Submitted:
26 December 2023
Posted:
27 December 2023
Read the latest preprint version here
Abstract
Keywords:
Introduction:
- Chronic Constipation.
- 2.
- Nonsteroidal anti-inflammatory drugs (NSAIDs).
- 3.
- Pesticide exposure.
- 4.
- Tobacco smoking.
- 5.
- Exposure to head trauma.
- 6.
- Hyperuricemia and gout.
- 7.
- Cholesterol.
- 8.
- Statin medications.
- 9.
- Caffeine.
Conclusion:
Funding
Conflicts of Interest
References
- Zafar, S.; Yaddanapudi, S.S. Parkinson Disease. StatPearls 2023, 8, 1–13. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470193/ (accessed on 21 December 2023).
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Basilisco, G.; Coletta, M. Chronic constipation: A critical review. Dig. Liver Dis. 2013, 45, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Milosavljevic, T.; Popovic, D.D.; Mijac, D.D.; Milovanovic, T.; Krstic, S.; Krstic, M.N. Chronic Constipation: Gastroenterohepatologist’s Approach. Dig. Dis. 2022, 40, 175–180. [Google Scholar] [CrossRef]
- Altomare, D.F. Slow-transit constipation: solitary symptom of a systemic gastrointestinal disease. Dis. Colon Rectum 1999, 42, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J. Medical records documentation of constipation preceding Parkinson disease: A case-control study. Yearb. Med. 2010, 2010, 433–434. [Google Scholar] [CrossRef]
- Evatt, M.L. Dysautonomia rating scales in Parkinson’s disease: Sialorrhea, dysphagia, constipation - Critique and recommendations by movement disorders task force on rating scales for Parkinson’s disease. Mov. Disord. 2009, 24, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.D. Bowel movement frequency in late-life and incidental lewy bodies. Mov. Disord. 2007, 22, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Petrovitch, H. Bowel movement frequency in late-life and substantia nigra neuron density at death. Mov. Disord. 2009, 24, 371–376. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, J.W.; Liu, Y.C.; Chang, C.H.; Wu, R.M. Risk of Parkinson’s disease following severe constipation: A nationwide population-based cohort study. Park. Relat. Disord. 2014, 20, 1371–1375. [Google Scholar] [CrossRef]
- Adams-Carr, K.L.; Bestwick, J.P.; Shribman, S.; Lees, A.; Schrag, A.; Noyce, A.J. Constipation preceding Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liang, W.; Chen, J.; Wang, Q.; Huang, X. Constipation in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Eur. Neurol. 2023, 86, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; Suissa, S. NSAID Use and the Risk of Parkinsons Disease. Curr. Drug Saf. 2008, 1, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Poly, T.N.; Islam (Rubel), M. M.; Yang, H.C.; Li, Y.C.J. Non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease in the elderly population: a meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 99–108. [Google Scholar] [CrossRef]
- Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinson’s disease incidence: A Norwegian Prescription Database study. PLoS One 2021, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alavanja, M.C.R. Introduction: Pesticides use and exposure extensive worldwide. Rev. Environ. Health 2009, 24, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Boostani, R. Delayed polyneuropathy in farm sprayers due to chronic low dose pesticide exposure. Delayed polyneuropathy in farm sprayers due to chronic low dose pesticide exposure. Iran. Red Crescent Med. J. 2014, 16. [Google Scholar] [CrossRef] [PubMed]
- Hancock, D.B. Pesticide exposure and risk of Parkinson’s disease: A family-based case-control study. BMC Neurol. 2008, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Zhang, Y.; Liu, L.; Shi, N.; Yan, H. Pesticide exposure and risk of Parkinson’s disease: Dose-response meta-analysis of observational studies. Regul. Toxicol. Pharmacol. 2018, 96, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Abushouk, A.I.; Gabr, M.; Negida, A.; Abdel-Daim, M.M. Parkinson’s disease and pesticides: A meta-analysis of disease connection and genetic alterations. Biomed. Pharmacother. 2017, 90, 638–649. [Google Scholar] [CrossRef]
- Yahya, N.A.A.; Meramat, A.A. Association Between Occupational Toxicity Exposure to Pesticides and Parkinson’s Disease Among Adults: Systematic Review and Meta-Analysis. Asian J. Med. Biomed. 2022, 6, 43–44. [Google Scholar] [CrossRef]
- Li, S. Proximity to residential and workplace pesticides application and the risk of progression of Parkinson’s diseases in Central California. Sci. Total Environ. 2023, 864. [Google Scholar] [CrossRef] [PubMed]
- U. S. D. of H. and H. Services, C. for D. C. and Prevention, N. C. for C. D. P. and H. Promotion, and O. on S. and Health. The Health Consequences of Smoking—50 Years of Progress. 2014, 1–36. [Google Scholar]
- Tanner, C.M. Smoking and Parkinson’s disease in twins. Neurology 2002, 58, 581–588. [Google Scholar] [CrossRef]
- Mappin-Kasirer, B. Tobacco smoking and the risk of Parkinson disease: A 65-year follow-up of 30,000 male British doctors. Neurology 2020, 94, E2132–E2138. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q. The protective role of cigarette smoking against Parkinson’s disease via moderation of the interaction between iron deposition in the nigrostriatal pathway and clinical symptoms. Quant. Imaging Med. Surg. 2022, 12, 3603–3624. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y. Association between smoking and all-cause mortality in Parkinson’s disease. npj Park. Dis. 2023, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sahler, C.S.; Greenwald, B.D. Traumatic Brain Injury in Sports: A Review. Rehabil. Res. Pract. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jost, W.H.; Reichmann, H. ‘An essay on the shaking palsy’ 200 years old. J. Neural Transm. 2017, 124, 899–900. [Google Scholar] [CrossRef]
- Sci-Hub | Association of Traumatic Brain Injury With Late-Life Neurodegenerative Conditions and Neuropathologic Findings. JAMA Neurology 2016, 73, 1062. Available online: https://sci-hub.se/10.1001/jamaneurol.2016.1948 (accessed on 17 December 2023). [CrossRef]
- Sci-Hub | Inflammation after trauma: Microglial activation and traumatic brain injury. Annals of Neurology 2011, 70, 374–383. Available online: https://sci-hub.se/10.1002/ana.22455 (accessed on 17 December 2023). [CrossRef]
- Schmidt, O.I.; Heyde, C.E.; Ertel, W.; Stahel, P.F. Closed head injury - An inflammatory disease? Brain Res. Rev. 2005, 48, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Buki, A.; Italiano, D.; Jeromin, A. α-Synuclein in CSF of patients with severe traumatic brain injury. Neurology 2013, 80, 1662–1668. [Google Scholar] [CrossRef]
- Harris, M.A.; Shen, H.; Marion, S.A.; Tsui, J.K.C.; Teschke, K. Head injuries and Parkinson’s disease in a case-control study. Occup. Environ. Med. 2013, 70, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.C.; Burke, J.F.; Nettiksimmons, J.; Goldman, S.; Tanner, C.M.; Yaffe, K. Traumatic brain injury in later life increases risk for Parkinson disease. Ann. Neurol. 2015, 77, 987–995. [Google Scholar] [CrossRef]
- Goldman, S.M.; Tanner, C.M.; Oakes, D.; Bhudhikanok, G.S.; Gupta, A.; Langston, J.W. Head injury and Parkinson’s disease risk in twins. Ann. Neurol. 2006, 60, 65–72. [Google Scholar] [CrossRef]
- Nicoletti, A. Head trauma and Parkinson’s disease: results from an Italian case-control study. Neurol. Sci. 2017, 38, 1835–1839. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Chen, H.; Feldman, A.L.; Kamel, F.; Ye, W.; Wirdefeldt, K. Head injury and Parkinson’s disease: A population-based study. Mov. Disord. 2012, 27, 1632–1635. [Google Scholar] [CrossRef]
- Kenborg, L. Head injury and risk for Parkinson disease. Neurology 2015, 84, 1098–1103. [Google Scholar] [CrossRef]
- Goldman, S.M. Head injury, alpha-synuclein Rep1, Parkinson’s disease. Ann. Neurol. 2012, 71, 40–48. [Google Scholar] [CrossRef]
- El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017, 8, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides, Nucleotides and Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef]
- Alonso, A.; Sovell, K.A. Gout, hyperuricemia, Parkinson’s disease: A protective effect? Curr. Rheumatol. Rep. 2010, 12, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Mosley, T.H.; Alonso, A.; Huang, X. Plasma urate and Parkinson’s disease in the atherosclerosis risk in communities (ARIC) study. Am. J. Epidemiol. 2009, 169, 1064–1069. [Google Scholar] [CrossRef]
- Kurajoh, M. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Yu, Z. The significance of uric acid in the diagnosis and treatment of Parkinson disease. Med. (United States) 2017, 96. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Low uric acid levels in patients with Parkinson’s disease: Evidence from meta-analysis. BMJ Open 2013, 3. [Google Scholar] [CrossRef]
- Risiglione, P. High-Resolution Respirometry Reveals MPP+ Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Bi, M.; Jiao, Q.; Du, X.; Jiang, H. Glut9-mediated urate uptake is responsible for its protective effects on dopaminergic neurons in parkinson’s disease models. Front. Mol. Neurosci. 2018, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N. Gout. Gout. Nat. Rev. Dis. Prim. 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Hernan, M.A. Gout and risk of parkinson disease: A prospective study: Reply. Neurology 2008, 71, 70. [Google Scholar] [CrossRef]
- De Vera, M.; Rahman, M.M.; Rankin, J.; Kopec, J.; Gao, X.; Choi, H. Gout and the risk of Parkinson’s disease: A cohort study. Arthritis Care Res. 2008, 59, 1549–1554. [Google Scholar] [CrossRef]
- Ungprasert, P.; Srivali, N.; Thongprayoon, C. Gout is not associated with a lower risk of Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2015, 21, 1238–1242. [Google Scholar] [CrossRef]
- Fazlollahi, A. Association between gout and the development of Parkinson’s disease: a systematic review and meta-analysis. BMC Neurol. 2022, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Reavis, Z.W. Sex and race differences of cerebrospinal fluid metabolites in healthy individuals. Metabolomics 2021, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Biochemistry, Cholesterol - PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30020698/ (accessed on 18 December 2023).
- Cholesterol Levels: MedlinePlus Medical Test. Available online: https://medlineplus.gov/lab-tests/cholesterol-levels/ (accessed on 18 December 2023).
- Björkhem, I.; Meaney, S.; Fogelman, A.M. Brain Cholesterol: Long Secret Life behind a Barrier. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Fester, L. Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 2009, 19, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Goritz, C.; Mauch, D.H.; Pfrieger, F.W. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol. Cell. Neurosci. 2005, 29, 190–201. [Google Scholar] [CrossRef]
- de Chaves, E.I.P.; Rusinol, A.E.; Vance, D.E.; Campenot, R.B.; Vance, J.E. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J. Biol. Chem. 1997, 272, 30766–30773. [Google Scholar] [CrossRef]
- Pitas, R.E.; Boyles, J.K.; Lee, S.H.; Hui, D.; Weisgraber, K.H. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem. 1987, 262, 14352–14360. [Google Scholar] [CrossRef]
- Vance, J.E. Dysregulation of cholesterol balance in the brain: Contribution to neurodegenerative diseases. DMM Dis. Model. Mech. 2012, 5, 746–755. [Google Scholar] [CrossRef]
- Huang, X. Brain cholesterol metabolism and Parkinson’s disease. Mov. Disord. 2019, 34, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Fang, F. Lipids, Apolipoproteins, the Risk of Parkinson Disease: A Prospective Cohort Study and a Mendelian Randomization Analysis. Circ. Res. 2019, 125, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Rozani, V. Higher serum cholesterol and decreased Parkinson’s disease risk: A statin-free cohort study. Mov. Disord. 2018, 33, 1298–1305. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; He, X.; Li, H.; Liu, H.; Zhang, X. A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson’s disease. Lipids Health Dis. 2020, 19, 1–10. [Google Scholar] [CrossRef]
- Hurh, K.; Park, M.; Jang, S.I.; Park, E.C.; Jang, S.Y. Association between serum lipid levels over time and risk of Parkinson’s disease. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Longstreth, J.T.; Swanson, P.D.; Checkoway, H. Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Park. Relat. Disord. 2009, 15, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.C. Dietary cholesterol, fats and risk of Parkinson’s disease in the Singapore Chinese health study. J. Neurol. Neurosurg. Psychiatry 2016, 87, 86–92. [Google Scholar] [CrossRef]
- Mascitelli, L.; Pezzetta, F.; Goldstein, M.R. Total cholesterol and the risk of parkinson disease. Neurology 2009, 72, 860. [Google Scholar] [CrossRef]
- Doria, M.; Maugest, L.; Moreau, T.; Lizard, G.; Vejux, A. Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson’s disease. Free Radic. Biol. Med. 2016, 101, 393–400. [Google Scholar] [CrossRef]
- Rao, C.S.; Subash, Y.E. The Effect of Chronic Tobacco Smoking and Chewing on the Lipid Profile. J. Clin. Diagn. Res. 2013, 7, 31. [Google Scholar] [CrossRef]
- Bhalsing, K.; Abbas, M.; Tan, L.S. Role of Physical Activity in Parkinson’s Disease. Ann. Indian Acad. Neurol. 2018, 21, 242. [Google Scholar] [CrossRef] [PubMed]
- Sizar, O.; Khare, S.; Jamil, R.T.; Talati, R. Statin Medications. StatPearls 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430940/ (accessed on 19 December 2023).
- Matyori, A.; Brown, C.P.; Ali, A.; Sherbeny, F. Statins utilization trends and expenditures in the U.S. before and after the implementation of the 2013 ACC/AHA guidelines. Saudi Pharm. J. SPJ 2023, 31, 795. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Yang, C.; Lee, M.; Ho, S.; Liu, C. Statin Therapy Prevents the Onset of Parkinson Disease in Patients with Diabetes Running Head : Statin Prevents Parkinson Disease in DM Word count : 2515 Table: 4 Corresponding author Shyi-Jang Shin, M. D., Ph.D. Division of Endocrinology and Metab. 1–17.
- Torrandell-Haro, G.; Branigan, G.L.; Vitali, F.; Geifman, N.; Zissimopoulos, J.M.; Brinton, R.D. Statin therapy and risk of Alzheimer’s and age-related neurodegenerative diseases. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C. Discontinuation of statin therapy associates with Parkinson disease: A population-based study. Neurology 2013, 81, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Rozani, V. Statin adherence and the risk of Parkinson’s disease: A population-based cohort study. PLoS One 2017, 12, 1–12. [Google Scholar] [CrossRef]
- De Lau, L.M.L.; Stricker, B.H.C.; Breteler, M.M.B. Serum cholesterol, use of lipid-lowering drugs, and risk of Parkinson disease [4]. Mov. Disord. 2007, 22, 1985. [Google Scholar] [CrossRef] [PubMed]
- Huang, X. Statins, plasma cholesterol, and risk of Parkinson’s disease: A prospective study. Mov. Disord. 2015, 30, 552–559. [Google Scholar] [CrossRef]
- Jeong, S.M.; Jang, W.; Shin, D.W. Association of statin use with Parkinson’s disease: Dose–response relationship. Mov. Disord. 2019, 34, 1014–1021. [Google Scholar] [CrossRef]
- Müller, T.H.; Kuhn, W.; D. Pμuhlau; Przuntek, H.. Parkinsonism unmasked by lovastatin. Ann. Neurol. 1995, 37, 685–686. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. Statins may facilitate Parkinson’s disease: Insight gained from a large, national claims database. Mov. Disord. 2017, 32, 913–917. [Google Scholar] [CrossRef]
- Kapur, N.K.; Musunuru, K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc. Health Risk Manag. 2008, 4, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, S. Ischemic stroke causes Parkinson’s disease-like pathology and symptoms in transgenic mice overexpressing alpha-synuclein. Acta Neuropathol. Commun. 2022, 10, 1–17. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Keast, D.R.; Lieberman, H.R. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am. J. Clin. Nutr. 2015, 101, 1081–1087. [Google Scholar] [CrossRef]
- Sherman, S.M.; Buckley, T.P.; Baena, E.; Ryan, L. Caffeine enhances memory performance in young adults during their non-optimal time of day. Front. Psychol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Open for Discussion: Caffeine - American Chemical Society. Available online: https://www.acs.org/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/caffeine.html (accessed on 19 December 2023).
- Actions of caffeine in the brain with special reference to factors that contribute to its widespread use - PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10049999/ (accessed on 19 December 2023).
- Nehlig, A.; Daval, J.L.; Debry, G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev. 1992, 17, 139–170. [Google Scholar] [CrossRef]
- Manalo, R.V.M.; Medina, P.M.B. Caffeine protects dopaminergic neurons from dopamine-induced neurodegeneration via synergistic adenosine-dopamine D2-like receptor interactions in Transgenic Caenorhabditis elegans. Front. Neurosci. 2018, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl. Psychiatry 2015, 5, e549. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ghribi, O.; Geiger, J.D. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer’s and Parkinson’s diseases. J. Alzheimer’s Dis. 2010, 20. [Google Scholar] [CrossRef]
- Costa, J.; Lunet, N.; Santos, C.; Santos, J.; Vaz-Carneiro, A. Caffeine exposure and the risk of Parkinson’s disease: A systematic review and meta-analysis of observational studiess. J. Alzheimer’s Dis. 2010, 20. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.T.; Chan, L.; Bai, C.H. The Effect of Caffeine on the Risk and Progression of Parkinson’s Disease: A Meta-Analysis. Nutrients 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.F. Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Front. Neurosci. 2020, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Roshan, M.H.K.; Tambo, A.; Pace, N.P. Potential Role of Caffeine in the Treatment of Parkinson’s Disease. Open Neurol. J. 2016, 10, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.K. Does Drinking Coffee Reduce the Incidence of Parkinson’s Disease? Cureus 2023, 15, 1–15. [Google Scholar] [CrossRef]
- Gagne, J.J.; Power, M.C. Anti-Inflammatory Drugs and Risk of Parkinson Disease: A Meta-Analysis. Neurology 2010, 74, 995–1002. [Google Scholar] [CrossRef]
| Suggested mechanisms | More explanation |
|---|---|
| 1-Modulation of neuroinflammation. | -Caffeine reduces lipopolysaccharide (LPS)-induced microglia activation in the hippocampus. -Caffeine may control microglia-mediated neuroinflammatory responses associated with PD. -Caffeine prevents blood-brain barrier (BBB) dysregulation in a mouse model. -Caffeine attenuates α-Syn-induced microglial activation and astrogliosis in the striatum of a mouse model. -Caffeine activates signaling in the anti-oxidative pathways. -Caffeine antagonizes the adenosine a2 receptor, which controls neuroinflammation (through p38). |
| 2-Regulating autophagy. | -Caffeine attenuates abnormal α-Syn aggregation and neurotoxicity by re-establishing autophagy activity in animal models of PD. |
| 3-Modulating gut microbiota. | -Modulating it in many suggested complex mechanisms that end in protection from Parkinson’s disease. |
| 4-Inhibition of Voltage-gated calcium channels 1.3 [Cav 1.3 Ca2+]. | -It is thought that these channels are increased in density in Parkinson’s patients, and these channels generate more reactive oxygen species that lead to neurodegeneration of dopaminergic neurons. |
| First 3 mechanisms and their explanations have been collected from: ( Ren X and Chen J-F (2020)Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Front. Neurosci. 14:602697. doi: 10.3389/fnins.2020.602697) [98] | |
| Last mechanism and its explanation have been collected from: (Roshan MHK, Tambo A, Pace NP. Potential Role of Caffeine in the Treatment of Parkinson’s Disease. Open Neurol J. 2016;10(1):42-58. doi:10.2174/1874205x01610010042 ) [99] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
