Submitted:
01 January 2024
Posted:
03 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Problem Statement
3. Development and Convergence of the Method
- (a)
- being ,
- (b)
- being ,
4. Efficiency Indices
| Method | CE |
|---|---|
| Newton | |
| O6 | |
| PM1 | |
| FS6 |
5. Numerical Performance
5.1. Example
| Method | Iteration | e-Time | |||
|---|---|---|---|---|---|
| Newton | 8 | 2.0 | 0.98 | ||
| O6 | 4 | 0.0 | 6.0 | 0.99 | |
| FS6 | 4 | 6.0 | 1.02 | ||
| PM1 | 4 | 6.0 | 0.99 | ||
| 4 | 5.0 | 1.00 | |||
| 4 | 6.0 | 1.02 |
5.2. Example
| Method | Iterations | e-Time (sec) | |||
|---|---|---|---|---|---|
| Newton | 11 | 2.0 | 9.99 | ||
| O6 | 5 | 6.0 | 10.24 | ||
| FS6 | 5 | 6.0 | 11.00 | ||
| PM1 | 6 | 6.0 | 10.58 | ||
| 6 | 6.0 | 11.07 | |||
| 6 | 6.0 | 10.79 |
5.3. Example
| Method | Iterations | e-Time (sec) | |||
|---|---|---|---|---|---|
| Newton | 10 | 2.0 | 1.22 | ||
| O6 | 5 | 6.0 | 1.24 | ||
| FS6 | 4 | 6.0 | 1.20 | ||
| PM1 | 5 | 6.0 | 1.27 | ||
| 5 | 5.0 | 1.39 | |||
| 5 | 6.0 | 1.39 |
| Method | Iterations | e-Time (sec) | ||
|---|---|---|---|---|
| Newton | 5 | 0.0342 | 18.3242 | |
| O6 | 3 | 9.0862 | 21.6703 | |
| FS6 | 3 | 218.18 | 22.1258 | |
| PM1 | 4 | 3.8554 | 21.9594 | |
| 4 | 7.3926 | 28.0727 | ||
| 3 | 0.0423 | 22.4797 |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, M.P.; Mitchell, D. Prestressed concrete structures; Vol. 9, Prentice Hall Englewood Cliffs, NJ, 1991.
- on Shear, A.A.C..; Torsion. Recent approaches to shear design of structural concrete. Journal of structural engineering 1998, 124, 1375–1417.
- Galántai, A. The theory of Newton’s method. Journal of Computational and Applied Mathematics 2000, 124, 25–44. [Google Scholar] [CrossRef]
- Hernández-Díaz, A.M.; Bueno-Crespo, A.; Pérez-Aracil, J.; Cecilia, J.M. Multi-objective optimal design of submerged arches using extreme learning machine and evolutionary algorithms. Applied Soft Computing 2018, 71, 826–834. [Google Scholar] [CrossRef]
- A.M. Hernández-Díaz, A. Muñoz, J.J.A.; Sáez, A. Buckling design of submerged arches via shape parameterization. Computational and Mathematical Methods 2019, 1, e1057.
- J.F. Jiménez-Alonso, J. Pérez-Aracil, A.H.D.; Sáez, A. Effect of Vinyl flooring on the modal properties of a steel footbridge. Applied Sciences 2019, 9, 1374. [CrossRef]
- J. Pérez-Aracil, C. Camacho-Gómez, A.H.D.; E. Pereira, D.C.; Salcedo-Sanz, S. Memetic coral reefs optimization algorithms for optimal geometrical design of submerged arches. Swarm and Evolutionary Computation 2021, 67, 100958. [CrossRef]
- Hueso, J.L.; Martínez, E.; Teruel, C. Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics 2015, 275, 412–420. [Google Scholar] [CrossRef]
- Narang, M.; Bhatia, S.; Kanwar, V. New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Applied Mathematics and Computation 2016, 275, 394–403. [Google Scholar] [CrossRef]
- Behl, R.; Maroju, P.; Motsa, S. Efficient family of sixth-order methods for nonlinear models with its dynamics. International Journal of Computational Methods 2019, 16, 1840008. [Google Scholar] [CrossRef]
- Yaseen, S.; Zafar, F. A new sixth-order Jarratt-type iterative method for systems of nonlinear equations. Arabian Journal of Mathematics 2022, 11, 585–599. [Google Scholar] [CrossRef]
- Vecchio, F.J.; Collins, M.P. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J. 1986, 83, 219–231. [Google Scholar]
- Hernández-Dı, A.; Gil-Martı, L.; others. Analysis of the equal principal angles assumption in the shear design of reinforced concrete members. Engineering structures 2012, 42, 95–105. [Google Scholar] [CrossRef]
- Belarbi, A.; Hsu, T. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Structural Journal 1994, 91, 465–474. [Google Scholar]
- L. M. Gil-Martín, L. María, E.H.M.; Aschheim, M.; Pantazopoulou, S. Refinements to compression field theory, with application to wall-type structures. American Concrete Institute Special Publication 2009, 265, 123–142. [Google Scholar]
- M. Palermo, L.M. Gil-Martin, E.H.M.; Aschheim, M. Refined compression field theory for plastered straw bale walls. Construction and Building Materials 2014, 58, 101–110. [CrossRef]
- A. M.Hernández-Díaz.; García-Román, M. Computing the refined compression field theory. International Journal of Concrete Structures and Materials 2016, 10, 143–147. [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition. Numer. Algor. 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Artidiello, S.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure. Applied Mathematics and Computation 2015, 268, 1064–1071. [Google Scholar] [CrossRef]
- A.M., O. Solutions of equations and systems of equations; Academic Press: New York, 1966. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics 2010, 234, 34–43. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J. Variants of Newton’s method using fifth-order quadrature formulas. Applied Mathematics and Computation 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Artidiello, S.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Design and multidimensional extension of iterative methods for solving nonlinear problems. Applied Mathematics and Computation 2017, 293, 194–203. [Google Scholar] [CrossRef]
- Cordero, A.; Jordán, C.; Sanabria, E.; Torregrosa, J.R. A new class of iterative processes for solving nonlinear systems by using one divided differences operator. Mathematics 2019, 7, 776. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
