Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hybrid-electric Vehicle Powertrain Mounting System Optimization Based on Cross-industry Standard Process for Data Mining

Version 1 : Received: 8 January 2024 / Approved: 8 January 2024 / Online: 8 January 2024 (07:10:00 CET)

A peer-reviewed article of this Preprint also exists.

Wu, Y.; Zhao, D.; Peng, J.; Xiang, X.; Huang, H. Hybrid Electric Vehicle Powertrain Mounting System Optimization Based on Cross-Industry Standard Process for Data Mining. Electronics 2024, 13, 1117. Wu, Y.; Zhao, D.; Peng, J.; Xiang, X.; Huang, H. Hybrid Electric Vehicle Powertrain Mounting System Optimization Based on Cross-Industry Standard Process for Data Mining. Electronics 2024, 13, 1117.

Abstract

The meticulously engineered powertrain mounting system of hybrid-electric vehicles plays a critical role in minimizing vehicle vibrations and noise, thereby enhancing the longevity of vital powertrain components. However, developing and designing such a system demands substantial time and financial investments due to intricate analysis and modeling requirements. To tackle this challenge, this study integrates data-mining technology into the design and optimization processes of the powertrain mount system. The research focuses on the powertrain mounting system of a transverse four-cylinder hybrid-electric vehicle, employing the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology to establish a data-mining prediction model for mounting stiffness. This model utilizes three data mining algorithms—Multi-SVR, MRTs, and MLPR—assessing their predictive accuracy concerning mounting system stiffness estimation. A comparative analysis reveals that the MRTs algorithm outperforms others as the most effective prediction model. The proposed predictive model elucidates the quantifiable correlation between vibration isolation performance and installation stiffness, overcoming complexities associated with traditional modeling approaches. Applying this model in powertrain mounting system design showcases the efficacy of the CRISP-DM-based approach, significantly enhancing design efficiency without compromising prediction accuracy.

Keywords

Hybrid-electric vehicle powertrain mounting; Data-mining; Mounting stiffness; Multi-SVR; MRTs; MLPR

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.