Submitted:
31 December 2023
Posted:
02 January 2024
You are already at the latest version
Abstract
Keywords:
MSC: 17A30; 17B38; 17B56; 17B61
1. Introduction
2. Preliminaires
3. Generalized Reynolds operators on Hom-Lie triple systems
4. Cohomologies of generalized Reynolds operators on Hom-Lie triple systems
5. Deformatons of generalized Reynolds operators on Hom-Lie triple systems
6. Hom-NS-Lie triple systems
Acknowledgments
References
- A. Baklouti. Quadratic Hom-Lie triple systems, J. Geometry and Physics, 2017, 121(18), 166–175.
- I. Bakayoko. Hom-post-Lie modules, O-operators and some functors on Hom-algebras, arXiv preprint, 2016, arXiv:1610.02845.
- Baxter, G. An analytic problem whose solution follows from a simple algebraic identity Pac. J. Math., 1960, 10, 731–742.
- E. Cartan. Oeuvres completes. Part 1. Gauthier-Villars. Paris. (1952) vol. 2. nos. 101–138.
- S. Chen, Q. Lou, Q. Sun. Cohomologies of Rota-Baxter Lie triple systems and applications, Commun. Algebra, 2023, 51(1957), 1–17.
- T. Chtioui, A. Hajjaji, S. Mabrouk, A. Makhlouf. Cohomologies and deformations of O-operators on Lie triple systems, J. Math. Phys., 2023, 64, 081701.
- T. Chtioui, A. Hajjaji, S. Mabrouk, A. Makhlouf. Twisted O-operators on 3-Lie algebras and 3-NS-Lie algebras, arXiv preprint, 2021, arXiv:2107.10890v1.
- A. Das. Cohomology and deformations of twisted Rota-Baxter operators and NS-algebras, J. Homotopy Relat. Struct., 2022, 17, 233–262.
- A. Das. Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras, J. Math. Phys., 2021, 62, 091701.
- R. Gharbi, S. Mabrouk, A. Makhlouf. Maurer-Cartan type cohomology on generalized Reynolds operators and NS-structures on Lie triple systems, arXiv preprint, 2023, arXiv:2309.01385.
- J.Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 2006, 295, 321–344.
- S. Hou, Y. Sheng. Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras, Int. J. Geom. Methods Mod. Phys., 2021, 18, 2150223.
- Y. Hou, Y. Ma, L. Chen. Product and complex structures on Hom-Lie triple systems. https://www.researchgate.net/publication/341360022.
- N. Jacobson. Lie and Jordan triple Systems, Amer. J. Math. Soc., 1949, 71(1), 49–170.
- N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc., 1951, 70, 509–530.
- Kampé de Fériet. J. Introduction to the Statistical Theory of Turbulence, Correlation and Spectrum; The Institute for Fluid Dynamics and Applied Mathematics University of Maryland: College Park, MD, USA, 1951; pp. iv+162.
- Kupershmidt, B.A. What a classical r-matrix really is, J. Nonlinear Math. Phys., 1999, 6, 448–488.
- Y. Li, D. Wang. Relative Rota-Baxter operators on Hom-Lie triple systems, Communications in Algebra, DOI: 10.1080/00927872.2023.2258223.
- Y. Li, D. Wang. Twisted Rota-Baxter operators on 3-Hom-Lie algebras, Communications in Algebra, 2023, 51(1), 1–14.
- Y. Ma, L. Chen, J. Lin. Central extensions and deformations of Hom-Lie triple systems, Communications in Algebra, 46(3),(2018), 1212–1230.
- S. Mishra, A. Naolekar. O-operators on hom-Lie algebras, J. Math. Phys., 61 (2020), 121701.
- Uchino, K. Quantum analogy of Poisson geometry, related dendriform algebras and Ro-ta-Baxter operators, Lett. Math. Phys., 2008, 85, 91–109.
- O. Reynolds. On the dynamical theory of incompressible viscous fluids and the determina-tion of the criterion, Philos. Trans. Roy. Soc. A, 1895, 136, 123–164.
- W. Teng, F. Long, H. Zhang, J. Jin. On compatible Hom-Lie triple systems, arXiv preprint, 2023, arXiv:2311.07531.
- W. Teng, J. Jin, F. Long. Generalized reynolds operators on Lie-Yamaguti Algebras, Axioms, 2023, 12(10), 934.
- W. Teng, J. Jin, F. Long. Relative Rota-Baxter operators on Hom-Lie-Yamaguti algebras, Journal of Mathematical Research with Applications, 2023, 43(6),648–664.
- X. Wang, Y. Ma, L. Chen. Generalized Reynolds operators on Lie supertriple systems, 2023, https://www.researchgate.net/publication/371835147.
- K. Yamaguti. On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A, 1960,5, 44–52.
- D. Yau. On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys., 2012, 62(2),506–522.
- J. Zhou, L, Chen, Y. Ma. Generalized Derivations of Hom-Lie triple systems, Bull.Malaysian Math. Sciences Society, 2018, 41, 637–656.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).