Submitted:
27 December 2023
Posted:
28 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. What is a megatsunami?
2.1. Definition and background
2.2. Megatsunami wave height threshold
2.3. Causes of megatsunamis
3. Methods
3.1. Data collection
- NCEI/WDS Global Historical Tsunami Database [30] supported by the National Geophysical Data Center of the National Oceanic and Atmospheric Administration (NOAA), USA.
- TL/ICMMG Global Historical Tsunami Database [31] supported by the Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics of Siberian Division of Russian Academy of Sciences, Russia.
3.2. Literature review
- Iida, K., Cox, D.C. & Pararas-Carayannis, G. 1967. Preliminary catalog of tsunamis occurring in the Pacific Ocean [40].
- Soloviev, S.L. & Go, Ch.N. 1974. A catalogue of tsunamis on the western shore of the Pacific Ocean (173-1968) [41].
- Soloviev, S.L. & Go, Ch.N. 1975. A catalogue of tsunamis on the eastern shore of the Pacific Ocean (1513-1968) [42].
- Iida, K. 1984. Catalog of tsunamis in Japan and its neighboring countries [43].
- Lander, J.F. 1996. Tsunamis affecting Alaska 1737-1996 [23].
- Harris, R. & Major, J. 2016. Waves of destruction in the East Indies: The Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877 [44].
3.3. Data verification
4. Results
4.1. Megatsunamis included in the GTDBs
4.2. Definitive megatsunamis
4.2.1. Verification of old megatsunamis from the GHTDs
4.2.2. New documented megatsunamis not included in the GHTDs
- 7 are not recorded in the GHTDs: 2 in 1936 in Norway; 1985, 2003 and 2018 in China; 2007 in Mexico; and 2020 in Canada.
- 4 are recorded in the GHTDs with runup values <40 m: ~38 m for the 1756 Norwegian, 1896 Japanese and 2007 Canadian events; and runup of 9 and 30 m for the 1946 Canadian tsunami. The first 3 are the only events in the GHTDs with runup >35 and <40m.
4.3. A new event in Lituya Bay prior to 1786
4. Global Historical Megatsunami Catalog (GHMCat) 1674-2023: Description of events
- 1674, February 17 - Ambon Island, Indonesia
- Runup: 100 m
- Cause: Submarine? earthquake-triggered coastal landslide
- 1756, February 22 - Langfjord, Norway
- Runup: >50 m
- Cause: Subaerial rock avalanche
- 1792, May 21 - Kyushu Island, Japan
- Runup: 57 m
- Cause: Subaerial volcanic flank landslide
- 1853, November 30 - Lituya Bay, Alaska
- Runup: 120 m.
- Cause: Subaerial rock/ice avalanche
- 1883, August 27 - Krakatoa Island, Indonesia
- Runup: 41 m
- Cause: Volcanic flank collapse / Caldera collapse
- 1896, June 15 - Sanriku, Japan
- Runup: 55 m
- Cause: Submarine earthquake-triggered landslide / Tsunami earthquake
- 1899, September 10 - Lituya Bay, Alaska
- Runup: 61 m.
- Cause: Subaerial earthquake-triggered landslide/rock avalanche (M~8.2)
- 1905, January 16 - Lovatnet Lake, Norway
- Runup: 41 m
- Cause: Subaerial rock avalanche
- 1934, April 7 - Tafjord, Norway
- Runup: 62 m
- Cause: Subaerial rock avalanche
- 1936, September 13 - Lovatnet Lake, Norway
- Runup: 74 m
- Cause: Subaerial rock avalanche
- 1936, September 21 - Lovatnet Lake, Norway
- Runup: 40 m
- Cause: Subaerial rock avalanche
- 1936, October 27 - Lituya Bay, Alaska
- Runup: 150 m.
- Cause: Subaerial landslide/rock avalanche
- 1936, November 11 - Lovatnet Lake, Norway
- Runup: >74 m
- Cause: Subaerial rock avalanche
- 1946, April 1 - Unimak Island, Alaska
- Runup: 42 m
- Cause: Submarine earthquake-triggered landslide (8.6)
- 1946, June 23 – Vancouver Island, Canada
- Runup: 51 m.
- Cause: Subaerial earthquake-triggered landslide (M~7.3)
- 1958, July 9 - Lituya Bay, Alaska
- Runup: 524 m.
- Cause: Subaerial earthquake-triggered rock/ice avalanche (M~7.9)
- 1963, October 9 - Vaiont Reservoir, Italy
- Runup: 250 m
- Cause: Subaerial landslide
- 1964, March 28 - Port Valdez Bay, Alaska
- Runup: 67 m
- Cause: Submarine earthquake triggered landslide (M 9.2)
- 1965, February 19 - Cabrera Lake, Chile
- Maximum runup: 60 m
- Cause: Subaerial landslide
- 1967, October 14 - Grewingk Glacier Lake, Alaska
- Runup: 60 m
- Cause: Subaerial landslide
- 1980, May 18 - Spirit Lake, USA
- Runup: 260 m
- Cause: Volcanic flank landslide
- 1985, June 12 - Yangtze River, Three Gorges Region, China
- Runup: 54 m
- Cause: Subaerial landslide
- 2000, November 21 – Vaigat Strait, Greenland
- Runup: 50 m
- Cause: Subaerial landslide
- 2003, July 14 - Three Gorges Reservoir, China
- Runup: 39 m*
- Cause: Subaerial landslide
- 2004, December 26 - Sumatra-Andamán, Indonesia
- Runup: ~50 m
- Cause: Tsunami earthquake (M 9.1)
- 2007, April 21 – Aysén Fjord, Chile
- Runup: 65 m
- Cause: Subaerial earthquake-triggered landslide (M 6.2)
- 2007, June 15 - Shuibuya Reservoir, China
- Runup: 50 m
- Cause: Subaerial landslide
- 2007, November 5 - Grijalva River, México
- Runup: 50 m
- Cause: Subaerial landslide
- 2007, December 4 - Chehalis Lake, Canada
- Runup: 38 m*
- Cause: Subaerial landslide
- 2011, March 11 - Sanriku, Japan
- Runup: ~40 m
- Cause: Submarine earthquake-triggered landslide (M 9,1) / Tsunami earthquake
- 2014, July 21 - Askja Lake, Iceland
- Runup: 80 m
- Cause: Subaerial rockslide
- 2015, October 17 - Taan Fjord, Alaska
- Runup: 193 m
- Cause: Subaerial landslide
- 2017, June 17 - Karrat Fjord, Greenland
- Runup: 90 m
- Cause: Subaerial landslide
- 2018, October 10 - Jinsha River, Tibet, China
- Runup: 130-140 m
- Cause: Subaerial landslide
- 2018, December 11 - Bureya Reservoir, Russia
- Runup: 90 m
- Cause: Subaerial landslide
- 2018, December 22 - Anak Krakatau, Indonesia
- Runup: 85 m
- Cause: Volcanic flank landslide
- 2020, November 28 - Coast Mountains, Canada
- Runup: 114 m
- Cause: Subaerial landslide
5. Discussion
6. Conclusions
- By wave height: the most frequent runup heights ranged between 40 and 60 m, in 50% of the cases. However, 24% of the events have reached heights above 100 m, all generated by subaerial landslides or rock avalanches in confined bodies of water.
- By origin: All the recorded megatsunamis have been originated by landslides, most of them (>80%) large subaerial landslides, rockslides or rock avalanches ‒in some cases triggered by high-magnitude earthquakes‒, and some by volcanic flank landslides associated to large explosive eruptions. Less frequently, the cause has been large submarine landslides (14%), all triggered by very high magnitude earthquakes (M ≥8.6). Subaerial landslide-generated megatsunamis have the largest recorded runups (up to 525 m), but these are always local events which effects are confined to a small coastal strip.
- By geographical distribution and geological context: historical megatsunamis have been recorded in America (~40%), Asia (~33%) and Europe1 (~27%), where giant waves have only been recorded in Norway ‒except for two in Italy, anthropogenic, and in Iceland‒. The bays and fjords of Alaska and Norway have experienced the largest number of events, having accounted for 32% of all megatsunamis worldwide in the last 350 years; followed by the shores of Indonesia, Japan, Canada and China, in the latter case with 4 megatsunamis all occurring in rivers or reservoirs. Less frequently, large waves have also been recorded in Greenland and Chile, with two events each (three of them in fjords).
- For Australia and New Zealand there are no documented historical megatsunamis, since the history in these regions can be considered to have started towards the end of the 18th century. But this does not mean that such extreme processes have not occurred in the last hundreds or thousands of years, as some geological evidence shows [120,121,122].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| GHMCat | Global Historical Megatsunami Catalog |
| GHTD | Global Historical Tsunami Database |
| NCEI/WDS | National Centers for Environmental Information / World Data Service (National Oceanic and Atmospheric Administration, EE.UU.) |
| NGDC/WDS | National Geophysical Data Center / World Data Service (National Oceanic and Atmospheric Administration, EE.UU.) |
| TL/ICMMG | Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics (Russian Academy of Sciences) |
References
- Gusiakov, V.K. Global occurrence of large tsunamis and tsunami-like waves within the last 120 years (1900–2019). Pure Appl. Geophys. 2020, 177, 1261–1266. [Google Scholar] [CrossRef]
- Miller, D.J. Giant waves in Lituya Bay, Alaska. U.S. Geological Survey Prof. Paper 354-C, 1960; 48 pp.
- Slingerland, R.L.; Voight, B. Occurrences, properties, and predictive models of landslide-generated water waves. In Developments in Geotechnical Engineering, vol. 14 Rockslides and Avalanches; Voight, B., Ed.; Elsevier: New York, 1979; pp. 317–397. [Google Scholar] [CrossRef]
- Grimstad, E.; Nesdal, S. The Loen rockslides – a historical review. In Rock Joints; Barton, M., Stephansson, W., Eds.; Balkema: Rotterdam, 1991; pp. 1–6. Available online: https://www.researchgate.net/publication/293471500_Loen_rockslides_A_historical_review.
- Gusiakov, V.K. Identification of slide-generated tsunamis in the historical catalogs. In Submarine Landslides and Tsunamis, NATO Science Series, vol 21; Yalçiner, A.C., Pelinovsky, E.N., Okal, E., Synolakis, C.E., Eds.; Springer: Dordrecht, 2003; pp. 17–24. [Google Scholar]
- Heller, V.; Ruffini, G. A critical review about generic subaerial landslide-tsunami experiments and options for a needed step change. Earth Sci. Rev. 2023, 242, 104459. [Google Scholar] [CrossRef]
- Felton, E.A.; Crook, K.A.W.; Keating, B.H. The Hulopoe gravel, Lanai, Hawaii: New sedimentological data and their bearing on the ‘‘giant wave’’ (mega-tsunami) emplacement hypothesis. Pure Appl. Geophys. 2000, 157, 1257–1284. [Google Scholar] [CrossRef]
- Ferrer, M.; González de Vallejo, L.; Madeira, J.; Andrade, C.; García-Davalillo, J.C.; Freitas, M.C.; Meco, J.; Betancort, J.F.; Torres, T.; Ortiz, J.E. Megatsunamis induced by volcanic landslides in the Canary Islands: Age of the tsunami deposits and source landslides. GeoHazards 2021, 2(3), 228–256. [Google Scholar] [CrossRef]
- McMurtry, G.M.; Fryer, G.J.; Tappin, D.R.; Wilkinson, I.P.; Williams, M.; Fietzke, J.; Garbe-Schoenberg, D.; Watts, P. Megatsunami deposits on Kohala volcano, Hawaii, from flank collapse of Mauna Loa. Geology 2004, 32-9, 741–744. [Google Scholar] [CrossRef]
- Goff, J.; Chagué-Goff, C.; Archer, M.; Dominey-Howes, D.; Turney, C. The Eltanin asteroid impact: possible South Pacific palaeomegatsunami footprint and potential implications for the Pliocene-Pleistocene transition. J. Quat. Sci. 2012, 27(7), 660–670. [Google Scholar] [CrossRef]
- Bryant, E. Tsunami: The Underrated Hazard., 3rd ed.; Springer-Praxis Publishing: Chichester, UK, 2014; 222 pp. [Google Scholar] [CrossRef]
- Ferrer, M. Megatsunamis. CSIC-Catarata: Madrid, Spain; 2023. 130 pp.
- Bourgeois, J. Extended period of extinctions across the Cretaceous/Tertiary boundary in planktonic foraminifera of continental-shelf sections: Implications for impact and volcanism theories: Discussion and reply. Geol. Soc. Am. Bull. 1991, 103, 434–435. [Google Scholar] [CrossRef]
- Bourgeois, J.; Hansen, T.A.; Wiberg, P.L.; Kauffman, E.G. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science, 1988. 241, 4865, 567-570. [CrossRef]
- Paskoff, R. Likely occurrence of a megatsunami in the middle Pleistocene, near Coquimbo, Chile. Rev. Geol. Chile 1991, 18(1), 87–91. [Google Scholar]
- Moore, J.G.; Moore, G.W. Deposit from a giant wave on the Island of Lanai, Hawaii. Science 1984, 226, 1312–1315. [Google Scholar] [CrossRef]
- Moore, G.W.; Moore, J.G. Large-scale bedforms in boulder gravel produced by giant waves in Hawaii. GSA Spec. Papers 1988, 229, 101–110. [Google Scholar] [CrossRef]
- Alexander, W.R.; Neall, F.B. Assessment of potential perturbations to Posiva’s SF Repository at Olkiluoto from the ONKALO facility. Working Report 2007-35. Posiva: Finland, 2007; 155 pp.
- Krehl, P.O.K. History of shock waves, explosions and impact; Springer-Verlag: Berlin Heidelberg, Germany, 2009; 1288 pp. [Google Scholar]
- Goff, J.; Terry, J.P.; Chagué-Goff, C.; Goto, K. What is a mega-tsunami? Mar. Geol. 2014, 358, 12–17. [Google Scholar] [CrossRef]
- Naranjo, J.A.; Arenas, M.; Clavero, J.; Muñoz, O. Mass movement-induced tsunamis: main effects during the Patagonian Fjordland seismic crisis in Aisén (45º25’S), Chile. Andean Geol. 2009, 36(1), 137–145. [Google Scholar] [CrossRef]
- UNESCO. Tsunami Glossary. Technical Series 85, IOC/2008/TS/85 Rev.4; 2019; 44 pp. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000188226.
- Lander, J.F. Tsunamis affecting Alaska 1737-1996. NGDC Key to Geophysical Research Documentation No. 31; NOAA: Boulder, Colorado, USA, 1996; 205 pp. [Google Scholar]
- Lavigne, F.; Paris, R.; Grancher, D.; Wassmer, P.; Brunstein, D.; Vautier, F.; Leone, F.; Flohic, F.; de Coster, B.; Gunawan, T.; Gomez, C.; Setiawan, A.; Cahyadi, R.; Fachrizal. Reconstruction of tsunami inland propagation on December 26, 2004 in Banda Aceh, Indonesia, through field investigations. Pure Appl. Geophys. 2009, 166(1-2), 259-281. [CrossRef]
- Shibayama, T.; Okayasu, A.; Sasaki, J.; Wijayaratna, N.; Suzuki, T.; Jayaratne, R.; Ariff, Z.; Matsumaru, R. Disaster survey of Indian ocean tsunami in south coast of Sri Lanka and Aceh, Indonesia. In Int. Conf. on Coast Engineering ICCE, San Diego, USA; Sep 2006; ASCE, 2007; 1469-1476. árbol caído o muerto. [CrossRef]
- Tsuji, Y.; Tanioka, Y.; Matsutomi, H.; Nishimura, Y.; Kamataki, T.; Murakami, Y.; Sakakiyama, T.: Moore, A.; Gelfenbaum, G.; Nugroho, S.; Waluyo, B.; Sukanta, I.; Triyono, R.; Namegaya, Y. Damage and height distribution of Sumatra earthquake-Tsunami of December 26, 2004, in Banda Aceh City and its environs. J. Disaster Res. 2006, 1(1), 103-115. 26 December.
- Tappin, D.R. Submarine landslides and their tsunami hazard. Annu. Rev. Earth Planet. Sci. 2021, 49, 551–578. [Google Scholar] [CrossRef]
- Fryer, G.J.; Watts, P.; Pratson, L.F. Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar. Geol. 2004, 203(3-4), 201–218. [Google Scholar] [CrossRef]
- Tappin, D.R.; Watts, P.; McMurtry, G.M.; Lafoy, Y.; Matsumoto, T. The Sissano, Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar. Geol. 2001, 175, 1–23. [Google Scholar] [CrossRef]
- NCEI/WDS Global Historical Tsunami Database. National Geophysical Data Center of the National Oceanic and Atmospheric Administration (NOAA), EE.UU. Available online: https://www.ngdc.noaa.gov/hazard/tsu_db.shtml (last accessed 16 oct 2023). [CrossRef]
- TL/ICMMG Global Historical Tsunami Database. Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics of Siberian Division of Russian Academy of Sciences. Available online: http://tsun.sscc.ru/gtdb/default.aspx (last accessed 16 oct 2023).
- Gusiakov, V.K. Tsunami History - Recorded. In The Sea, vol 15: Tsunamis; Bernard, E.N., Robinson, A.R., Eds.; Harvard University Press: Cambridge, UK, 2009; pp. 23–53. [Google Scholar]
- Pranantyo, I.R.; Cummins, P.R. The 1674 Ambon Tsunami: Extreme run-up caused by an earthquake-triggered landslide. Pure Appl. Geophys. 2020, 177, 1639–1657. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Two great kamchatka Tsunamis, 1737 and 1952. IUGG Tsunami Commission. Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division, Russian Academy of Sciences. Paper. 2000. Available online: https://bibliotecadigital.ciren.cl/handle/20.500.13082/28986 (last accessed 28 nov 2023).
- Wiegel, R.L. Tsunami information sources. Sci. Tsunami Hazards 2006, 24(2), 58–171. [Google Scholar]
- Wiegel, R.L. Tsunami information sources Part 2. Sci. Tsunami Hazards 2006, 25(2), 67–125. [Google Scholar]
- Wiegel, R.L. Tsunami information sources Part 4. Sci. Tsunami Hazards 2009, 28(4), 255–347. [Google Scholar]
- Cheng, S.; Zeng, J.; Liu, H. A comprehensive review of the worldwide existing tsunami databases. J. Earthq. Tsunami 2020, 14-05, 2040003. [Google Scholar] [CrossRef]
- Heck, N.H. List of seismic sea waves. Bull. Seismol. Soc. Am. 1947, 37(4), 269–286. [Google Scholar] [CrossRef]
- Iida, K.; Cox, D.C.; Pararas-Carayannis, G. Preliminary catalog of tsunamis occurring in the Pacific Ocean. Data Report No. 5, HIG-67-10, Univ. of Hawaii: Honolulu, USA, 1967; 261 pp. Available online: http://www.soest.hawaii.edu/Library/Tsunami%20Reports/Iida_et_al.pdf.
- Soloviev, S.L.; Ch.N. Go. Catalogue of tsunamis on the western shore of the Pacific Ocean (173-1968). Nauka Publishing House: Moscow, 1974. Translated to English by Canadian Institute for Science and Technical Information, Can. Transi. Fish. Aquat. Sci. 5077, 1984; 439 pp.
- Soloviev, S.L., and Ch.N. Go. Catalogue of tsunamis on the eastern shore of the Pacific Ocean (1513-1968). Nauka Pub. House: Moscow, 1975. Translated to English by Canadian Institute for Science and Technical Information, Can. Transi. Fish. Aquat. Sci. 5078, NRC, Canada, 1984; 293 pp.
- Iida, K. Catalog of tsunamis in Japan and its neighboring countries. Aichi Institute of Technology, Japan, Special Report, 1984. P. 52. Available online: https://tsunami-dl.jp/document/111 (last accessed 13 march 2023).
- Harris, R.; Major, J. Waves of destruction in the East Indies: The Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877. In Geohazards in Indonesia: Earth Science for Disaster Risk Reduction; Cummins, P.R., Meilano, I., Eds.; The Geological Society of London, Special Publication 441, 2016, 9-46. [CrossRef]
- Antonopoulos, J. The great Minoan eruption of Thera volcano and the ensuing tsunami in the Greek Archipelago. Nat. Hazards 1992, 5, 153–168. [Google Scholar] [CrossRef]
- Pararas-Carayannis, G. The tsunami generated from the eruption of the volcano of Santorin in the Bronze Age. Nat. Hazards 1992, 5, 115–123. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Tsunamis on the Russian Pacific coast: history and current situation. Russ. Geol. Geophys. 2016, 57, 1259–1268. [Google Scholar] [CrossRef]
- Chuyan, G.N.; Bykasov, V.E. The height of the 1737 tsunami on Bering Island revisited. Her. Russ. Acad. Sci. 2013, 83, 134–139. [Google Scholar] [CrossRef]
- Nakamura, M. Source fault model of the 1771 Yaeyama Tsunami, southern Ryukyu Islands, Japan, inferred from numerical simulation. Pure Appl. Geophys. 2006, 163, 41–54. [Google Scholar] [CrossRef]
- Goto, K.; Kawana, T.; Imamura, F. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth Sci. Rev. 2010, 102(1-2), 77-99. [CrossRef]
- Okamura, Y.; Nishizawa, A.; Fujii, Y.; Yanagisawa, H. Accretionary prism collapse: a new hypothesis on the source of the 1771 giant tsunami in the Ryukyu Arc, SW Japan. Sci. Rep. 2018, 8, 13620. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T. Re-estimation of a plausible model of the earthquake fault as the source of the1771 Great Meiwa tsunami based on the assessment of the run-up height by Okinawa Prefecture, Japan. Open J. Geol. 2020, 10, 1250–1261. [Google Scholar] [CrossRef]
- Moore, A.L.; Imamura, F.; Yoshida, I.; Hayakawa, T. Reappraisal of the maximum runup of the 1771 Meiwa tsunami on Ishigakijima. Tsunami Eng. 2001, 18, 53–60. Available online: https://www.tsunami.irides.tohoku.ac.jp/hokusai3/J/publications/pdf/vol.18_7.pdf (last accessed 16 oct 2023).
- Matsumoto, T.; Kimura, M.; Nakamura, M.; Ono, T. Large-scale slope failure and active erosion occurring in the southwestern Ryukyu fore-arc area. Nat. Hazards Earth Sys. Sci. 2001, 1, 203–211. [Google Scholar] [CrossRef]
- Soloviev, S.L. The Sanak-Kodiak tsunami of 1788. Sci. Tsunami Hazards 1990, 8-1, 34–38. [Google Scholar]
- Satake, K. Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth Planets Space 2007, 59, 381–390. [Google Scholar] [CrossRef]
- Karstens, J.; Berndt, C.; Urlaub, M.; Watt, S.F.L.; Micallef, A.; Ray, M.; Klaucke, I.; Muff, S.; Klaeschen, D.; Kühn, M.; Roth, T.; Böttner, C.; Schramm, B.; Elger, J.; Brune, S. From gradual spreading to catastrophic collapse - reconstruction of the 1888 Ritter Island volcanic sector collapse from high-resolution 3D seismic data. Earth Planet Sci. Lett. 2019, 517, 1–13. [Google Scholar] [CrossRef]
- Expédition de La Pérouse en 1786. Available online: https://fr.wikipedia.org/wiki/Baie_Lituya (last accessed 25 august 2023).
- Sandøy, G. Back-analysis of the 1756 Tjellefonna rockslide, Langfjorden. Master Thesis. Earth Sci. and Petroleum Eng. Norwegian University of Science and Technology, Trondheim, 2012. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/236050 (last accessed 4 oct 2023).
- Sandøy, G.; Oppikofer, T.; Nilsen, B. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway. Geomorphology 2017, 289, 78–95. [Google Scholar] [CrossRef]
- Akagi, Y. The tsunami height and damaged area of tsunami occurred in 1792 in Shimabara Peninsula. His. Geography 2001, 43(1), 4-19 (in Japanese).
- Matsushima, T. (Institute of Seismology and Volcanology, Kyushu University, Japan) Personal written communication, 2015.
- Tsuji, Y.; Hino, T. Damage and inundation height of the 1792 Shimabara landslide tsunami along the coast of Kumamoto Prefecture. Bull. Earthq. Res. Inst., Univ. of Tokyo 1993, 68(2), 91-176 (in Japanese with English abstract).
- Sassa, K.; Dang, K.; Yanagisawa, H.; He, B. A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides 2016, 13, 1405–1419. [Google Scholar] [CrossRef]
- Wang, J.; Ward, S.N.; Xiao, L. Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Eng. Geol. 2019, 256, 121–137. [Google Scholar] [CrossRef]
- Lander, J.F.; Lockridge, P.A. United States tsunamis (including United States possessions) 1690-1988. U.S. Dept. of Commerce, Pub. 41-2, NOAA, NGDC: Boulder, Colorado, USA, 1989; 243 pp.
- Pararas-Carayannis, G. Near and far-field effects of tsunamis generated by the paroxysmal eruptions, explosions, caldera collapses and massive slope failures of the Krakatau volcano in Indonesia on august 26-27, 1883. Sci. Tsunami Haz. 2003, 21(4), 191–211. [Google Scholar]
- Abercromby, R.; Archibald, E.D.; Bonney, T.G.; Evans, F.J.; Geikie, A.; Judd, J.W.; Lockyer, J.N.; Russell, F.A.; Scott, R.H.; Stokes, G.G. et al. The eruption of Krakatoa and subsequent phenomena. Report of the Krakatoa Committee of the Royal Society. Symons, G.J. Ed.; Trübner & Co.: London, 1888; 494 pp.
- Krakatoa Committee of the Royal Society of London (1888).
- Tsuji, Y.; Satake, K.; Ishibe, T.; Harada, T.; Nishiyama, A.; Kusumoto, S. Tsunami heights along the Pacific Coast of northern Honshu recorded from the 2011 Tohoku and previous great earthquakes. Pure Appl. Geophys. 2014, 171(12), 3183–3215. [Google Scholar] [CrossRef]
- Mori, N.; Takahashi, T.; Yasuda, T.; Yanagisawa, H. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 2011, 38, L00G14. [Google Scholar] [CrossRef]
- Tappin, D.R.; Grilli, S.T.; Harris, J.C.; Geller, R.J.; Masterlark, T.; Kirby, J.T.; Shi, F.; Ma, G.; Thingbaijam, K.K.S.; Mai, P.M. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar. Geol. 2014, 357, 344–361. [Google Scholar] [CrossRef]
- Tarr, R.S.; Martin, L. The earthquakes at Yakutat Bay, Alaska, in September, 1899. U.S. Geological Survey Prof. Paper 69, 1912; 135 pp. [CrossRef]
- Hermanns, R. L.; Blikra, L. H.; Naumann, M.; Nielsen, B.; Panthi, K. K.; Stromeyer, D.; Longva, O. Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Eng. Geol. 2006, 83, 1-3, 94-108. [CrossRef]
- Waldmann, N.; Vasskog, K.; Simpson, G.; Chapron, E.; Støren, E.W.N.; Hansen, L.; Loizeau, J.L.; Nesje, A.; Ariztegui, D. Anatomy of a catastrophe: Reconstructing the 1936 rock fall and tsunami event in Lake Lovatnet, Western Norway. Front. Earth Sci. 2021, 9, 671378. [Google Scholar] [CrossRef]
- Okal, E.A.; Plafker, G.; Synolakis, C.E.; Borrero, J.C. Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands. Bull. Seismol. Soc. Am. 2003, 93, 1226–1234. [Google Scholar] [CrossRef]
- Fryer, G.J.; Watts, P.; Pratson, L.F. Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar. Geol. 2004, 203 3-4, 201-218.
- von Huene, R.; Kirby, S.; Miller, J.; Dartnell, P. The destructive 1946 Unimak near-field tsunami: New evidence for a submarine slide source from reprocessed marine geophysical data. Geophys. Res. Lett. 2014, 41, 6811–6818. [Google Scholar] [CrossRef]
- Miller, J.J.; von Huene, R.; Ryan, H. The 1946 Unimak tsunami earthquake area: Revised tectonic structure in reprocessed seismic images and a suspect near-field tsunami source. U.S. Geological Survey Open-File Report 2014-1024, 2014; 19 pp. Available online: https://pubs.usgs.gov/of/2014/1024/pdf/ofr2014-1024.pdf.
- Macdonald, G.A.; Shepard, F.P. and Cox, D.C. The Tsunami of April 1, 1946, in the Hawaiian Islands. Pac. Sci. 1947, 1(1), 21-37. Available online: http://scholarspace.manoa.hawaii.edu/handle/10125/12536[Consultado 16-08-2023].
- Walker, D.A. Tsunami facts. School of Ocean and Earth Science and Technology. SOEST Technical Report 94-03; University of Hawaii, 1994. Available online: http://www.soest.hawaii.edu/Library/Daniel_Walker.pdf.
- Evans, S.G. The 1946 Mount Colonel Foster rock avalanche and associated displacement wave, Vancouver Island, British Columbia. Can. Geotech. J. 1989, 26, 447–452. [Google Scholar] [CrossRef]
- Fritz, H.M.; Mohammed, FG.; Yoo, J. Lituya Bay landslide impact generated megatsunami 50th Anniversary. Pure Appl. Geophys. 2009, 166, 153–175. [Google Scholar] [CrossRef]
- Semenza, E. La storia del Vaiont raccontata dal geologo che ha scoperto la frana. Tecomproject: Ferrara, Italy, 2001; 276 pp.
- Crosta, G.B.; Imposimato, S.; Roddeman, D. Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech. Rock Eng. 2016, 49, 2413–2436. [Google Scholar] [CrossRef]
- Plafker, G.; Kachadoorian, R.; Eckel, E.B.; Mayo, L.R. The Alaska earthquake, March 27, 1964: Effects on communities. U.S. Geological Survey Professional Paper 542-G, 1969; 50 pp.
- Lee, H.J.; Ryan, H.F.; Haeussler, P.J.; Kayen, R.E.; Hampton, M.A.; Locat, J.; Suleimani, E.; Alexander, C.R. Reassessment of seismically induced, tsunamigenic submarine slope failures in Port Valdez, Alaska, USA. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 27; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Springer: Dordrecht, 2007; pp. 357–365. [Google Scholar] [CrossRef]
- Ryan, H.F.; Lee, H.J.; Haeussler, P.J.; Alexander, C.R.; Kayen, R.E. Historic and paleo-submarine landslide deposits imaged beneath Port Valdez, Alaska: implications for tsunami generation in a glacial fiord. In Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, vol 28; Mosher D.C. et al. Eds.; Springer Science+Business Media, 2010; 411-421.
- Watt, S.F.L.; Pyle, D.M.; Naranjo, J.A.; Mather, T.A. Landslide and tsunami hazard at Yate volcano, Chile as an example of edifice destruction on strike-slip fault zones. Bull. Volcanol. 2009, 71-5, 559–574. [Google Scholar] [CrossRef]
- Wiles, G.C.; Calkin, P.E. Reconstruction of a debris-slide-initiated flood in the southern Kenai Mountains, Alaska. Geomorphology 1992, 5, 535–546. [Google Scholar] [CrossRef]
- Voight, B.; Janda, R.J.; Glicken, H.; Douglas, P.M. Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Géotechnique 1983, 33-3, 243–273. [Google Scholar] [CrossRef]
- Waitt, R.B.; Major, J.J.; Hoblitt, R.P.; Van Eaton, A.R.; Clynne, M.A. Field trip guide to Mount St. Helens, Washington - Recent and ancient volcaniclastic processes and deposits. U.S. Geological Survey Scientific Investiga tions Report 2017–5022–E, 2019; 68 pp. [CrossRef]
- Huang, B.L.; Wang, S.C.; Zhao, Y.B. Impulse waves in reservoirs generated by landslides into shallow water. Coast Eng. 2017, 123, 52–61. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, B.; Wang, W.; Wei, Y.; Ma, X.; Ma, F.; Zhao, C. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China. J. Rock Mech. Geotech. Eng. 2016, 8, 577e595. [Google Scholar] [CrossRef]
- Huang, Z.; Law, K.T.; Liu, H.; Jiang, T. The chaotic characteristics of landslide evolution: A case study of Xintan landslide. Environ. Geol. 2009, 56(8), 1585–1591. [Google Scholar] [CrossRef]
- Dahl-Jensen, T.; Larsen, L.M.; Pedersen, S.A.S, Pedersen, J.; Jepsen, J.F.; Pedersen, G.K.; Nielsen, T.; Pedersen, A.K.; Platen-Hallemund, F.V.; Weng, W. Landslide and tsunami 21 November 2000 in Paatuut, West Greenland. Nat. Hazards 2004, 31, 277–287. [CrossRef]
- Yin, Y.P.; Huang, B.; Chen, X.; Liu, G.; Wang, S. Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides 2015, 12(2), 355–364. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, L.; Ward, S.N.; Du, J. Tsunami Squares modeling of the 2007 Dayantang landslide generated waves considering the effects in slide/water interactions”. Eng. Geol. 2021, 284, 106032. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Su, A.; Xiang, W.; Xiong, C.; Blum, P. Simulating landslide-induced tsunamis in the Yangtze River at the Three Gorges in China. Acta Geotech. 2021, 16, 2487–2503. [Google Scholar] [CrossRef]
- Nishimura, Y. (Institute of Seismology and Volcanology, Hokkaido University, Japan) Personal written communication, 2015.
- Froude, M. 2016. Landslides in Chile Part 5: Water waves triggered by landslides and the Mentirosa Island Landslide complex. American Geophysical Union (AGU) website/blog. Available online: https://blogs.agu.org/landslideblog/2016/02/02/mentirosa-island-landslide/ (last accessed on 24 sept 2023).
- Alcántara-Ayala, I.; Domínguez-Morales, L. The San Juan de Grijalva catastrophic landslide, Chiapas, Mexico: Lessons learnt. In Proceedings of The First World Landslide Forum, ICL/ISDR, Tokio, 2008. Parallel Session Vol.; Casagli, N., Fanti, R., Tofani, V. Eds.; 2008; pp. 53-56. Available online: http://www.iclhq.org/WLFweb/parallel_sessions.pdf.
- Roberts, N.J.; McKillop, R.J.; Lawrence, M.S.; Psutka, J.F.; Clague, J.J.; Brideau, M.E.; Ward, B.C. Impacts of the 2007 landslide generated tsunami in Chehalis Lake, Canada. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Heidelberg, 2013; vol. 6, pp. 133–140. [Google Scholar] [CrossRef]
- Wang, J.; Ward, S.N.; Xiao, L. Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada. Geophys. J. Int. 2015, 201, 372–376. [Google Scholar] [CrossRef]
- Mori, N.; Takahashi, T.; The 2011 Tohoku earthquake tsunami Joint Survey Group. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coastal Eng. J. 2012, 54-1, 1250001, 27 pp. [CrossRef]
- Kawamura, K.; Sasaki, T.; Kanamatsu, T.; Sakaguchi, A.; Ogawa, Y. Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation. Geophys. Res. Lett. 2012, 39, l05308. [Google Scholar] [CrossRef]
- Gylfadóttir, S.S.; Kim, J.; Helgason, J.K.; Brynjólfsson, S.; Höskuldsson, A.; Jóhannesson, T.; Harbitz, C.B.; Løvholt. The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data. J. Geophys. Res. Oceans, 2017, 122, 4110-4122. [CrossRef]
- Higman, B.; Shugar, D.H.; Stark, C.P.; Ekström, G.; Koppes, M.N.; Lynett, P.; Dufresne, A.; Haeussler, P.J.; Geertsema, M.; Gulick, S.; et al. The 2015 landslide and tsunami in Taan Fiord, Alaska. Sc. Rep. 2018, 8, 12993. [Google Scholar] [CrossRef]
- Higman, B.; Geertsema, M.; Shugar, D.; Lynett, P.; Dufresna, A. The 2015 Taan Fiord landslide and tsunami. Alaska Park Science 2019, 18(1), 6–15. [Google Scholar] [CrossRef]
- Gauthier, D.; Anderson, S.A.; Fritz, H.M.; Giachetti, T. Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: initial 3D observations. Landslides 2018, 15, 327–332. [Google Scholar] [CrossRef]
- Schiermeier, Q. Huge landslide triggered rare Greenland mega-tsunami. Nature 2017. 1038. [CrossRef]
- Hu, Y.X.; Yu, Z.Y.; Zhou, J.W. Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha river. Landslides 2020, 17(10), 2317–2328. [Google Scholar] [CrossRef]
- Gusiakov, V.; Makhinov, A. December 11, 2018 landslide and 90-m Icy Tsunami in the Bureya water reservoir. In Understanding and reducing landslide disaster risk, vol 5, Contribution to Landslide Disaster Risk Reduction; Sassa K., Mikos, M., Sassa, S., Bobrowsky P.T., Takara K., Dang K., Eds.; Springer, 2021; 351-360. 11 December. [CrossRef]
- Borrero, J.C.; Solihuddin, T.; Fritz, H.M.; Lynett, P.J.; Prasetya, G.S.; Skanavis, V. Field survey and numerical modelling of the December 22, 2018, Anak Krakatau tsunami. Pure Appl. Geophys. 2020, 177, 2457–2475. [Google Scholar] [CrossRef]
- Esteban, M.; Takabatake, T.; Achiari, H.; Mikami, T.; Nakamura, R.; Gelfi, M.; Panalaran, S.; Nishida, Y.; Inagaki, N.; Chadwick, C.; Oizumi, K.; Shibayama, T. Field survey of flank collapse and run-up heights due to 2018 Anak Krakatau tsunami. Journal of Coastal and Hydraulic Structures 2021, 1, 14. [Google Scholar] [CrossRef]
- William, R.; Rowley, P.; Garthwaite, M.C. Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology 2019, 47-10, 973–976. [Google Scholar] [CrossRef]
- Geertsema, M.; Menounos, B.; Bullard, G.; Carrivick, J.L.; Clague, J.J.; Dai, C. The 28 November 2020 landslide, tsunami, and outburst flood - A hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada. Geophys. Res. Lett. 2022, 49, e2021GL096716. [Google Scholar] [CrossRef]
- Roberts, N.J.; McKillop, R.; Hermanns, R.L.; Clague, J.J.; Oppikofer, T. Preliminary global catalog of displacement waves from subaerial landslides. In Landslide Science for a Safer Geoenvironment, Proceedings of World Landslide Forum 3, Beijing, China, 2014; Sassa, K., Canuti, P., Yin, Y. Eds.; Springer, Cham., 2014. [CrossRef]
- NGI, 2022. Tsunami simulations in the Vaigat Sound. Tsunami hazard analysis in Greenland. NGI Report. Doc. no.: 20210737-02-R, 2022; 38 pp.
- Goff, J.; Chagué-Goff, C. The Australian tsunami database: A review. Prog. Phys. Geog. 2014, 38(2), 218–240. [Google Scholar] [CrossRef]
- Dominey-Howes, D. Geological and historical records of tsunami in Australia. Mar. Geol. 2007, 239, 99–123. [Google Scholar] [CrossRef]
- Bryant, E.; Nott, J. Geological indicators of large tsunami in Australia. Nat. Hazards 2001, 24, 231–249. [Google Scholar] [CrossRef]



| Date | Name/Place | Cause* | Runup (m)* |
|---|---|---|---|
| 3600 BP Santorini, Greece | V / - | 90 / - | |
| 1674 | Ambon Island, Indonesia | LEq (6,8) / Eq (8) | 100 / 80 |
| 1737 | Kanchatka, Russia | Eq (8,5) | 15 / 63 |
| 1741 | Oshima Island, Japan | V / LV | 90 / 10 |
| 1771 | Ryukyu Islands, Japan | Eq (7,4) / LEq | 85,4 |
| 1788 | Sanak Island, Alaska | Eq (8) | 88 |
| 1792 | Kyushu Island, Japan | LV / V | 55 / 57 |
| 1853 | Lituya Bay, Alaska | L | 120 |
| 1880 | Sitka, Alaska | LEq (6,3) | 1,8 / 60 |
| 1883 | Krakatoa Island, Indonesia | V | 41 / 35 |
| 1899 | Lituya Bay, Alaska | LEq (8,2) | 61 |
| 1905 | Lovatnet Lake, Norway | L | 40 |
| 1934 | Tafjord, Norway | L | 62 |
| 1936 | Lovatnet Lake, Norway | L | 74 / 70 |
| 1936 | Lituya Bay, Alaska | L | 150 |
| 1946 | Unimak Island, Alaska | LEq (8,6) / Eq (8,6) | 42 |
| 1958 | Lituya Bay, Alaska | LEq (7,8) / L | 525 |
| 1963 | Vaiont Reservoir, Italy | L | 235 |
| 1964 | Port Valdez Bay, Alaska | LEq (9,2) / Eq (9,3) | 67 |
| 1965 | Cabrera Lake, Chile | LV / V | 60 |
| 1967 | Grewingk Glacier Lake, Alaska | L | 60 |
| 1980 | Spirit Lake, EE.UU. | V | 250 |
| 2000 | Vaigat Strait, Greenland | L | 50 |
| 2004 | Sumatra-Andaman, Indonesia | Eq (9,1) | 50,9 |
| 2007 | Aysén Fjord, Chile | LEq (6,2) / L | 50 / 65 |
| 2007 | Shuibuya Reservoir, China | L / - | 50 / - |
| 2011 | Sanriku, Japan | Eq (9,1) | ~56 / 42 |
| 2014 | Askja Lake, Island | L / - | 60 / - |
| 2015 | Taan Fjord, Alaska | L | 193 |
| 2017 | Karrat Fjord, Greenland | L | 90 |
| 2018 | Bureya Reservoir, Russia | L | 90 |
| 2018 | Anak Krakatau, Indonesia | LV / V | 85 |
| L: Landslide, rockslide or rock avalanche; LEq: Earthquake-triggered landslide, rockslide or rock avalanche; LV: Volcanic landslide; Eq: Earthquake (magnitude); V: Volcanic. | |||
| * Where the two global databases differ, data from both are given (NCEI/WDS / TL/ICMMG) | |||
| Date | Place/Name | Cause | Runup (m) | References |
|---|---|---|---|---|
| 3600 BP | Santorini Island, Greece | LV | 90; >250 ? | [45,46] |
| 1674 | Ambon Island, Indonesia | SLEq | 100 | [41,44] |
| 1756 | Langfjord, Norway | L | >50 | [59] |
| 1792 | Kyushu Island, Japan | LV | 57 | [61] |
| 1853 | Lituya Bay, Alaska | L | 120 m | [2] |
| 1883 | Krakatoa Island, Indonesia | LV ? | >40; >100 ? | [68] |
| 1896 | Sanriku, Japan | SLEq ? | ~40 | [70,71] |
| 1899 | Lituya Bay, Alaska | LEq | 61 | [2] |
| 1905 | Lovatnet Lake, Norway | L | 41 | [4,74] |
| 1934 | Tafjord, Norway | L | 62 | [74] |
| 1936 | Lovatnet Lake, Norway | L | 74 | [4,74] |
| 1936 | Lovatnet Lake, Norway | L | 40 | [4,75] |
| 1936 | Lituya Bay, Alaska | L | 150 | [2] |
| 1936 | Lovatnet Lake, Norway | L | >74 | [4] |
| 1946 | Unimak Island, Alaska | SLEq (8,6) | 42 | [76,77] |
| 1946 | Vancouver Island, Canada | LEq (7,3) | 51 | [82] |
| 1958 | Lituya Bay, Alaska | LEq (7,8) | 525 | [2,23] |
| 1963 | Vaiont Reservoir, Italy | L | 235 | [84,85] |
| 1964 | Port Valdez Bay, Alaska | SLEq (9,2) | 67 | [86] |
| 1965 | Cabrera Lake, Chile | L | 60 | [89] |
| 1967 | Grewingk Lake, Alaska | L? | 60 | [90] |
| 1980 | Spirit Lake, USA | LV | 260 | [30,92] |
| 1985 | Yangtze River, China | L | 54 | [93,94] |
| 2000 | Vaigat Strait, Greenland | L | 50 | [96] |
| 2003 | Three Gorges Reservoir, China | L | 39 | [97,98] |
| 2004 | Sumatra-Andaman, Indonesia | Eq (9,1); SLEq? | ~50 | [24,25] |
| 2007 | Aisen Fjord, Chile | LEq (6,2) | 65 | [101] |
| 2007 | Shuibuya Reservoir, China | L | 50 | [98] |
| 2007 | Grijalva River, Mexico | L | >50 | [102] |
| 2007 | Chehalis Lake, Canada | L | 38 | [103,104] |
| 2011 | Sanriku, Japan | SLEq (9,1) ? | ~40 | [71,72] |
| 2014 | Askja Lake, Iceland | L | >60 | [107] |
| 2015 | Taan Fjord, Alaska | L | 193 | [108] |
| 2017 | Karrat Fjord, Greenland | L | 90 | [109,110] |
| 2018 | Jinsha River, China | L | 130 | [111] |
| 2018 | Bureya Reservoir, Russia | L | 90 | [112] |
| 2018 | Anak Krakatau, Indonesia | LV | 85 | [113,114] |
| 2020 | Coast Mountains, Canada | L | 114 | [116] |
| * The megatsunami in Lituya Bay prior to 1876 is not included, as their age is unknown (see text for explanation) L – Landslide, rockslide or rock avalanche LEq - Earthquake-triggered subaerial landslide SLEq - Earthquake-triggered submarine landslide LV – Volcanic flank landslide Eq – Earthquake (magnitude) | ||||
| Date | Place/Name | Cause | Runup (m) | References | ||
|---|---|---|---|---|---|---|
| GHTDs | This study | GHTDs* | This study | |||
| 1756 | Langfjord, Norway | L | L | 38 / - | >50 | [59] |
| 1896 | Sanriku, Japan | SLEq ? | SLEq ? | 38.2 | 55 | [70,71] |
| 1936 | Lovatnet Lake, Norway | - | L | - | 40 | [4,75] |
| 1936 | Lovatnet Lake, Norway | - | L | - | >74 | [4] |
| 1946 | Vancouver Island, Canada | LEq (7.3) | LEq (7.3) | 9 / 30 | 51 | [82] |
| 1985 | Yangtze River, China | - | L | - | 54 | [93,94] |
| 2003 | Three Gorges Reservoir, China | - | L | - | 39(+) | [97,98] |
| 2007 | Grijalva River, Mexico | - | L | - | >50 | [102] |
| 2007 | Chehalis Lake, Canada | L | L | 38 | 38(+) | [103,104] |
| 2018 | Jinsha River, China | - | L | - | 130 | [111] |
| 2020 | Coast Mountains, Canada | - | L | - | 114 | [116] |
| L – Subaerial landslide or rock avalanche LEq - Earthquake-triggered subaerial landslide (magnitude) SLEq - Earthquake-triggered submarine landslide (magnitude) * Where the two GHTDs differ, data from both are given (NCEI/WDS / TL/ICMMG) (+) These are the only two documented tsunamis with runup >35 and <40 m (see text for explanation) | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
