Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Leveraging 7-layers LSTM for Early Detection and Prevention of Diabetes in Oman: An Innovative Approach

Version 1 : Received: 12 January 2024 / Approved: 12 January 2024 / Online: 12 January 2024 (13:17:58 CET)

A peer-reviewed article of this Preprint also exists.

Al Sadi, K.; Balachandran, W. Leveraging a 7-Layer Long Short-Term Memory Model for Early Detection and Prevention of Diabetes in Oman: An Innovative Approach. Bioengineering 2024, 11, 379. Al Sadi, K.; Balachandran, W. Leveraging a 7-Layer Long Short-Term Memory Model for Early Detection and Prevention of Diabetes in Oman: An Innovative Approach. Bioengineering 2024, 11, 379.

Abstract

This study develops a 7-layer Long Short-Term Memory (LSTM) model to enhance early diabetes detection in Oman, aligning with the theme of 'Artificial Intelligence in Healthcare'. The model focuses on addressing the increasing prevalence of Type 2 diabetes, projected to impact 23.8% of Oman's population by 2050. It employs LSTM neural networks to manage factors contributing to this rise, including obesity and genetic predispositions, and aims to bridge the gap in public health awareness and prevention. The model's performance is evaluated through various metrics. It achieves an accuracy of 99.40%, specificity and sensitivity of 100% for positive cases, a recall of 99.34% for negative cases, an F1 score of 96.24%, and an AUC score of 94.51%. These metrics indicate the model's capability in diabetes detection. The implementation of this LSTM model in Oman's healthcare system is proposed to enhance early detection and prevention of diabetes. This approach reflects an application of AI in addressing a significant health concern, with potential implications for similar healthcare challenges globally.st diagnostic capabilities, representing a significant leap forward in healthcare technology in Oman.

Keywords

Artificial Intelligence, LSTM, Diabetes Prediction, Preventive Healthcare, Oman, Early Detection, Public Health.

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.