Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Ad-Hoc Mesh Network Localization using Ultra-Wideband for Mobile Robotics

Version 1 : Received: 9 January 2024 / Approved: 9 January 2024 / Online: 9 January 2024 (10:15:25 CET)

A peer-reviewed article of this Preprint also exists.

Juston, M.F.R.; Norris, W.R. Ad Hoc Mesh Network Localization Using Ultra-Wideband for Mobile Robotics. Sensors 2024, 24, 1154. Juston, M.F.R.; Norris, W.R. Ad Hoc Mesh Network Localization Using Ultra-Wideband for Mobile Robotics. Sensors 2024, 24, 1154.

Abstract

This article explores the implementation of high accuracy GPS denied Ad-Hoc localization. There is little research on Ad-Hock UWB-enabled localization systems with mobile and stationary nodes. This work aims to demonstrate the localization of bicycle-modeled robots in a non-static environment through a mesh network of mobile, stationary robots and ultra-wideband sensors. The non-static environment adds a layer of complexity when actors can enter and exit the node’s field of view. The method starts with an initial localization step where each unmanned ground vehicle (UGV) uses the surrounding, available anchors to derive an initial local or, if possible, global position estimate. The initial localization uses a simplified implementation of the iterative multi-iteration Ad-Hoc Localization System (AHLos). This estimate was refined using an unscented Kalman filter (UKF) following a constant turn rate and velocity magnitude model (CTRV). The UKF fuses the robot’s odometry and the range measurements from the Decawave ultra-wideband receivers stationed on the network nodes. Through this position estimation stage, the robot broadcasts to its neighbors its estimated position to help the others further improve their localization estimates and localize themselves. This wave-like cycle of nodes helping to localize each other allows the network to act as a mobile Ad-Hoc localization network.

Keywords

ultra-wideband; unscented Kalman filter; Ad-Hoc localization

Subject

Engineering, Control and Systems Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.