Submitted:
23 January 2024
Posted:
25 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Simulation Methodology
2.1. Two-Dimensional Schrödinger Equation Solution for Quasi-static Charge Distribution
2.2. Determination of Carrier Concentration And Use in Poisson Equation
2.3. 2-D Schrödinger Equation with Quantum Transmitting Boundary Method: Device Under Bias
3. Application Towards Realistic Device Modeling
4. Summary
References
- International Technology Roadmap for Devices and Systems 2017 Edition. https://irds.ieee.org/roadmap-2017.
- Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.W.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; Young, A.; Chao, R.; Kang, M.; Liu, Z.; Fan, S.; Hamieh, B.; Sieg, S.; Mignot, Y.; Xu, W.; Seo, S.C.; Yoo, J.; Mochizuki, S.; Sankarapandian, M.; Kwon, O.; Carr, A.; Greene, A.; Park, Y.; Frougier, J.; Galatage, R.; Bao, R.; Shearer, J.; Conti, R.; Song, H.; Lee, D.; Kong, D.; Xu, Y.; Arceo, A.; Bi, Z.; Xu, P.; Muthinti, R.; Li, J.; Wong, R.; Brown, D.; Oldiges, P.; Robison, R.; Arnold, J.; Felix, N.; Skordas, S.; Gaudiello, J.; Standaert, T.; Jagannathan, H.; Corliss, D.; Na, M.H.; Knorr, A.; Wu, T.; Gupta, D.; Lian, S.; Divakaruni, R.; Gow, T.; Labelle, C.; Lee, S.; Paruchuri, V.; Bu, H.; Khare, M. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017 Symposium on VLSI Technology, 2017, pp. T230–T231. [CrossRef]
- Vyas, P.B.; Zhao, C.; Dag, S.; Pal, A.; Bazizi, E.M.; Ayyagari-Sangamalli, B. Next Generation Gate-all-around Device Design for Continued Scaling Beyond 2 nm Logic. 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2023, pp. 57–60. [CrossRef]
- Vyas, P.B.; Pal, A.; Costrini, G.; Asenov, P.; Mhedhbi, S.; Zhao, C.; Moroz, V.; Colombeau, B.; Haran, B.; Bazizi, E.M.; Ayyagari-Sangamalli, B. Materials to System Co-optimization (MSCO TM ) for SRAM and its application towards Gate-All-Around Technology. 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2023, pp. 53–56. [CrossRef]
- Vyas, P.B.; Pimparkar, N.; Tu, R.; Arfaoui, W.; Bossu, G.; Siddabathula, M.; Lehmann, S.; Goo, J.S.; Icel, A.B. Reliability-Conscious MOSFET Compact Modeling with Focus on the Defect-Screening Effect of Hot-Carrier Injection. 2021 IEEE International Reliability Physics Symposium (IRPS), 2021, pp. 1–4. [CrossRef]
- Weckx, P.; Ryckaert, J.; Litta, E.D.; Yakimets, D.; Matagne, P.; Schuddinck, P.; Jang, D.; Chehab, B.; Baert, R.; Gupta, M.; Oniki, Y.; Ragnarsson, L.A.; Horiguchi, N.; Spessot, A.; Verkest, D. Novel forksheet device architecture as ultimate logic scaling device towards 2nm. 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 36.5.1–36.5.4. [CrossRef]
- Huang, S.; Wu, Z.; Xu, H.; Guo, J.; Xu, L.; Duan, X.; Chen, Q.; Yang, G.; Zhang, Q.; Yin, H.; Wang, L.; Li, L.; Liu, M. Geometric Variability Aware Quantum Potential based Quasi-ballistic Compact Model for Stacked 6 nm-Thick Silicon Nanosheet GAA-FETs. 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 18.5.1–18.5.4. [CrossRef]
- Subramanian, S.; Hosseini, M.; Chiarella, T.; Sarkar, S.; Schuddinck, P.; Chan, B.T.; Radisic, D.; Mannaert, G.; Hikavyy, A.; Rosseel, E.; Sebaai, F.; Peter, A.; Hopf, T.; Morin, P.; Wang, S.; Devriendt, K.; Batuk, D.; Martinez, G.T.; Veloso, A.; Litta, E.D.; Baudot, S.; Siew, Y.K.; Zhou, X.; Briggs, B.; Capogreco, E.; Hung, J.; Koret, R.; Spessot, A.; Ryckaert, J.; Demuynck, S.; Horiguchi, N.; Boemmels, J. First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers. 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1–2. [CrossRef]
- Li, S.; Luo, Y.; Xu, H.; Huo, J.; Di, Z.; Li, Y.; Zhang, Q.; Yin, H.; Wu, Z. Vertically Stacked Nanosheet Number Optimization Strategy for Complementary FET (CFET) Scaling Beyond 2 nm. IEEE Transactions on Electron Devices 2023, 70, 6118–6124. [Google Scholar] [CrossRef]
- Jacoboni, C.; Reggiani, L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 1983, 55, 645–705. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Laux, S.E. Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 1988, 38, 9721–9745. [Google Scholar] [CrossRef] [PubMed]
- Sollner, T.C.L.G.; Goodhue, W.D.; Tannenwald, P.E.; Parker, C.D.; Peck, D.D. Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Applied Physics Letters 1983, 43, 588–590. [Google Scholar] [CrossRef]
- Luo, L.F.; Beresford, R.; Wang, W.I. Interband tunneling in polytype GaSb/AlSb/InAs heterostructures. Applied Physics Letters 1989, 55, 2023–2025. [Google Scholar] [CrossRef]
- Naquin, C.; Lee, M.; Edwards, H.; Mathur, G.; Chatterjee, T.; Maggio, K. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors. Applied Physics Letters 2014, 105, 213507. [Google Scholar] [CrossRef]
- Naquin, C.; Lee, M.; Edwards, H.; Mathur, G.; Chatterjee, T.; Maggio, K. Gate length and temperature dependence of negative differential transconductance in silicon quantum well metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics 2015, 118, 124505. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Frensley, W.R. Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 1990, 62, 745–791. [Google Scholar] [CrossRef]
- de Put, M.L.V.; Sorée, B.; Magnus, W. Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field. Journal of Computational Physics 2017, 350, 314–325. [Google Scholar] [CrossRef]
- Kadanoff, L.P.; Baym, G. Quantum Statistical Mechanics; W. A. Benjamin Inc., New York, 1962.
- Keldysh, L.V. Diagram Technique for Nonequilibrium processes. Zh. Eksp. Teor. Fiz. 1964, 47, 1515. [Google Scholar]
- Koswatta, S.O.; Hasan, S.; Lundstrom, M.S.; Anantram, M.P.; Nikonov, D.E. Nonequilibrium Green’s Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors. IEEE Transactions on Electron Devices 2007, 54, 2339–2351. [Google Scholar] [CrossRef]
- Lake, R.; Datta, S. Nonequilibrium Green’s-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 1992, 45, 6670–6685. [Google Scholar] [CrossRef] [PubMed]
- Lake, R.; Klimeck, G.; Bowen, R.C.; Jovanovic, D. Single and multiband modeling of quantum electron transport through layered semiconductor devices. Journal of Applied Physics 1997, 81, 7845–7869. [Google Scholar] [CrossRef]
- Fischetti, M.V. Theory of electron transport in small semiconductor devices using the Pauli master equation. Journal of Applied Physics 1998, 83, 270–291. [Google Scholar] [CrossRef]
- Fischetti, M.V. Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 1999, 59, 4901–4917. [Google Scholar] [CrossRef]
- Vyas, P.B.; Van de Put, M.L.; Fischetti, M.V. Master-Equation Study of Quantum Transport in Realistic Semiconductor Devices Including Electron-Phonon and Surface-Roughness Scattering. Phys. Rev. Appl. 2020, 13, 014067. [Google Scholar] [CrossRef]
- Laux, S.E.; Kumar, A.; Fischetti, M.V. Ballistic FET modeling using QDAME: quantum device analysis by modal evaluation. IEEE Transactions on Nanotechnology 2002, 1, 255–259. [Google Scholar] [CrossRef]
- Vyas, P.B.; Naquin, C.; Edwards, H.; Lee, M.; Vandenberghe, W.G.; Fischetti, M.V. Theoretical simulation of negative differential transconductance in lateral quantum well nMOS devices. Journal of Applied Physics 2017, 121, 044501. [Google Scholar] [CrossRef]
- Vyas, P.B.; Van de Put, M.L.; Fischetti, M.V. Simulation of Quantum Current in Double Gate MOSFETs: Vortices in Electron Transport. 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2018, pp. 1–4. [CrossRef]
- Stern, F. Self-Consistent Results for n-Type Si Inversion Layers. Phys. Rev. B 1972, 5, 4891–4899. [Google Scholar] [CrossRef]
- Vyas, P.B.; Pal, A.; Weeks, S.; Holt, J.; Srivastava, A.K.; Megalini, L.; Krishnan, S.; Chudzik, M.; Bazizi, E.M.; Ayyagari-Sangamalli, B. Modeling of SiC transistor with counter-doped channel. Solid-State Electronics 2023, 200, 108548. [Google Scholar] [CrossRef]
- Lent, C.S.; Kirkner, D.J. The quantum transmitting boundary method. Journal of Applied Physics 1990, 67, 6353–6359. [Google Scholar] [CrossRef]
- Laux, S.E.; Kumar, A.; Fischetti, M.V. Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects. Journal of Applied Physics 2004, 95, 5545–5582. [Google Scholar] [CrossRef]
- Luttinger, J.M.; Kohn, W. Motion of Electrons and Holes in Perturbed Periodic Fields. Phys. Rev. 1955, 97, 869–883. [Google Scholar] [CrossRef]
- Ando, T.; Fowler, A.B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437–672. [Google Scholar] [CrossRef]
- Saadat, A.; Vyas, P.B.; Put, M.L.V.d.; Fischetti, M.V.; Edwards, H.; Vandenberghe, W.G. Channel Length Scaling Limit for LDMOS Field-Effect Transistors: Semi-classical and Quantum Analysis. 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020, pp. 443–446. [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover Publications, Inc., New York, 1972.
- Vyas, P.B.; Van de Putt, M.L.; Fischetti, M.V. Quantum Mechanical Study of Impact of Surface Roughness on Electron Transport in Ultra- Thin Body Silicon FETs. 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), 2018, pp. 1–4. [CrossRef]
- Zhao, P.; Vyas, P.; McDonnell, S.; Bolshakov-Barrett, P.; Azcatl, A.; Hinkle, C.; Hurley, P.; Wallace, R.; Young, C. Electrical characterization of top-gated molybdenum disulfide metal-oxide-semiconductor capacitors with high-k dielectrics. Microelectronic Engineering 2015, 147, 151–154, Insulating Films on Semiconductors 2015. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).