Submitted:
31 January 2024
Posted:
01 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Lung Microbiota and Microbiome
| Phyla | Actinobacteria | Bacteroidetes | Firmicutes | Proteobacteria | Tenericutes | Verrucomicrobia |
|---|---|---|---|---|---|---|
| Genus |
Bifidobacterium Corynebacterium Dermatobacter Kocuria Mycobacterium Parascovia Propionibacterium Rothia |
Bacteroides Prevotella Porphyromonas Rikenella |
Bacillus Clostridium Dolosigranulum Enterococcus Lactobacillus Leuconostoc Pediococcus Staphylococcus Streptococcus Veillonella Weisella |
Acinetobacter Bradyrhizobiaceae Burkholderia Escherichia Haemophilus Helicobacter Moraxella Neisseria Novosphingobium Pateurella Pseudomonas Ralstonia Salmonella Serratia Sphingobium Sphingomonas Sphingopyxis |
Mycoplasma Ureaplasma |
Akkermansia |
3. Ventilator-Associate Pneumonia (VAP)
3.1. Definition and Epidemiology
3.2. Sample Collection and Pathogens Implicated in VAP
3.3. Management
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lynfield R, Greissman S, Ray SM, Beldavs Z, Gross C, Bamberg W, Sievers M, Concannon C, Buhr N, Warnke L, Maloney M, Ocampo V, Brooks J, Oyewumi T, Sharmin S, Richards K, Rainbow J, Samper M, Hancock EB, Leaptrot D, Scalise E, Badrun F, Phelps R, Edwards JR; Emerging Infections Program Hospital Prevalence Survey Team. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. N Engl J Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM Jr, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016, 63, e61-e111, Epub 2016 Jul 14. Erratum in: Clin Infect Dis. 2017;64(9):1298. Erratum in: Clin Infect Dis. 2017 Oct 15;65(8):1435. Erratum in: Clin Infect Dis. 2017;65(12):2161. PMID: 27418577; PMCID: PMC4981759. [CrossRef] [PubMed]
- CDC. Pneumonia (Ventilator-associated [VAP] and Non-ventilator-associated Pneumonia [PNEU]) Event. (2024).
- Baltimore, RS. The difficulty of diagnosing ventilator-associated pneumonia. Pediatrics 2003, 112(6 Pt 1), 1420-1. [Google Scholar] [CrossRef] [PubMed]
- Rogers GB, Stressmann FA, Koller G, Daniels T, Carroll MP, Bruce KD. Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections. Diagn Microbiol Infect Dis. 2008, 62, 133–41. [Google Scholar] [CrossRef] [PubMed]
- Sherman MP, Minnerly J, Curtiss W, Rangwala S, Kelley ST. Research on neonatal microbiomes: what neonatologists need to know. Neonatology. 2014, 105, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell. 2016, 164, 337–40. [Google Scholar] [CrossRef] [PubMed]
- Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature. 2012, 486, 222–7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014, 16, 1024–33. [Google Scholar] [CrossRef] [PubMed]
- Lal CV, Travers C, Aghai ZH, Eipers P, Jilling T, Halloran B, Carlo WA, Keeley J, Rezonzew G, Kumar R, Morrow C, Bhandari V, Ambalavanan N. The Airway Microbiome at Birth. Sci Rep. 2016, 6, 31023. [CrossRef] [PubMed]
- Kim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson R. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012, 486, 207–14. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010, 107, 11971–5. [Google Scholar] [CrossRef] [PubMed]
- DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008, 3, e3056. [Google Scholar] [CrossRef] [PubMed]
- Jones HE, Harris KA, Azizia M, Bank L, Carpenter B, Hartley JC, et al. Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor. PLoS One. 2009, 4, e8205. [Google Scholar] [CrossRef] [PubMed]
- Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef] [PubMed]
- Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Parry S, Bushman FD. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019, 42, 402–413. [Google Scholar] [CrossRef] [PubMed]
- 20. Pammi M, Lal CV, Wagner BD, Mourani PM, Lohmann P, Luna RA, Sisson A, Shivanna B, Hollister EB, Abman SH, Versalovic J, Connett GJ, Bhandari V, Ambalavanan N. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J Pediatr. 2019, 204, 126-133.e2. [CrossRef] [PubMed]
- Spaetgens R, DeBella K, Ma D, Robertson S, Mucenski M, Davies HD, Perinatal antibiotic usage and changes in colonization and resistance rates of group B streptococcus and other pathogens. Obstet. Gynecol. 2002, 100, 525–533. [CrossRef]
- Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van Meurs KP, Bizzarro MJ, Goldberg RN, Frantz III ID, Hale EC, Shankaran S, Kennedy K, Carlo WA, Watterberg KL, Bell EF, Walsh MC, Schibler K, Laptook AR, Shane AL, Schrag SJ, Das A, Higgins RD; Eunice Kennedy Shriver National Institute of Child and Human Development Neonatal Research Network, Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011, 127, 817–826. [Google Scholar] [CrossRef]
- Stevens J, Steinmeyer S, Bonfield M, Peterson L, Wang T, Gray J, Lewkowich I, Xu Y, Du Y, Guo M, Wynn JL, Zacharias W, Salomonis N, Miller L, Chougnet C, O’Connor DH, Deshmukh H. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci Transl Med. 2022, 14, eabl3981. [Google Scholar] [CrossRef] [PubMed]
- Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019, 12, 843–850. [Google Scholar] [CrossRef] [PubMed]
- 25. Tirone C, Pezza L, Paladini A, Tana M, Aurilia C, Lio A, D’Ippolito S, Tersigni C, Posteraro B, Sanguinetti M, Di Simone N, Vento G. Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Front Immunol. 2019, 10, 2910. [CrossRef] [PubMed]
- Alcazar CG, Paes VM, Shao Y, Oesser C, Miltz A, Lawley TD, Brocklehurst P, Rodger A, Field N. The association between early-life gut microbiota and childhood respiratory diseases: a systematic review. Lancet Microbe. 2022, 3, e867–e880. [Google Scholar] [CrossRef] [PubMed]
- Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest. 1997, 111, 1266–72. [Google Scholar] [CrossRef] [PubMed]
- Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 2015, 6, 1085. [CrossRef] [PubMed]
- Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [CrossRef] [PubMed]
- Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012, 27, 201–14. [Google Scholar] [CrossRef] [PubMed]
- Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018, 362, eaat9076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terrin G, Passariello A, De Curtis M, Manguso F, Salvia G, Lega L, Messina F, Paludetto R, Canani RB. Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns. Pediatrics. 2012, 129, e40–e45. [Google Scholar] [CrossRef] [PubMed]
- Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2023, 7, CD005496. [Google Scholar] [CrossRef] [PubMed]
- Yun Y, Srinivas G, Kuenzel S, Linnenbrink M, Alnahas S, Bruce KD, Steinhoff U, Baines JF, Schaible UE. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS One. 2014, 9, e113466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- 35. Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JS. Respiratory Disease following Viral Lung Infection Alters the Murine Gut Microbiota. Front Immunol 2018, 9, 182. [CrossRef] [PubMed]
- Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018, 6, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- 37. Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine ML, Salomé-Desnoulez S, Deryuter L, Foligné B, Wahl C, Frisch B, Vieira AT, Paget C, Milligan G, Ulven T, Wolowczuk I, Faveeuw C, Le Goffic R, Thomas M, Ferreira S, Teixeira MM, Trottein F. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep 2020, 30, 2934–2947.e6. [CrossRef] [PubMed]
- Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006, 118, 511–21. [Google Scholar] [CrossRef] [PubMed]
- Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One. 2011, 6, e17035. [Google Scholar] [CrossRef] [PubMed]
- Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011, 184, 957–63. [Google Scholar] [CrossRef] [PubMed]
- Brugger SD, Eslami SM, Pettigrew MM, Escapa IF, Henke MT, Kong Y, Lemon KP. Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota. mSphere. 2020, 5, e00852–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bosch AATM, Levin E, van Houten MA, Hasrat R, Kalkman G, Biesbroek G, de Steenhuijsen Piters WAA, de Groot PCM, Pernet P, Keijser BJF, Sanders EAM, Bogaert D. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery. EBioMedicine. 2016, 9, 336-345. [CrossRef] [PubMed]
- Koch MA, Reiner GL, Lugo KA, Kreuk LS, Stanbery AG, Ansaldo E, Seher TD, Ludington WB, Barton GM. Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life. Cell. 2016, 165, 827–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeurink PV, van Bergenhenegouwen J, Jiménez E, Knippels LM, Fernández L, Garssen J, Knol J, Rodríguez JM, Martín R. Human milk: a source of more life than we imagine. Benef Microbes. 2013, 4, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Madan JC, Koestler DC, Stanton BA, Davidson L, Moulton LA, Housman ML, Moore JH, Guill MF, Morrison HG, Sogin ML, Hampton TH, Karagas MR, Palumbo PE, Foster JA, Hibberd PL, O’Toole GA. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio. 2012, 3, e00251–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales BJ, Walker ML, Hollams E, Bochkov YA, Grindle K, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015, 17, 704–15. [Google Scholar] [CrossRef] [PubMed]
- Vissing NH, Chawes BL, Bisgaard H. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates. Am J Respir Crit Care Med. 2013, 188, 1246–52. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010, 5, e9836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Stressmann FA, Connett GJ, Goss K, Kollamparambil TG, Patel N, Payne MS, Puddy V, Legg J, Bruce KD, Rogers GB. The use of culture-independent tools to characterize bacteria in endo-tracheal aspirates from pre-term infants at risk of bronchopulmonary dysplasia. J Perinat Med. 2010, 38, 333–7. [Google Scholar] [CrossRef] [PubMed]
- Beeton ML, Maxwell NC, Davies PL, Nuttall D, McGreal E, Chakraborty M, Spiller OB, Kotecha S. Role of pulmonary infection in the development of chronic lung disease of prematurity. Eur Respir J. 2011, 37, 1424–30. [Google Scholar] [CrossRef] [PubMed]
- Flanagan JL, Brodie EL, Weng L, Lynch SV, Garcia O, Brown R, Hugenholtz P, DeSantis TZ, Andersen GL, Wiener-Kronish JP, Bristow J. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J Clin Microbiol. 2007, 45, 1954–62. [Google Scholar] [CrossRef] [PubMed]
- Cairns S, Thomas JG, Hooper SJ, Wise MP, Frost PJ, Wilson MJ, Lewis MA, Williams DW. Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS One. 2011, 6, e14759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol. 2015, 309, L1047–L1055. [Google Scholar] [CrossRef] [PubMed]
- Sandrini S, Aldriwesh M, Alruways M, Freestone P. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol. 2015, 225, R21–R34. [Google Scholar] [CrossRef] [PubMed]
- Freestone PP, Hirst RA, Sandrini SM, Sharaff F, Fry H, Hyman S, O’Callaghan C. Pseudomonas aeruginosa-catecholamine inotrope interactions: a contributory factor in the development of ventilator-associated pneumonia? Chest. 2012, 142, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Gallacher DJ, Kotecha S. Respiratory Microbiome of New-Born Infants. Front Pediatr 2016, 4, 10. [CrossRef] [PubMed]
- Iosifidis E, Pitsava G, Roilides E. Ventilator-associated pneumonia in neonates and children: a systematic analysis of diagnostic methods and prevention. Future Microbiol 2018, 13, 1431-1446. [CrossRef] [PubMed]
- Tan B, Zhang F, Zhang X, Huang YL, Gao YS, Liu X, Li YL, Qiu JF. Risk factors for ventilator-associated pneumonia in the neonatal intensive care unit: a meta-analysis of observational studies. Eur J Pediatr. 2014, 173, 427–34. [Google Scholar] [CrossRef] [PubMed]
- Cernada M, Brugada M, Golombek S, Vento M. Ventilator-associated pneumonia in neonatal patients: an update. Neonatology. 2014, 105, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Cernada M, Aguar M, Brugada M, Gutiérrez A, López JL, Castell M, Vento M. Ventilator-associated pneumonia in newborn infants diagnosed with an invasive bronchoalveolar lavage technique: a prospective observational study. Pediatr Crit Care Med. 2013, 14, 55–61. [Google Scholar] [CrossRef] [PubMed]
- 62. Fernández-Barat L, López-Aladid R, Torres A. Reconsidering ventilator-associated pneumonia from a new dimension of the lung microbiome. EBioMedicine 2020, 60, 102995. [CrossRef] [PubMed]
- Morris AC, Kefala K, Simpson AJ, Wilkinson TS, Everingham K, Kerslake D, Raby S, Laurenson IF, Swann DG, Walsh TS. Evaluation of the effect of diagnostic methodology on the reported incidence of ventilator-associated pneumonia. Thorax. 2009, 64, 516–22. [Google Scholar] [CrossRef] [PubMed]
- Cordero L, Ayers LW, Miller RR, Seguin JH, Coley BD. Surveillance of ventilator-associated pneumonia in very-low-birth-weight infants. Am J Infect Control. 2002, 30, 32–9. [Google Scholar] [CrossRef] [PubMed]
- Tusor N, De Cunto A, Basma Y, Klein JL, Meau-Petit V. Ventilator-associated pneumonia in neonates: the role of point of care lung ultrasound. Eur J Pediatr. 2021, 180, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Magill SS, Klompas M, Balk R, Burns SM, Deutschman CS, Diekema D, Fridkin S, Greene L, Guh A, Gutterman D, Hammer B, Henderson D, Hess DR, Hill NS, Horan T, Kollef M, Levy M, Septimus E, Vanantwerpen C, Wright D, Lipsett P. Developing a new, national approach to surveillance for ventilator-associated events: executive summary. Infect Control Hosp Epidemiol. 2013, 34, 1239–43. [Google Scholar] [CrossRef] [PubMed]
- Cocoros NM, Kleinman K, Priebe GP, Gray JE, Logan LK, Larsen G, Sammons J, Toltzis P, Miroshnik I, Horan K, Burton M, Sims S, Harper M, Coffin S, Sandora TJ, Hocevar SN, Checchia PA, Klompas M, Lee GM; Pediatric Ventilator-Associated Conditions Study Team. Ventilator-Associated Events in Neonates and Children--A New Paradigm. Crit Care Med. 2016, 44, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Whitesel ED, Gupta M. A glass half-full: defining ventilator-associated pneumonia in the neonatal intensive care unit. Pediatr Res. 2020, 87, 1155–1156. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecka T, Patton D, Walsh S, Moore Z, O’Connor T, Nugent L. What are the effects of care bundles on the incidence of ventilator-associated pneumonia in paediatric and neonatal intensive care units? A systematic review. J Spec Pediatr Nurs. 2019, 24, e12264. [Google Scholar] [CrossRef] [PubMed]
- Willson DF, Conaway M, Kelly R, Hendley JO. The lack of specificity of tracheal aspirates in the diagnosis of pulmonary infection in intubated children. Pediatr Crit Care Med. 2014, 15, 299–305. [Google Scholar] [CrossRef] [PubMed]
- 71. Apisarnthanarak A, Holzmann-Pazgal G, Hamvas A, Olsen MA, Fraser VJ. Ventilator-associated pneumonia in extremely preterm neonates in a neonatal intensive care unit: characteristics, risk factors, and outcomes. Pediatrics. 2003, 112(6 Pt 1), 1283-9. [CrossRef] [PubMed]
- Yuan TM, Chen LH, Yu HM. Risk factors and outcomes for ventilator-associated pneumonia in neonatal intensive care unit patients. J Perinat Med. 2007, 35, 334–8. [Google Scholar] [CrossRef] [PubMed]
- Garland, JS. Strategies to prevent ventilator-associated pneumonia in neonates. Clin Perinatol. 2010, 37, 629–43. [Google Scholar] [CrossRef] [PubMed]
- Deng C, Li X, Zou Y, Wang J, Wang J, Namba F, Hiroyuki Y, Yu J, Yamauchi Y, Guo C. Risk factors and pathogen profile of ventilator-associated pneumonia in a neonatal intensive care unit in China. Pediatr Int. 2011, 53, 332–7. [Google Scholar] [CrossRef] [PubMed]
- Afjeh SA, Sabzehei MK, Karimi A, Shiva F, Shamshiri AR. Surveillance of ventilator-associated pneumonia in a neonatal intensive care unit: characteristics, risk factors, and outcome. Arch Iran Med. 2012, 15, 567–71. [Google Scholar] [PubMed]
- Geffers C, Baerwolff S, Schwab F, Gastmeier P. Incidence of healthcare-associated infections in high-risk neonates: results from the German surveillance system for very-low-birthweight infants. J Hosp Infect. 2008, 68, 214–21. [Google Scholar] [CrossRef] [PubMed]
- el-Ebiary M, Soler N, Monton C, Torres A: Markers of ventilator-associated pneumonia. Clin Intensive Care 1995, 121–126.
- Srinivasan R, Song Y, Wiener-Kronish J, Flori HR. Plasminogen activation inhibitor concentrations in bronchoalveolar lavage fluid distinguishes ventilator-associated pneumonia from colonization in mechanically ventilated pediatric patients. Pediatr Crit Care Med. 2011, 12, 21–7. [Google Scholar] [CrossRef] [PubMed]
- Pinilla-Gonzalez A, Lara-Cantón I, Torrejón-Rodríguez L, Parra-Llorca A, Aguar M, Kuligowski J, Piñeiro-Ramos JD, Sánchez-Illana Á, Navarro AG, Vento M, Cernada M. Early molecular markers of ventilator-associated pneumonia in bronchoalveolar lavage in preterm infants. Pediatr Res. 2023, 93, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Katayama Y, Minami H, Enomoto M, Takano T, Hayashi S, Lee YK. Usefulness of Gram staining of tracheal aspirates in initial therapy for ventilator-associated pneumonia in extremely preterm neonates. J Perinatol. 2010, 30, 270–4. [Google Scholar] [CrossRef] [PubMed]
- Ergenekon E, Çataltepe S. Ventilator-associated pneumonia in the NICU: time to boost diagnostics? Pediatr Res. 2020, 87, 1143–1144. [Google Scholar] [CrossRef] [PubMed]
- Wang HC, Tsai MH, Chu SM, Liao CC, Lai MY, Huang HR, Chiang MC, Fu RH, Hsu JF. Clinical characteristics and outcomes of neonates with polymicrobial ventilator-associated pneumonia in the intensive care unit. BMC Infect Dis. 2021, 21, 965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weber, CD. Applying Adult Ventilator-associated Pneumonia Bundle Evidence to the Ventilated Neonate. Adv Neonatal Care. 2016, 16, 178–90. [Google Scholar] [CrossRef] [PubMed]
- Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [PubMed]
- Linares DM, Ross P, Stanton C. Beneficial Microbes: The pharmacy in the gut. Bioengineered. 2016, 7, 11–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014, 10, CD005496, Update in: Cochrane Database Syst Rev. 2020 Oct 15;10:CD005496. [CrossRef] [PubMed]
- Forsythe, P. Probiotics and lung diseases. Chest. 2011, 139, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Deasy AM, Guccione E, Dale AP, Andrews N, Evans CM, Bennett JS, Bratcher HB, Maiden MC, Gorringe AR, Read RC. Nasal Inoculation of the Commensal Neisseria lactamica Inhibits Carriage of Neisseria meningitidis by Young Adults: A Controlled Human Infection Study. Clin Infect Dis. 2015, 60, 1512–20. [Google Scholar] [CrossRef] [PubMed]
- Banupriya B, Biswal N, Srinivasaraghavan R, Narayanan P, Mandal J. Probiotic prophylaxis to prevent ventilator associated pneumonia (VAP) in children on mechanical ventilation: an open-label randomized controlled trial. Intensive Care Med. 2015, 41, 677–85. [Google Scholar] [CrossRef] [PubMed]
- Johnstone J, Meade M, Lauzier F, Marshall J, Duan E, Dionne J, Arabi YM, Heels-Ansdell D, Thabane L, Lamarche D, Surette M, Zytaruk N, Mehta S, Dodek P, McIntyre L, English S, Rochwerg B, Karachi T, Henderson W, Wood G, Ovakim D, Herridge M, Granton J, Wilcox ME, Goffi A, Stelfox HT, Niven D, Muscedere J, Lamontagne F, D’Aragon F, St-Arnaud C, Ball I, Nagpal D, Girard M, Aslanian P, Charbonney E, Williamson D, Sligl W, Friedrich J, Adhikari NK, Marquis F, Archambault P, Khwaja K, Kristof A, Kutsogiannis J, Zarychanski R, Paunovic B, Reeve B, Lellouche F, Hosek P, Tsang J, Binnie A, Trop S, Loubani O, Hall R, Cirone R, Reynolds S, Lysecki P, Golan E, Cartin-Ceba R, Taylor R, Cook D; Prevention of Severe Pneumonia and Endotracheal Colonization Trial (PROSPECT) Investigators and the Canadian Critical Care Trials Group. Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA. 2021, 326, 1024–1033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Imaging | Patient without underlying diseases 1 or more (or with underlying diseases 2 or more) imaging test results with one of the following:New and persistent or Progressive and persistent
|
| Signs and Symptoms |
|
| Laboratory |
At least one of the following:
|
| Threshold values for cultured specimens according to the collection technique | |
| Specimen collection / technique | Values |
| Lung tissue Bronchoscopically (B) obtained specimens Bronchoalveolar lavage (B-BAL) Protected BAL (B-PBAL) Protected specimen brushing (B-PSB) Nonbronchoscopically (NB) obtained (blind) specimens NB-BAL NB-PSB Endotracheal aspirate (TA) |
≥ 104 CFU/g tissue ≥ 104 CFU/ml ≥ 104 CFU/ml ≥ 103 CFU/ml ≥ 104 CFU/ml ≥ 103 CFU/ml ≥ 105 CFU/ml |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

