Submitted:
23 January 2024
Posted:
24 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Prognostic and predictive factors in the era of new drugs
2.1. Clinical outcomes
2.2. Genetics
2.2.1. IGHV mutational status (Table 1)
2.2.3. TP53 aberrations, genetic lesions, and cytogenetics
3. Score systems
4. Future directions: conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Surveillance, epidemiology, and end results program leukemia-chronic lymphocytic leukemia (CLL). 2022 Accessed October 8.
- Rai, K.R.; Sawitsky, A.; Cronkite, E. P.; Chanana, A.D.; Levy, R.N.; Pasternack, B. S. Clinical staging of chronic lymphocytic leukemia. Blood, 1975, 46, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Binet, J. L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer, 1981, 48, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D. G.; Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood, 1999, 94, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; O'Brien, S.; Wierda, W.; Kantarjian, H.; Wen, S.; Do, K. A.; Thomas, D. A.; Cortes, J.; Lerner, S.; Keating, M. J. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood, 2008, 112, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Cramer, P.; Busch, R.; Böttcher, S.; Bahlo, J.; Schubert, J.; Pflüger, K. H.; Schott, S.; Goede, V.; Isfort, S.; et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol, 2012, 30, 3209–3216. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Stilgenbauer, S.; James, M.R.; Benner, A.; Weilguni, T.; Bentz, M.; Fischer, K.; Hunstein, W.; Lichter, P. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood, 1997, 89, 2516–2522. [Google Scholar] [CrossRef] [PubMed]
- González-Gascón-Y-Marín, I.; Muñoz-Novas, C.; Rodríguez-Vicente, A.E.; Quijada-Álamo, M.; Hernández-Sánchez, M.; Pérez-Carretero, C.; Ramos-Ascanio, V.; Hernández-Rivas, J. Á. From biomarkers to models in the changing landscape of chronic lymphocytic leukemia: evolve or become extinct. Cancers, 2021, 13, 1782. [Google Scholar] [CrossRef]
- Jain, P.; Trinh, L. X.; Benjamini, O.; Lerner, S.; Wang, X.; Ferrajoli, A.; Burger, J. A.; Estrov, Z.; Wierda, W. J.; Kantarjian, H. M.; O'Brien, S.; Abruzzo, L. V; Keating, M.J. Deletion 11q abnormality in patients with chronic lymphocytic leukemia (CLL) may not have poor clinical outcomes and bulky disease (clinical and radiological) at presentation – clinical characteristics of (n=172) previously untreated patients with CLL and del11q cytogenetic abnormality. Blood. 2012, 120(21), 2890. [Google Scholar] [CrossRef]
- Kittai, A.S.; Miller, C.; Goldstein, D.; Huang, Y.; Abruzzo, L.V.; Beckwith, K.; Bhat, S.A.; Bond, D.A.; Grever, M. R.; Heerema, N.A.; et al. The impact of increasing karyotypic complexity and evolution on survival in patients with CLL treated with ibrutinib. Blood 2021, 138, 2372–2382. [Google Scholar] [CrossRef]
- Hurtado, A.M.; Chen-Liang, T. H.; Przychodzen, B.; Hamedi, C.; Muñoz-Ballester, J.; Dienes, B.; García-Malo, M.D.; Antón, A.I.; de Arriba, F.; Teruel-Montoya, R.; et al. Prognostic signature and clonality pattern of recurrently mutated genes in inactive chronic lymphocytic leukemia. Blood Cancer J, 2015, 5, e342. [Google Scholar] [CrossRef]
- Sagatys, E.M. , Zhang, L. Clinical and laboratory prognostic indicators in chronic lymphocytic leukemia. Cancer Control, 2012, 19, 18–25. [Google Scholar] [CrossRef]
- Gentile, M.; Cutrona, G.; Neri, A.; Molica, S.; Ferrarini, M.; Morabito, F. Predictive value of beta2-microglobulin (beta2-m) levels in chronic lymphocytic leukemia since Binet A stages. Haematologica, 2009, 94, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Bulian, P.; Shanafelt, T. D.; Fegan, C.; Zucchetto, A.; Cro, L.; Nückel, H.; Baldini, L.; Kurtova, A. V. : Ferrajoli, A. : Burger, J.A.; et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol, 2014, 32, 897–904. [Google Scholar] [CrossRef]
- Brachtl, G.; Piñón Hofbauer, J.; Greil, R.; Hartmann, T. N. The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Ann Hematol, 2014, 93, 361–374. [Google Scholar] [CrossRef] [PubMed]
- International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet. Oncol, 2016, 17, 779–790. [CrossRef]
- Gentile, M.; Shanafelt, T. D.; Rossi, D.; Laurenti, L.; Mauro, F.R.; Molica, S.; Cutrona, G.; Uccello, G.; Campanelli, M.; Vigna, E.; et al. Validation of the CLL-IPI and comparison with the MDACC prognostic index in newly diagnosed patients. Blood, 2016, 128, 2093–2095. [Google Scholar] [CrossRef] [PubMed]
- Wiedmeier-Nutor, J.; Leis, J. Chronic Lymphocytic Leukemia: Chemotherapy Free and Other Novel Therapies Including CAR T. Curr Treat Options Oncol, 2022, 23, 904–919. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Hallek, M.; Fischer, K. The role of minimal residual disease in chronic lymphocytic leukemia. Clin Adv Hematol Oncol, 2022, 20, 97–103. [Google Scholar]
- Burger, J.A.; Tedeschi, A.; Barr, P. M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N. L. : Li, J. ; et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med, 2015, 373, 2425–37. [Google Scholar] [CrossRef]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J. A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv, 2022, 6, 3440–3450. [Google Scholar] [CrossRef]
- Woyach, J.A.; Barr, P.M.; Kipps, T. J.; Barrientos, J.C.; Ahn, I. E.; Ghia, P.; Girardi, V.; Hsu, E.; Jermain, M.; Burger, J. A. Characteristics and Clinical Outcomes of Patients with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Receiving Ibrutinib for ≥5 Years in the RESONATE-2 Study. Cancers, 2023, 15, 507. [Google Scholar] [CrossRef]
- Shanafelt, T. D.; Wang, X. V.; Hanson, C.A.; Paietta, E. M.; O’Brien, S.; Barrientos, J. C.; Jelinek, D.F.; Braggio, E.; Leis, J. F.; Zhang, C.; et al. Long-term outcomes for ibrutinib-rituximab and chemoimmunotherapy in CLL: updated results of the E1912 Trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Wang, X. V.; Kay, N. E.; Hanson, C. A.; O'Brien, S.; Barrientos, J.; Jelinek, D. F.; Braggio, E.; Leis, J. F.; Zhang, C. C.; et al. Ibrutinib-Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N Engl J Med, 2019, 381, 432–443. [Google Scholar] [CrossRef]
- Woyach, J. A.; Ruppert, A. S.; Heerema, N. A. ; Zhao,W. ; Booth, A. M.; Ding,W.; Bartlett, N. L.; Brander, D. M.; Barr, P. M.; Rogers, K. A.; et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N. Engl. J. Med. 2018, 379, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J. M.; Flinn, I. W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without Obinutuzumab versus Chlorambucil and Obinutuzumab for treatment-naive chronic lymphocytic leukaemia (ELEVATE-TN): A Randomised, Controlled, Phase 3 Trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J. M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and Safety in a 4-Year Follow-up of the ELEVATE-TN Study Comparing Acalabrutinib with or without Obinutuzumab versus Obinutuzumab plus Chlorambucil in Treatment-Naïve Chronic Lymphocytic Leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R. R.; O’Brien, S.; Yenerel, M. N.; Illés, A.; Kay, N.; et al. Acalabrutinib versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, S.; Ritgen, M.; Fischer, K.; Stilgenbauer, S.; Busch, R.M.; Fingerle-Rowson, G.; Fink, A. M.; Bühler, A.; Zenz, T.; Wenger, M. K.; et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol, 2012, 30, 980–8. [Google Scholar] [CrossRef] [PubMed]
- Fürstenau, M.; De Silva, N.; Eichhorst, B.; Hallek, M. Minimal Residual Disease Assessment in CLL: Ready for Use in Clinical Routine? Hemasphere, 2019, 3, e287. [Google Scholar] [CrossRef]
- Fraser, G.; Cramer, P.; Demirkan, F.; Silva, R.S.; Grosicki, S.; Pristupa, A.; Janssens, A.; Mayer, J.; Bartlett, N. L.; Dilhuydy, M.S.; et al. Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia, 2019, 33, 969–980. [Google Scholar] [CrossRef]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Samoilova, O.; Novak, J.; Ben-Yehuda, D.; et al. Ibrutinib plus Obinutuzumab versus Chlorambucil plus Obinutuzumab in First-Line Treatment of Chronic Lymphocytic Leukaemia (ILLUMINATE): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; et al. Venetoclax–Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J. F.; Kipps, T. J.; Eichhorst, B. F.; D'Rozario, J.; Owen, C. J.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood. 2022, 140, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A. M.; Robrecht, S.; Samoylova, O.; Liberati, A. M.; Pinilla-Ibarz, J.; Opat, S. , Sivcheva, L. ; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef]
- Tausch, E.; Schneider, C.; Robrecht, S.; Zhang, C.; Dolnik, A.; Bloehdorn, J.; Bahlo, J.; Al-Sawaf, O.; Ritgen, M.; Fink, A. M.; et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020, 135, 2402–2412. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results from the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J Clin Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef] [PubMed]
- Niemann, C. U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G. A.; Benjamini, O.; Janssens, A.; Levin, M. D.; Robak, T.; Simkovic, M.; et al. Fixed-duration ibrutinib-venetoclax versus chlorambucil-obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2003, 24, 1423–1433. [Google Scholar] [CrossRef]
- Munir, T.; Cairns, D. A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C. P.; Eyre, T. A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N Engl J Med. 2023, 10.1056/NEJMoa2310063. Advance online publication. [CrossRef]
- Damle, R. N.; Wasil, T. , Fais, F. ; Ghiotto, F.; Valetto, A.; Allen, S. L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999, 94, 1840–1847. [Google Scholar]
- Packham, G.; Krysov, S.; Allen, A.; Savelyeva, N.; Steele, A. J.; Forconi, F.; Stevenson, F. K. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica. 2014, 99, 1138–1148. [Google Scholar] [CrossRef]
- Foà, R.; Del Giudice, I.; Cuneo, A.; Del Poeta, G.; Ciolli, S.; Di Raimondo, F.; Lauria, F.; Cencini, E.; Rigolin, G.M.; Cortelezzi, A.; et al. Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients. Am J Hematol. 2014, 89, 480–6. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.-S.; Illmer, T.; et al. Obinutuzumab plus Chlorambucil in Patients with CLL and Coexisting Conditions. N Engl J Med. 2014, 370, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P. A.; Tam, C. S.; O'Brien, S. M.; Wierda, W. G.; Stingo, F.; Plunkett, W.; Smith, S. C.; Kantarjian, H. M.; Freireich, E. J.; Keating, M. J. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016, 127, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Bahlo, J.; Fink, A. M.; Goede, V.; Herling, C. D.; Cramer, P.; Langerbeins, P.; von Tresckow, J.; Engelke, A.; Maurer, C.; et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016, 127, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Fink, A. M.; Bahlo, J.; Busch, R.; Kovacs, G.; Maurer, C.; Lange, E.; Köppler, H.; Kiehl, M.; Sökler, M.; et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016, 17, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Langerak, A. W.; Ritgen, M.; Goede, V.; Robrecht, S.; Bahlo, J.; Fischer, K.; Steurer, M.; Trněný, M.; Mulligan, S. P.; Mey, U. J. M.; et al. Prognostic value of MRD in CLL patients with comorbidities receiving chlorambucil plus obinutuzumab or rituximab. Blood. 2019, 133, 494–497. [Google Scholar] [CrossRef]
- Munir, T.; Brown, J. R.; O'Brien, S.; Barrientos, J. C.; Barr, P. M.; Reddy, N. M.; Coutre, S.; Tam, C. S.; Mulligan, S. P.; Jaeger, U.; et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019, 94, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Eichhorst, B.; Hillmen, P. ; Jurczak,W. ; Kaźmierczak, M.; Lamanna, N.; O’Brien, S. M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N Engl J Med. 2023, 388, 319–332. [Google Scholar] [CrossRef]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao,W.; Booth, A.M.; Ding,W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.A.; et al. Long-term results of Alliance A041202 show continued advantage of Ibrutinib-based regimens compared with bendamustine plus rituximab (BR) chemoimmunotherapy. Blood, 2021, 138 (Suppl. 1), 639. [CrossRef]
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J. R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): interim analysis of a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Novak, J.; Strugov, V.; Gill, D.; et al. First-Line Treatment of Chronic Lymphocytic Leukemia with Ibrutinib plus Obinutuzumab versus Chlorambucil plus Obinutuzumab: Final Analysis of the Randomized, Phase 3 ILLUMINATE Trial. Haematologica 2022, 107, 2108–2120. [Google Scholar] [CrossRef]
- Tam, C.S.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Jurczak, W.; Šimkoviˇc, M.; Shadman, M.; Österborg, A.; Laurenti, L.; et al. >anubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 Trial. Lancet Oncol. 2022, 23, 1031–1043. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Jin, H.Y.; Robrecht, S.; Choi, Y.; Balasubramanian, S.; Kotak, A.; Chang, Y.M.; Fink, A.M.; Tausch, E.; et al. Transcriptomic Profiles and 5-Year Results from the Randomized CLL14 Study of Venetoclax plus Obinutuzumab versus Chlorambucil plus Obinutuzumab in Chronic Lymphocytic Leukemia. Nat Commun. 2023, 14, 2147. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Lu, T.; Liao, M.Z.; Panchal, A.; Robrecht, S.; Ching, T.; Tandon, M.; Fink, A.-M.; Tausch, E.; et al. Minimal Residual Disease Dynamics after Venetoclax-Obinutuzumab Treatment: Extended Off-Treatment Follow-up from the Randomized CLL14 Study. J. Clin. Oncol. 2021, 39, 4049–4060. [Google Scholar] [CrossRef]
- Allan, J. N.; Flinn, I. W.; Siddiqi, T.; Ghia, P.; Tam, C. S.; Kipps, T. J.; Barr, P. M.; Elinder Camburn, A.; Tedeschi, A.; Badoux, X. C.; et al. Outcomes in Patients with High-Risk Features after Fixed-Duration Ibrutinib plus Venetoclax: Phase II CAPTIVATE Study in First-Line Chronic Lymphocytic Leukemia. Clin Cancer Res. 2023, 29, 2593–2601. [Google Scholar] [CrossRef]
- Juliusson, G.; Oscier, D. G.; Fitchett, M.; Ross, F. M.; Stockdill, G.; Mackie, M. J.; Parker, A. C.; Castoldi, G. L.; Cuneo, A.; Knuutila, S.; et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med. 1990, 323, 720–724. [Google Scholar] [CrossRef]
- Nguyen-Khac, F.; Bidet, A.; Daudignon, A.; Lafage-Pochitaloff, M.; Ameye, G.; Bilhou-Nabéra, C.; Chapiro, E.; Collonge-Rame, M. A.; Cuccuini, W.; Douet-Guilbert, N.; et al. The complex karyotype in hematological malignancies: a comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH). Leukemia. 2022, 36, 1451–1466. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Kröber, A.; Bullinger, L.; Döhner, K.; Bentz, M.; Lichter, P. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- de Leval, L.; Alizadeh, A. A.; Bergsagel, P. L.; Campo, E.; Davies, A.; Dogan, A.; Fitzgibbon, J.; Horwitz, S. M.; Melnick, A. M.; Morice, W. G.; et al. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood. 2022, 140, 2193–2227. [Google Scholar] [CrossRef] [PubMed]
- Baliakas, P.; Espinet, B.; Mellink, C.; Jarosova, M.; Athanasiadou, A.; Ghia, P.; Kater, A. P.; Oscier, D.; Haferlach, C.; Stamatopoulos, K. Cytogenetics in Chronic Lymphocytic Leukemia: ERIC Perspectives and Recommendations. Hemasphere. 2022, 6, e707. [Google Scholar] [CrossRef] [PubMed]
- Akkari, Y. M. N.; Baughn, L. B.; Dubuc, A. M.; Smith, A. C.; Mallo, M.; Dal Cin, P.; Diez Campelo, M.; Gallego, M. S.; Granada Font, I.; Haase, D. T.; et al. Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood. 2022, 139, 2273–2284. [Google Scholar] [CrossRef]
- Landau, D. A.; Tausch, E.; Taylor-Weiner, A. N.; Stewart, C.; Reiter, J. G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Böttcher, S.; et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015, 526, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Puente, X. S.; Beà, S.; Valdés-Mas, R.; Villamor, N.; Gutiérrez-Abril, J.; Martín-Subero, J. I.; Munar, M.; Rubio-Pérez, C.; Jares, P.; Aymerich, M.; et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015, 526, 519–524. [Google Scholar] [CrossRef]
- Campo, E.; Cymbalista, F.; Ghia, P.; Jäger, U.; Pospisilova, S.; Rosenquist, R.; Schuh, A.; Stilgenbauer, S. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica. 2018, 103, 1956–1968 ttps://doiorg/103324/haematol2018187583. [Google Scholar] [CrossRef]
- Lee, H. J.; Gallardo, M.; Ma, H.; Zhang, X.; Larsson, C. A.; Mejia, A.; Hornbaker, M. J.; Qi, Y.; Su, X.; Pageon, L. R.; et al. p53-independent ibrutinib responses in an Eμ-TCL1 mouse model demonstrates efficacy in high-risk CLL. Blood Cancer J. 2016, 6, e434. [CrossRef]
- Anderson, M. A.; Deng, J.; Seymour, J. F.; Tam, C.; Kim, S. Y.; Fein, J.; Yu, L.; Brown, J. R.; Westerman, D.; Si, E. G.; et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016, 127, 3215–3224. [Google Scholar] [CrossRef]
- Allan, J. N.; Shanafelt, T.; Wiestner, A.; Moreno, C.; O'Brien, S. M.; Li, J.; Krigsfeld, G.; Dean, J. P.; Ahn, I. Long-term efficacy of first-line ibrutinib treatment for chronic lymphocytic leukaemia in patients with TP53 aberrations: a pooled analysis from four clinical trials. Br J Haematol. 2022, 196, 947–953. [Google Scholar] [CrossRef]
- Rigolin, G.M.; Olimpieri, P.P.; Summa, V.; Celant, S.; Scarfò, L.; Tognolo, L.; Ballardini, M.P.; Urso, A.; Sessa, M.; Gambara, S.; et al. Outcomes in Patients with Chronic Lymphocytic Leukemia and TP53 Aberration Who Received First Line Ibrutinib: A Nationwide Registry Study from the Italian Medicines Agency. Blood Cancer J. 2023, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J. C.; Furman, R. R.; Coutre, S. E.; Flinn, I. W.; Burger, J. A.; Blum, K.; Sharman, J. P.; Wierda, W.; Zhao, W.; Heerema, N. A.; et al. Ibrutinib Treatment for First-line and relapsed/refractory chronic lymphocytic leukemia: final analysis of the pivotal phase Ib/II PCYC-1102 study. Clin Cancer Res. 2020, 26, 3918–3927. [Google Scholar] [CrossRef]
- Haferlach, C.; Dicker, F.; Schnittger, S.; Kern, W. ; Haferlach, TComprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007, 21, 2442–2451. [Google Scholar] [CrossRef]
- Rigolin, G. M.; Cibien, F.; Martinelli, S.; Formigaro, L.; Rizzotto, L.; Tammiso, E.; Saccenti, E.; Bardi, A.; Cavazzini, F.; Ciccone, M.; et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with "normal" FISH: correlations with clinicobiologic parameters. Blood. 2012, 119, 2310–2313. [Google Scholar] [CrossRef]
- Cavallari, M.; Cavazzini, F.; Bardi, A.; Volta, E.; Melandri, A.; Tammiso, E.; Saccenti, E.; Lista, E.; Quaglia, F. M.; Urso, A.; et al. Biological significance and prognostic/predictive impact of complex karyotype in chronic lymphocytic leukemia. Oncotarget. 2018, 9, 34398–34412. [Google Scholar] [CrossRef]
- Baliakas, P.; Jeromin, S.; Iskas, M.; Puiggros, A.; Plevova, K.; Nguyen-Khac, F.; Davis, Z.; Rigolin, G. M.; Visentin, A.; Xochelli, A.; et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019, 133, 1205–1216. [Google Scholar] [CrossRef]
- Thompson, P. A.; O'Brien, S. M.; Wierda, W. G.; Ferrajoli, A.; Stingo, F.; Smith, S. C.; Burger, J. A.; Estrov, Z.; Jain, N.; Kantarjian, H. M.; Keating, M. J. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015, 121, 3612–3621. [Google Scholar] [CrossRef]
- Byrd, J. C.; Wierda, W. G.; Schuh, A.; Devereux, S.; Chaves, J. M.; Brown, J. R.; Hillmen, P.; Martin, P.; Awan, F. T.; Stephens, D. M.; et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: updated phase 2 results. Blood. 2020, 135, 1204–1213. [Google Scholar] [CrossRef]
- Rigolin, G.M.; Del Giudice, I.; Bardi, A.; Melandri, A.; García-Jacobo, R.E.; Cura, F.; Raponi, S.; Ilari, C.; Cafforio, L.; Piciocchi, A.; et al. Complex Karyotype in Unfit Patients with CLL Treated with Ibrutinib and Rituximab: The GIMEMA LLC1114 Phase 2 Study. Blood 2021, 138, 2727–2730. [Google Scholar] [CrossRef]
- Byrd, J. C.; Woyach, J. A.; Furman, R. R.; Martin, P.; O'Brien, S.; Brown, J. R.; Stephens, D. M.; Barrientos, J. C.; Devereux, S.; Hillmen, P.; et al. Acalabrutinib in treatment-naive chronic lymphocytic leukemia. Blood. 2021, 137, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- Kater, A. P.; Wu, J. Q.; Kipps, T.; Eichhorst, B.; Hillmen, P.; D'Rozario, J.; Assouline, S.; Owen, C.; Robak, T.; de la Serna, J.; et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol. 2020, 38, 4042–4054. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Lilienweiss, E.; Bahlo, J.; Robrecht, S.; Fink, A. M.; Patz, M.; Tandon, M.; Jiang, Y.; Schary, W.; Ritgen, M.; et al. High efficacy of venetoclax plus obinutuzumab in patients with complex karyotype and chronic lymphocytic leukemia. Blood. 2020, 135, 866–870. [Google Scholar] [CrossRef]
- Fürstenau, M.; Thus, Y.J.; Robrecht, S.; Mellink, C.H.M.; van der Kevie-Kersemaekers, A.F.; Dubois, J.; von Tresckow, J.; Patz, M.; Gregor, M.; Thornton, P.; et al. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood. 2023, 142, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Rigolin, G. M.; Saccenti, E.; Guardalben, E.; Cavallari, M.; Formigaro, L.; Zagatti, B.; Visentin, A.; Mauro, F. R.; Lista, E.; Bassi, C.; et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018, 181, 229–233. [Google Scholar] [CrossRef]
- Rigolin, G. M.; del Giudice, I.; Formigaro, L.; Saccenti, E.; Martinelli, S.; Cavallari, M.; Lista, E.; Tammiso, E.; Volta, E.; Lupini, L.; et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia: Clinical and biologic correlations. Genes Chromosomes Cancer. 2015, 54, 818–826. [Google Scholar] [CrossRef]
- Chatzikonstantinou, T.; Demosthenous, C.; Baliakas, P. Biology and treatment of high-risk CLL: significance of complex karyotype. Front Oncol. 2021, 11, 788761. [Google Scholar] [CrossRef]
- Soumerai, J. D.; Ni, A.; Xing, G.; Huang, J.; Furman, R. R.; Jones, J.; Sharman, J. P.; Hallek, M.; Adewoye, A. H.; Dubowy, R.; et al. Evaluation of the CLL-IPI in relapsed and refractory chronic lymphocytic leukemia in idelalisib phase-3 trials. Leuk Lymphoma. 2019, 60, 1438–1446. [Google Scholar] [CrossRef]
- Soumerai, J. D.; Ni, A.; Darif, M.; Londhe, A.; Xing, G.; Mun, Y.; Kay, N. E.; Shanafelt, T. D.; Rabe, K. G. ; Byrd,; et al. Prognostic risk score for patients with relapsed or refractory chronic lymphocytic leukaemia treated with targeted therapies or chemoimmunotherapy: a retrospective, pooled cohort study with external validations. Lancet Haematol. 2019, 6, e366–e374. [Google Scholar] [CrossRef]
- Gentile, M.; Morabito, F.; Del Poeta, G.; Mauro, F. R.; Reda, G.; Sportoletti, P.; Laurenti, L.; Coscia, M.; Herishanu, Y.; Recchia, A. G.; et al. Survival risk score for real-life relapsed/refractory chronic lymphocytic leukemia patients receiving ibrutinib. A campus CLL study. Leukemia. 2021, 35, 235–238. [Google Scholar] [CrossRef]
- Gentile, M.; Martino, E. A.; Visentin, A.; Coscia, M.; Reda, G.; Sportoletti, P.; Mauro, F. R.; Laurenti, L.; Varettoni, M.; Murru, R.; et al. Validation of a survival-risk score (SRS) in relapsed/refractory CLL patients treated with idelalisib-rituximab. Blood Cancer J. 2020, 10, 92. [Google Scholar] [CrossRef]
- Ahn, I. E.; Tian, X.; Ipe, D.; Cheng, M.; Albitar, M.; Tsao, L. C.; Zhang, L.; Ma, W.; Herman, S. E. M.; Gaglione, E. M.; et al. Prediction of outcome in patients with chronic lymphocytic leukemia treated with ibrutinib: development and validation of a four-factor prognostic model. J Clin Oncol. 2021, 39, 576–585. [Google Scholar] [CrossRef]
- Morabito, F.; Tripepi, G.; Del Poeta, G.; Mauro, F. R.; Reda, G.; Sportoletti, P.; Laurenti, L.; Coscia, M.; Herishanu, Y.; Varettoni, M.; et al. Assessment of the 4-factor score: Retrospective analysis of 586 CLL patients receiving ibrutinib. A campus CLL study. Am J Hematol. 2021, 96, E168–E171. [Google Scholar] [CrossRef]
- Molica, S.; Baumann, T. S.; Lentini, M.; Levato, L.; Delgado, J.; Montserrat, E. The BALL prognostic score identifies relapsed/refractory CLL patients who benefit the most from single-agent ibrutinib therapy. Leuk Res. 2020, 95, 106401. [Google Scholar] [CrossRef] [PubMed]
- Molica S, et al. Prediction of outcomes in chronic lymphocytic leukemia patients treated with ibrutinib: Validation of current prognostic models and development of a simplified three-factor model. Am J Hematol. 2022 May;97(5):E176-E180. [CrossRef]
- Delgado, J.; Doubek, M.; Baumann, T.; Kotaskova, J.; Molica, S.; Mozas, P.; Rivas-Delgado, A.; Morabito, F.; Pospisilova, S.; & Montserrat, E. ; & Montserrat, E. Chronic lymphocytic leukemia: a prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI. Am J Hematol. 2017, 92, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Ujjani, C. Dual-targeted regimens for the frontline treatment of CLL. Hematology. American Society of Hematology. Education Program, 2023, 421–426. [CrossRef]
- Rhodes, J. M.; Lopez, C. A.; Barrientos, J. C. MRD-directed therapy in CLL: ready for prime time?. Hematology. American Society of Hematology. Education Program, 2023, 413–420. [CrossRef]
- Urso, A.; Cavazzini, F.; Ballardini, M. P.; Gambara, S.; Consolo, S.; Rigolin, G. M.; Cuneo, A. First-line treatment of older patients with CLL: a new approach in the chemo-free era. Cancers, 2023, 15, 3859. [Google Scholar] [CrossRef] [PubMed]
| Trial | Setting | Treatment | PFS M%/UM%; HR (95% CI) |
OS M%/UM%; HR (95% CI) |
ORR M%/UM% | CR M%/UM% |
uMRD M%/UM% |
Ref |
|---|---|---|---|---|---|---|---|---|
| RESONATE-2 | TN | Ibr | At 7 y 68/58; 0.858 (0.437-1.686) |
NA | 88/95 | 33/34 | NA | 22 |
| Clb | At 7 y 17/2; NA |
NA | NA | NA | NA | |||
| ECOG ACRIN E1912 | TN | Ibr+R | At 5 y 83/75; NA |
At 5 y 97/95; NA |
NA | NA | NA | 24 |
| FCR | At 5 y 68/33; NA |
At 5 y 92/84; NA |
NA | NA | NA | |||
| Alliance A041202 | TN | Ibr | At 2 y 84/79; NA |
NA | NA | NA | NA | 26 |
| Ibr+R | AT 2 y 87/71; NA |
NA | NA | NA | NA | |||
| BR | At 2 y 77/56; NA |
NA | NA | NA | NA | |||
| FLAIR | TN | Ibr+R | At 3 y 91.6/87.8; NA |
NA | At 9 m 91/91 | At 9 m 18/21 | NA | 52 |
| FCR | At 3 y 90.5/74.2; NA |
NA | At 9 m 88/87 | At 9 m 62/57 | NA | |||
| iLLUMINATE | TN | Ibr+Obi | At 4 y 89/67; NA |
NA | NA | NA | NA | 51 |
| Clb+Obi | Median NA/15.2 m; NA |
NA | NA | NA | NA | |||
| ELEVATE-TN | TN | Aca+Obi | At 4 y 89/86; NA |
NA | NA | NA | NA | 28 |
| Aca | At 4 y 81/77; NA |
NA | NA | NA | NA | |||
| Clb+Obi | At 4 y 62/4; NA |
NA | NA | NA | NA | |||
| CLL14 | TN | Ven+Obi | Median: NE/57.3 m; 0.47 (0.25, 0.87) |
At 5 y 86.6/80.5, 1.48 (0.73,3.03) |
NA | NA | PB EOT: 74/79 | 36, 55, 55 |
| Clb+Obi | Median 54.5/26.9 m; 0.33 (0.22,0.48) |
At 5 y 87/70.8; 2.24 (1.22,4.12) |
NA | NA | PB EOT: 43/28 | |||
| CAPTIVATE | TN | Ibr-Ven | At 3 y 92/ 88; NA |
At 3 y 100/98; NA |
96/97 | 51.3/61.3 | Best PB: 72/88 | 57 |
| GLOW | TN | Ibr-Ven | At 42 m 90.0/69.8; 3.775 (1.133–12.576); |
NA | NA | NA | At cycle 9 31.0/52.0 | 39 |
| Clb-Obi | At 42 m 43.1/15.0; 2·172 (1·289–3·660) |
NA | NA | NA | NA | |||
| FLAIR | TN | Ibr-Ven | At 3 y: 94.3/98.3 NA |
At 3 y: 94.3/98.3 NA |
NA | NA | Median time to (m) in BM 29/18 | 40 |
| FCR | At 3 y: 88.6/71.2 NA |
At 3 y;88.6/71.2 NA |
NA | NA | Median time to (ms) in BM 8.9/NR | |||
| RESONATE | R/R | Ibr | Median 8.4/49.7 m; 1.208 (0.741-1.971) |
NA | NA | NA | NA | 48 |
| Ofa | NA | NA | NA | NA | NA | |||
| ELEVATE R/R | R/R | Aca | At 40.9 m 70.4/40.9; NA |
NA | NA | NA | NA | 29 |
| Ibr | At 40.9 m 53.6/48.1; NA |
NA | NA | NA | NA | |||
| ALPINE | R/R | Zan | At 2 y 76/72; NA |
NA | 76/86 | NA | NA | 49 |
| Ibr | At 2 y: 74/60; NA |
NA | 69/75 | NA | NA | |||
| SEQUOIA | TN | Zan | At 2 y 83.4/88; NA |
NA | NA | NA | NA | 53 |
| BR | At 2 y 77.2/62.8; NA |
NA | NA | NA | NA | |||
| MURANO | R/R | Ven+R | Median NE/52.2 m, 2.96 (1.64, 5.34) |
At 5 y 92.3/80.7; 2.46 (0.85, 7.13) |
NA | NA | PB EOT 43.4/45.5 | 35 |
| BR | Median 24.2/15.7 m; 1.79 (1.24, 2.58) |
At 5 y 66.7/61.4; 1.13 (0.63, 2.03) |
NA | NA | NA |
| Ref | Score System | CLL therapy | N° of pts | Status of disease | Variables | Categories (points) | OS category | |
|---|---|---|---|---|---|---|---|---|
| 86 | CLL-IPI | Idela-based regimens | 897 | R/R | age >65 Rai I-IV or Binet B/C β2M >3.5mg/L IGHV unmutated del(17p) and/or TP53M |
Low (0-1) Int (2-3) High (4-6) Very high (7-10) |
1y-OS 93.3% 88.3% 69.8% 52.5% |
|
| 87 | BALL score | Ibr Idela Ven |
727 897 389 |
R/R | β2M (≥5mg/L) LDH > ULN Hb (<110 g/L for women or <120 g/L for men) time to initiation of last therapy (<24 months) |
low (0-1) int (2-3) high (4) low (0-1) int (2-3) high (4) low (0-1) int (2-3) high (4) |
89.7% 79.5% 55.8% 82.6% 61.8% 49.5% 95.1% 84.6% 82.2% |
|
| 88 | SRSI | Ibr | 541 | R/R | Hb (<110 g/L for women or <120 g/L for men) β2M (≥5mg/L) LDH > ULN |
Low (0) Int (1-3) High (4-5) |
2y-OS 95.3% 81% 60.6% |
|
| 89 | SRSi | R-idela | 142 | R/R | Hb (<110 g/L for women or <120 g/L for men) β2M (≥5mg/L) LDH > ULN |
Low (0) Int (1-3) High (4-5) |
2y-OS 88.6% 69.6% 54.3% |
|
| 90 | 4-factor prognostic model | Ibr | 720 | R/R | TP53 aberration prior treatment β2M >5 mg/L LDH >250 U/L |
Low (0-1) Int (2) High (3-4) |
3y-OS 93% 83% 63% |
|
| 91 | 4-factor prognostic model | Ibr | 586 | R/R | TP53 aberration prior treatment β2M >5 mg/L LDH >250 U/L |
Low (0-1) Int (2) High (3-4) |
3y-OS 89.7% 77.8% 60.3% |
|
| 93 | CLL-3 model | Ibr | 338 | R/R | LDH values >UNL Rai stage III/IV early POD |
Low (0) Int (1) High (2-3) |
3-y OS 91% 84% 65% |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
