 1 l 1 α 1 7 ; y 2 l 2 y 3 α 3 6 2 , 0 l 2 α 2 7 , y 1 l 1 y 2 l 2 y 3 l 3 3 , 0 l 1 α 1 7 , 0 l 2 α 2 7 , 1 l 3 α 3 7 ; y 1 l 1 y 2 α 2 6 3 , 0 l 1 α 1 7 , y 1 α 1 7 y 2 l 2 3 , 1 l 2 α 2 7 ; y 2 l 2 y 3 α 3 6 3 , 0 l 2 α 2 7 ; y 1 α 1 4 y 3 l 3 3 , 0 l 3 α 3 7 .
Therefore we have
δ 6 ( V ) = 3 α 1 α 2 α 3 + 124 ( α 1 + α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 831 .
In case of α 1 = 7 , α 2 8 , α 3 7 , we obtain basis as
y 2 α 2 7 y 3 l 3 1 , 1 l 3 α 3 6 ; y 1 y 3 l 3 1 , 0 l 3 α 3 7 ; y 2 α 2 6 1 ; y 3 α 3 6 2 , y 1 y 3 l 3 2 , 0 l 3 α 3 7 ; y 2 α 2 6 2 ; y 2 l 2 y 3 l 3 2 , 1 l 2 α 2 7 , 0 l 3 α 3 6 , y 2 l 2 y 3 l 3 3 , 0 l 2 α 2 7 , 1 l 3 α 3 6 , y 1 y 3 l 3 3 , 0 l 3 α 3 7 ; y 2 α 2 6 3 .
Therefore we have
δ 6 ( V ) = 2 α 2 α 3 11 α 2 9 α 3 + 51 .
Similarly, we can get bases for α 1 8 , α 2 8 , α 3 = 7 and α 1 7 , α 2 = 7 , α 3 7 .
For α 1 8 , α 2 8 , α 3 8 , we need to prove following inequality:
3 α 1 α 2 α 3 + 124 ( α 1 + α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 851 3 ( 1 + α 1 α 2 α 3 ) 3 ( 1 α 3 + α 2 α 3 ) ( 1 α 1 + α 1 α 3 ) ( 1 α 2 + α 1 α 2 ) + 120 ( 1 + α 1 α 2 α 3 1 α 3 + α 2 α 3 + 1 + α 1 α 2 α 3 1 α 1 + α 1 α 3 + 1 + α 1 α 2 α 3 1 α 2 + α 1 α 2 ) 19 ( ( 1 + α 1 α 2 α 3 ) 2 ( 1 α 3 + α 2 α 3 ) ( 1 α 1 + α 1 α 3 ) + ( 1 + α 1 α 2 α 3 ) 2 ( 1 α 1 + α 1 α 3 ) ( 1 α 2 + α 1 α 2 ) + ( 1 + α 1 α 2 α 3 ) 2 ( 1 α 3 + α 2 α 3 ) ( 1 α 2 + α 1 α 2 ) ) 756 .
After simplification we get
4 ( α 1 α 2 + α 2 α 3 + α 1 α 3 ) + α 1 ( α 2 7 ) + α 2 ( α 3 7 ) + α 3 ( α 1 7 ) + 4 α 1 2 [ α 2 ( α 3 7 ) + α 3 ( α 2 7 ) ] + 3 α 2 2 [ α 1 ( α 3 6 ) + α 3 ( α 1 7 ) ] + 5 α 3 2 [ α 1 ( α 2 7 ) + α 2 ( α 1 6 ) ] + 2 ( α 1 2 + α 2 2 + α 3 2 ) + 3 ( α 1 3 α 2 + α 2 3 α 3 + α 3 3 α 1 ) + 2 α 1 2 α 2 2 α 3 2 + 5 ( α 1 α 2 2 α 3 + α 1 α 2 α 3 2 ) + 2 α 1 2 α 2 α 3 + α 1 α 2 α 3 [ 2 α 1 11 ] + α 1 3 α 2 α 3 2 ( α 3 7 ) ( α 2 7 ) + α 1 2 α 3 2 ( α 3 7 ) ( α 1 α 2 7 ) + α 1 2 α 2 α 3 2 ( α 3 + α 2 8 ) + 3 α 1 α 2 α 3 3 ( α 1 7 ) + α 1 2 α 2 3 α 3 ( α 3 7 ) ( α 1 6 ) + α 1 2 α 2 2 ( α 1 7 ) ( α 2 a 3 6 ) + α 1 3 α 2 α 3 ( α 2 7 ) + α 1 2 α 2 2 α 3 ( α 1 6 + ( α 3 7 ) ) + α 1 α 2 2 α 3 3 ( α 2 7 ) ( α 1 6 ) + α 2 2 α 3 2 ( α 2 7 ) ( α 1 α 3 7 ) + 12 0 .
Similarly, conjecture 1 we can proved for α 1 , α 3 7 , α 2 = 7 ; α 1 8 , α 2 8 , α 3 = 7 and α 1 = 7 , α 2 8 , α 3 7 .
Proposition 8. 
For isolated fewnomial surface singularity ( V , 0 ) of type 4 defined by g = y 1 α 1 + y 2 α 2 + y 3 α 3 y 2 ( α 1 8 , α 2 8 , α 3 7 ) with weight type ( 1 α 1 , 1 α 2 , α 2 1 α 2 α 3 ; 1 ) ,
δ 6 ( V ) = 3 α 1 α 2 α 3 + 124 α 1 + 120 ( α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 781 .
Assuming that m u l t ( g ) 8 , we need to prove following inequality
3 α 1 α 2 α 3 + 124 α 1 + 120 ( α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 781 3 α 2 2 α 1 α 3 α 2 1 + 120 ( α 1 + α 2 + α 2 α 3 α 2 1 ) 19 ( α 1 α 2 + α 1 α 2 α 3 α 2 1 + α 2 2 α 3 α 2 1 ) 756 .
Proof. ( α 1 α 2 α 3 6 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 36 ( α 2 + α 3 ) + 37 α 1 222 ) be the dimension of M 6 ( V ) and monomial basis are of the form
{ y 1 l 1 y 2 l 2 y 3 l 3 , 0 l 1 α 1 7 ; 0 l 2 α 2 7 ; 0 l 3 α 3 7 ; y 1 l 1 y 3 α 3 6 , 0 l 2 α 1 7 } .
This implies,
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 l 3 = 0 α 3 7 α l 1 , l 2 , l 3 i y 1 l 1 y 2 l 2 y 3 l 3 + l 1 = 0 α 1 7 α l 1 , 0 , α 3 6 i y 1 l 1 y 3 α 3 6 , i = 1 , 2 , 3 .
The derivation basis are of the form
y 1 l 1 y 2 l 2 y 3 l 3 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 l 1 y 3 α 3 6 1 , 1 l 1 α 1 7 , y 1 l 1 y 2 l 2 y 3 l 3 2 , 1 l 1 α 1 7 , 1 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 l 1 y 3 α 3 6 2 , 0 l 1 α 1 7 , y 2 l 2 y 3 l 3 2 , 1 l 2 α 2 7 , 0 l 3 α 3 7 , y 1 l 1 y 2 α 2 7 3 , 0 l 1 α 1 7 y 1 l 1 y 2 l 2 y 3 l 3 3 , 0 l 1 α 1 7 , 0 l 2 α 2 7 , 1 l 3 α 3 7 , y 1 l 1 y 3 α 3 6 3 , 0 l 1 α 1 7 .
Therefore we have
δ 6 ( V ) = 3 α 1 α 2 α 3 + 124 α 1 + 120 ( α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 781 .
Next, we also need to show that when α 1 8 , α 2 8 , α 3 7 , then
3 α 1 α 2 α 3 + 124 α 1 + 120 ( α 2 + α 3 ) 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 781 3 α 2 2 α 1 α 3 α 2 1 + 120 ( α 1 + α 2 + α 2 α 3 α 2 1 ) 19 ( α 1 α 2 + α 1 α 2 α 3 α 2 1 + α 2 2 α 3 α 2 1 ) 756 .
From above inequality, we get
α 1 α 3 ( 2 α 2 12 ) α 2 7 + α 2 α 3 + α 3 ( α 2 5 ) + 6 α 3 α 2 6 + α 1 [ α 2 ( α 3 6 ) + 7 ] α 2 6 0 .
Proposition 9. 
For isolated fewnomial surface singularity ( V , 0 ) of type 5 defined by g = y 1 α 1 y 2 + y 2 α 2 y 1 + y 3 α 3 ( α 1 7 , α 2 7 , α 3 8 ) with weight type ( α 2 1 α 1 α 2 1 , α 1 1 α 1 α 2 1 , 1 α 3 ; 1 ) ,
δ 6 ( V ) = 3 α 1 α 2 α 3 + 120 ( α 1 + α 2 ) + 128 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 806 ; α 1 8 , α 2 8 , α 3 8 2 α 2 α 3 13 α 2 8 α 3 + 53 ; α 1 = 7 , α 2 7 , α 3 8
Assuming that α 1 8 , α 2 8 , α 3 8 , then we need to prove following inequality:
3 α 1 α 2 α 3 + 120 ( α 1 + α 2 ) + 128 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 806 3 α 3 ( α 1 α 2 1 ) 2 ( α 2 1 ) ( α 1 1 ) + 120 ( α 1 α 2 1 α 2 1 + α 1 α 2 1 α 1 1 + α 3 ) 19 ( ( α 1 α 2 1 ) 2 ( α 2 1 ) ( α 1 1 ) + α 3 ( α 1 α 2 1 ) α 1 1 + α 3 ( α 1 α 2 1 ) α 2 1 ) 756 .
Proof. 
α 1 α 2 α 3 6 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) + 36 ( α 1 + α 2 ) + 38 α 3 228 be the number of dimension of M 6 ( V ) and monomial basis are of the form
{ y 1 l 1 y 2 l 2 y 3 l 3 , 0 l 1 α 1 7 ; 0 l 2 α 2 7 ; 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 , 0 l 3 α 3 7 ; y 2 α 2 6 y 3 l 3 , 0 l 3 α 3 7 } ,
This implies,
D y j = l 1 = 0 α 1 7 l 2 = 0 α 2 7 l 3 = 0 α 3 7 α l 1 , l 2 , l 3 i y 1 l 1 y 2 l 2 y 3 l 3 + l 3 = 0 α 3 7 α α 1 6 , 0 , l 3 i y 1 α 1 6 y 3 l 3 + l 3 = 0 α 3 7 α 0 , α 2 6 , l 3 i y 2 α 2 6 y 3 l 3 , i = 1 , 2 , 3 .
The derivation basis are of the form
y 1 l 1 y 2 l 2 y 3 l 3 1 , 1 l 1 α 1 7 , 0 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 1 , 0 l 3 α 3 7 , y 2 α 2 6 y 3 l 3 1 , 0 l 3 α 3 7 ; y 2 α 2 7 y 3 l 3 1 , 0 l 3 α 3 7 , y 1 l 1 y 2 l 2 y 3 l 3 2 , 0 l 1 α 1 7 , 1 l 2 α 2 7 , 0 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 2 , 0 l 3 α 3 7 , y 2 α 2 6 y 3 l 3 2 , 0 l 3 α 3 7 ; y 1 α 1 7 y 3 l 3 2 , 0 l 3 α 3 7 , y 1 l 1 y 2 l 2 y 3 l 3 3 , 0 l 1 α 1 7 , 0 l 2 α 2 7 , 1 l 3 α 3 7 ; y 1 α 1 6 y 3 l 3 3 , 1 l 3 α 3 7 , y 2 α 2 6 y 3 l 3 3 , 1 l 3 α 3 7 .
Therefore we have
δ 6 ( V ) = 3 α 1 α 2 α 3 + 120 ( α 1 + α 2 ) + 128 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 806 .
For α 1 = 7 , α 2 7 , α 3 8 , we obtain the following basis:
y 2 l 2 y 3 l 3 2 , 1 l 2 α 2 7 , 0 l 3 α 3 7 ; y 2 α 2 6 y 3 l 3 1 , 0 l 3 α 3 7 , y 1 y 3 l 3 1 , 0 l 3 α 3 7 ; y 2 α 2 6 y 3 l 3 2 , 0 l 3 α 3 7 , y 2 l 2 y 3 l 3 3 , 0 l 2 α 2 7 , 1 l 3 α 3 7 ; y 1 y 3 l 3 2 , 0 l 3 α 3 7 , y 1 y 3 l 3 3 , 1 l 3 α 3 7 .
We have
δ 6 ( V ) = 2 α 2 α 3 13 α 2 8 α 3 + 53 .
Next, we need to show that when α 1 8 , α 2 8 , α 3 8 , then
3 α 1 α 2 α 3 + 120 ( α 1 + α 2 ) + 128 α 3 19 ( α 1 α 2 + α 1 α 3 + α 2 α 3 ) 806 3 α 3 ( α 1 α 2 1 ) 2 ( α 2 1 ) ( α 1 1 ) + 120 ( α 1 α 2 1 α 2 1 + α 1 α 2 1 α 1 1 + α 3 ) 19 ( ( α 1 α 2 1 ) 2 ( α 2 1 ) ( α 1 1 ) + α 3 ( α 1 α 2 1 ) α 1 1 + α 3 ( α 1 α 2 1 ) α 2 1 ) 756 .
After simplification, we get
α 1 ( α 1 7 ) ( α 2 6 ) ( α 3 + ( α 1 5 ) α 2 ( α 2 7 ) α 3 ) + α 1 2 ( α 3 6 ) ( α 2 5 ) + α 2 2 α 1 + 4 α 1 ( α 2 6 ) + 4 α 2 ( α 1 6 ) + 4 α 3 ( α 1 5 ) + 12 α 1 α 2 + 14 α 1 α 3 + 5 α 2 α 3 + 22 α 2 + α 1 α 2 ( α 1 6 ) + ( α 1 5 ) α 2 ( α 2 6 ) ( α 3 5 ) + ( α 1 6 ) ( α 3 7 ) + 22 0 .
Similarly, for α 1 = 7 , α 2 7 , α 3 8 the conjecture 1 also hold true. □
Proof of Theorem 3. 
 
Proof. 
The proof of theorem 3 is the consequence of Proposition 3. □
Proof of Theorem 4. 
 
Proof. 
The Proposition 4, 5 and Remark 1 implies Theorem 4 as a corollary. □
Proof of Theorem 5. 
 
Proof. 
The Propositions 4, 5, 6 and Remark 3 of [24] along with Remark 1 Propositions 4 and 5 implies that the inequality δ 6 ( V ) < δ 5 ( V ) holds true for binomial singularities. □
Proof of Theorem 6. 
 
Proof. 
The Theorem 6 is the consequence of the Remark 2 and Propositions 6, 7, 8, 9. □
Proof of Theorem 7. 
 
Proof. 
The Propositions 6, 7, 8, 9 and Remark 4 of [24] along with Remark 2 and Propositions 6, 7, 8, 9 implies that the inequality δ 6 ( V ) < δ 5 ( V ) holds true trinomial singularities. □

4. Conclusion

Finding the dimension of an algebra is critical for studying its applications. This work is the partial proof of the conjecture over dimensions δ k ( V ) of k th Yau Algebra. First of all we determine general formula fo the dimension of fewnomial isolated singularities for L 6 ( V ) in Prepositions 3. Then on the behave of this result determine formulas for weighted binomial isolated singularities of all the three types listed in Corollary 1 in Preposition 2 4 and 5. Then Using general formula for dimension δ 6 ( V ) of L 6 ( V ) determine formulas for weighted binomial isolated singularities in Preposition 6, 7, 8, and 9 of all the five types listed in Preposition 2. On the behave of all these findings and dimension of L 5 ( V ) determind in [29], we proved inequality conjecture: δ 6 ( V ) < δ 5 ( V ) for binomial and trinomial isolated singularities in theorem 3 and 3.

Author Contributions

Conceptualization, N.H., M. A.; methodology, N.H., A.N.A.-K., M. A; validation, A.N.A.-K., N.H., M. A.; writing draft, editing, N.H., A.N.A.-K., M. A; review, N.H., A.N.A.-K., M. A; funding , A.N.A.-K; supervision, N.H.;. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

NA

Acknowledgments

NA

Conflicts of Interest

The authors don’t have any conflicts of interest.

References

  1. J. Mather and S. S.-T.Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), 243-251.
  2. S. S.-T.Yau, Solvable Lie algebras and generalized Cartan matrices arising from isolated singularities, Math. Z. 191 (1986), 489 -606.
  3. S. S.-T.Yau, Solvability of Lie algebras arising from isolated singularities and nonisolatedness of singularities defined by sl(2,C) invariant polynomials, Amer. J. Math. 113 (1991), 773-778.
  4. V. Arnold, A. Varchenko, and S. Gusein-Zade, Singularities of differentiable mappings, 2nd ed. (Russian) MCNMO, Moskva, 2004.
  5. A. G. Aleksandrov and B. Martin, Derivations and deformations of Artin algebras, Beitrage Zur Algebra und Geometrie 33 (1992), 115-130.
  6. C. Seeley and S. S.-T.Yau, Variation of complex structure and variation of Lie algebras, Invent. Math. 99 (1990), 545 -665.
  7. A. Elashvili and G. Khimshiashvili, Lie algebras of simple hypersurface singularities, J. Lie Theory 16(4) (2006), 621 -749.
  8. B. Chen, N. Hussain, S. S.-T. Yau, and H. Zuo, Variation of complex structures and variation of Lie algebras II: New Lie algebras arising from singularities, J. Differential Geom. 115(3) (2020), 437-473.
  9. N. Hussain, S. S.-T. Yau, and H. Zuo, On the new k-th Yau algebras of isolated hypersurface singularities, Math. Z. 294(1-2) (2020), 331-358.
  10. N. Hussain, S. S.-T. Yau, and H. Zuo, k-th Yau number of isolated hypersurface singularities and an inequality conjecture, to appear, J. Aust. Math. Soc., published online: April 2019. [CrossRef]
  11. N. Hussain, S. S.-T. Yau, and H. Zuo, Inequality conjectures on derivations of Local k-th Hessain algebras associated to isolated hypersurface singularities, 17pp. in ms, to appear, Math. Z., published online: 07 Jan. 2021. [CrossRef]
  12. G. Ma, S. S.-T. Yau, and H. Zuo, A class of new k-th Local algebras of singularities and its derivation Lie algebras, 16pp., preprint.
  13. S. S.-T. Yau, Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities, Proc. Natl. Acad. Sci. USA 80 (1983), 7694-7696.
  14. M. Benson and S. S.-T.Yau, Lie algebra and their representations arising from isolated singularities: Computer method in calculating the Lie algebras and their cohomology, Advance studies in Pure Mathematics 8, Complex Analytic Singularities, (1986), 3 -68.
  15. Y.-J. Xu and S. S.-T. Yau, Micro-local characterization quasi-homogeneous singularities, Amer. J. Math. 118(2) (1996), 389-399.
  16. S. S.-T. Yau and H. Zuo, Derivations of the moduli algebras of weighted homogeneous hypersurface singularities, J. Algebra 457 (2016), 18-25.
  17. S. S.-T. Yau and H. Zuo, A Sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity, Pure Appl. Math. Q. 12(1) (2016), 165-181.
  18. H. Chen, S. S.-T. Yau, and H. Zuo, Non-existence of negative weight derivations on positively graded Artinian algebras, Trans. Amer. Math. Soc. 372(4) (2019), 2493-253.
  19. B. Chen, H. Chen, S. S.-T. Yau, and H. Zuo, The non-existence of negative weight derivations on positive dimensional isolated singularities: generalized Wahl conjecture, J. Differential Geom. 115(2) (2020), 195-224.
  20. N. Hussain, S. S.-T. Yau, and H. Zuo, On the derivation Lie algebras of fewnomial singularities, Bull. Aust. Math. Soc. 98(1) (2018), 77-88.
  21. N. Hussain, S. S.-T. Yau, and H. Zuo, An inequality conjecture and a weak Torelli-type theorem for isolated complete intersection singularities, to appear, Journal of Geometry and Physics, published online: May 2022, https://doi.org/10.1016/j.geomphys. [CrossRef]
  22. G. Ma, S. S.-T. Yau, and H. Zuo, On the non-existence of negative weight derivations of the new moduli algebras of singularities, J. Algegbra 564 (2020), 199-246.
  23. C. Hu, S. S.-T. Yau, and H. Zuo, Torelli theorem for k-th Yau algebras over simple elliptic singularities, 48pp. in ms, preprint.
  24. N. Hussain, S. S.-T. Yau, and H. Zuo, On the Dimension of a New Class of Derivation Lie Algebras Associated to Singularities, to appear, Mathematics, published online: July 2021.
  25. N. Hussain, S. S.-T. Yau, and H. Zuo, Derivation Lie algebras of new k-th local algebras of isolated hypersurface singularities, Pacific. J. Math. 314(2) (2021), 311-331.
  26. R. Block, Determination of the differentiably simple rings with a minimal ideal, Ann. Math. 90 (1969), 433-459.
  27. A. Khovanski, Fewnomials, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Smilka Zdravkovska.
  28. W. Ebeling and A. Takahashi, Strange duality of weighted homogeneous polynomial, J. Compositio Math. 147 (2011), 1413-1433.
  29. Hussain, N. , Al-Kenani, A. N., Arshad, M., & Asif, M. (2022). The Sharp Upper Estimate Conjecture for the Dimension δk(V) of New Derivation Lie Algebra. Mathematics, 10(15), 2618.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated