Submitted:
25 December 2023
Posted:
26 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study design
2.2. Methodology
2.2.1. DNA extraction
2.2.2. Mutational screening
2.2.3. Clinicopathological features
2.2.4. Statistical analysis
3. Results
3.1. Series description
3.1.1. Epidemiologic data
3.1.2. Cyto-histological genetic profile
3.2. Genetic alterations in Indeterminate nodules
3.3. Papillary thyroid carcinomas
3.3.1. Clinicopathological features of PTCs
3.3.2. Cyto-histological genetic profile in PTCs
3.3.3. Relationship between the clinicopathological features and the genetic profile in PTCs
3.4. Statistical analysis of cyto-histological profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, Evans JG, Young E, Bird T, Smith PA. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 1977, 7, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest 2009, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Grussendorf M Ruschenburg I & Brabant, G. Malignancy rates in thyroid nodules: a long-term cohort study of 17,592 patients. European Thyroid Journal 2022, 11, e220027. [Google Scholar] [CrossRef]
- Sherman, SI. Thyroid carcinoma. Lancet 2003, 361, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Schumberger, Pacini, Tuttle. In Thyroid Tumors, Fourth Edition, 2015.
- Li, M.; Brito, J.P.; Vaccarella, S. Long-Term Declines of Thyroid Cancer Mortality: An International Age-Period-Cohort Analysis. Thyroid 2020, 30, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid Cancer Incidence Trends by Histology in 25 Countries: A Population-Based Study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J. , Colombet, M., Soerjomataram, I., Mathers, C., et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Ren, H. , et al. Co-existence of BRAF(V600E) and TERT promoter mutations in papillary thyroid carcinoma is associated with tumor aggressiveness, but not with lymph node metastasis. Cancer Manag Res 2018, 10, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Ali SZ & Cibas, ES. The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria, and Explanatory Notes, 2nd ed.Cham: Springer International Publishing; 2018.
- Syed Z Ali 1, Zubair W Baloch 2, Beatrix Cochand-Priollet 3, Fernando C Schmitt 4, Philippe Vielh 5, Paul A VanderLaan 6. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2023, 33, 1039–1044. [Google Scholar] [CrossRef]
- Bongiovanni M Papadakis GE Rouiller N Marino L Lamine F Bisig B Ziadi S & Sykiotis GP. The Bethesda system for reporting thyroid cytopathology explained for practitioners: frequently asked questions. Thyroid 2018, 28, 556–565. [Google Scholar] [CrossRef]
- Canberk, S. , Baloch, Z. W., Ince, U., Schmitt, F. Diagnosis of Non-invasive Follicular Tumor with Papillary-like Nuclear Features (NIFTP): A Practice Changer for Thyroid Fine-needle Aspiration Interpretation. Journal of Basic & Clinical Medicine 2017, 6, 38–43. [Google Scholar]
- Fulvio Basolo, Elisabetta Macerola, Anello Marcello Poma, and Liborio Torregrossa. The 5th edition of WHO classification of tumors of endocrine organs: changes in the diagnosis of follicular-derived thyroid carcinoma. Endocrine. 2023, 80, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid. 2015, 25, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Nixon AM1, Provatopoulou X2, Kalogera E2, Zografos GN1, Gounaris A2. Circulating thyroid cancer biomarkers: Current limitations and future prospects. Clin Endocrinol (Oxf). 2017, 87, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Hauch A Al-Qurayshi Z Randolph G & Kandil, E. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Annals of Surgical Oncology 2014, 21, 3844–3852. [Google Scholar] [CrossRef]
- Paschke R1, Cantara S2, Crescenzi A3, Jarzab B4, Musholt TJ5, Sobrinho Simões M6. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J. 2017, 6, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F et al 2015. American Thyroid Association: Management Guidelines for Adult Patients with Thyroid Nodules and differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Cosimo Durante, Laszlo Hegedüs, Agnieszka Czarniecka, Ralf Paschke, Gilles Russ, Fernando Schmitt, Paula Soares, Tamas Solymosi, and Enrico Papini. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J. 2023, 12, e230067. [Google Scholar] [CrossRef]
- Hu MI, Waguespack SG, Dosiou C, Ladenson PW, Livhits MJ, Wirth LJ, Sadow PM, Krane JF, Stack BC, Zafereo ME, Ali SZ, Weitzman SP, Hao Y, Babiarz JE, Kennedy GC, Kloos RT. Afirma Genomic Sequencing Classifier and Xpression Atlas Molecular Findings in Consecutive Bethesda III-VI Thyroid Nodules. J Clin Endocrinol Metab. 2021, 106, 2198–2207. [Google Scholar] [CrossRef]
- Babazadeh NT, Sinclair TJ, Krishnamurthy V, Jin J, Heiden KB, Shin J, Berber E, Siperstein A. Thyroid nodule molecular profiling: The clinical utility of Afirma Xpression Atlas for nodules with Afirma Genomic Sequencing Classifier-suspicious results. Surgery. 2022, 171, 155–159. [Google Scholar] [CrossRef]
- Oczko-Wojciechowska M, Kotecka-Blicharz A, Krajewska J, Rusinek D, Barczynski M, Jarzab B, et al. . European perspective on the use of molecular tests in the diagnosis and therapy of thyroid neoplasms. Gland Surg. 2020, 9 (Suppl. S2), S69–S76. [Google Scholar] [CrossRef] [PubMed]
- Moore A, Bar Y, Maurice-Dror C, Finkel I, Goldvaser H, Dudnik E, Goldstein DA, Gordon N, Billan S, Gutfeld O, Wolf I, Popovtzer A. Next-generation sequencing in thyroid cancers: do targetable alterations lead to a therapeutic advantage?: A multicenter experience. Medicine (Baltimore). 2021, 100, e26388. [Google Scholar] [CrossRef] [PubMed]
- Maksymilian Ludwig, Bartłomiej Ludwig, Agnieszka Mikuła, Szymon Biernat, Jerzy Rudnicki, Krzysztof Kaliszewski. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers (Basel) 2023, 15, 708. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, S; Dolcetti, V. ; Radzina, M.; Bellini, M.I.; Frezza, F.; Munir, K.; Grani, G.; Durante, C.; D’Andrea, V.; David, E.; et al. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers 2022, 14, 3357. [Google Scholar] [CrossRef] [PubMed]
- GLOBOCAN. Lyon: International Agency for Research on Cancer/World Health Organization. 2018; Available from: 2018.//gco.iarc.fr/. 13. RORENO. Registo Oncológico Nacional 2010. Instituto Português de Oncologia do Porto Francisco Gentil - EPE. 2016.
- Raposo, L. , Morais, S., Oliveira, M. J., Marques, A. P., Bento, M. J. Lunet, N. Trends in thyroid cancer incidence and mortality in Portugal. European Journal of Cancer Prevention 2017, 26, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Cameselle-Teijeiro JM1, Sobrinho-Simões M2. New WHO classification of thyroid tumors: a pragmatic categorization of thyroid gland neoplasms. Endocrinol Diabetes Nutr. 2018, 65, 133–135. [Google Scholar] [CrossRef]
- Vinagre, J. , Pinto, V., Celestino, R., et al. Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Arch 2014, 465, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Melo M, Gaspar da Rocha A, Batista R, Vinagre J, Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V, Lobo C, Cameselle-Teijeiro JM, Cavadas B, Pereira L, Sobrinho-Simões M, Soares P. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. J Clin Endocrinol Metab. 2017, 102, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Altman, Douglas G. 1999. Practical Statistics for Medical Research. Chapman; Hall/CRC Press.
- Valderrabano P1, Zota VE, McIver B, Coppola D, Leon ME. Molecular Assays in Cytopathology for Thyroid Cancer. Cancer Control. 2015, 22, 152–157. [Google Scholar] [CrossRef]
- Grani G Sponziello M Pecce V Ramundo V & Durante, C. Contemporary thyroid nodule evaluation and management. Journal of Clinical Endocrinology and Metabolism 2020, 105, 2869–2883. [Google Scholar] [CrossRef]
- Anari, S.; Tataei Sarshar, N.; Mahjoori, N.; Dorosti, S.; Rezaie, A. Review of deep learning approaches for thyroid cancer diagnosis. Math. Probl. Eng. 2022, 1–6. [Google Scholar] [CrossRef]
- Melo, M. , et al. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. J Clin Endocrinol Metab 2017, 102, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Bellevicine C, Migliatico I, Sgariglia R, et al, Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARg alterations in different Bethesda diagnostic categories: A multicentric prospective study on the validity of the 7-gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy Tiroide Network. Cancer Cytopathol. 2020, 128, 107–118. [Google Scholar] [CrossRef]
- Whitney, S. Goldner, Trevor E. Angell, Sallie Lou McAdoo, Joshua Babiarz, Peter M. Sadow, Fadi A. Nabhan, Christian Nasr, Richard T. Kloos. Molecular Variants and Their Risks for Malignancy in Cytologically Indeterminate Thyroid Nodules. Thyroid. 2019, 29, 1594–1605. [Google Scholar] [CrossRef]
- Panebianco, F. , Nikitski, A. V., Nikiforova, M. N., Nikiforov, Y. E. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Medicine 2019, 8, 5831–5839. [Google Scholar] [CrossRef] [PubMed]
- Decaussin-Petrucci, M. , et al. Molecular testing of BRAF, RAS and TERT on thyroid FNAs with indeterminate cytology improves diagnostic accuracy. Cytopathology 2017, 28, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Liu, R. , Xing, M. Diagnostic and Prognostic TERT Promoter Mutations in Thyroid Fine Needle Aspiration Biopsy. Endocr Relat Cancer 2014, 21, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Insilla, A.C. , Proietti, A., Borrelli, N., Macerola, E., et al. TERT promoter mutations and their correlation with BRAF and RAS mutations in a consecutive cohort of 145 thyroid cancer cases. Oncology Letters 2018, 15, 2763–2770. [Google Scholar] [PubMed]
- Liu, X. , Zhang, S., Gang, Q., Shen, S., Zhang, J., Lun, Y., Xu, D., Duan, Z., Xin, S. Interstitial fibrosis in papillary thyroid microcarcinoma and its association with biological behavior. Oncology Letters 2018, 15, 4937–4943. [Google Scholar]
- Bournaud, C. , Descotes, F., Decaussin-Petrucci, M., et al. TERT promoter mutations identify a high-risk group in metastasis-free advanced thyroid carcinoma. European Journal of Cancer 2019, 108, 41–49. [Google Scholar] [CrossRef]
- Syed, M. Gilani, MD,1 Rita Abi-Raad, MD,1 James Garritano, BS,2,3 Guoping Cai, MD,1 Manju L. Prasad, MD,1 and Adebowale J. Adeniran, MD1. RAS mutation and associated risk of malignancy in the thyroid gland: An FNA study with cytology-histology correlation. Cancer Cytopathol. 2022, 130, 284–293. [Google Scholar] [CrossRef]
- Park, J.Y. , Kim, W. Y., Hwang, T. S., Lee, S. S., Kim, H., Han H. S., Lim, S. D., et al. BRAF and RAS Mutations in Follicular Variants of Papillary Thyroid carcinoma. Endocr Pathol 2013, 24, 69–76. [Google Scholar] [CrossRef]
- Zhao Q, Wang Y, Ye Q, Wang P, Rao J. BRAF V600E as an accurate marker to complement fine needle aspiration (FNA) cytology in the guidance of thyroid surgery in the Chinese population: evidence from over 1000 consecutive FNAs with follow-up. Jpn J Clin Oncol. 2021, 51, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Juan, C. Hernandez-Prera, Pablo Valderrabano, Jordan H. Creed, Janis V. de la Iglesia, Robbert J.C. Slebos, Barbara A. Centeno, Valentina Tarasova, Julie Hallanger-Johnson, Colleen Veloski, Kristen J. Otto, Bruce M. Wenig, Sean J. Yoder, Cesar A. Lam, Derek S. Park, Alexander R. Anderson, Natarajan Raghunand, Anders Berglund, Jimmy Caudell, Travis A. Gerke, Christine H. Chung. Molecular Determinants of Thyroid Nodules with Indeterminate Cytology and RAS Mutations. Thyroid 2021, 31, 36–49. [Google Scholar] [CrossRef]
- Mara Y Roth, Robert L Witt, David L Steward. Molecular testing for thyroid nodules: Review and current state. Cancer 2018, 124, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Esther Diana Rossi, Liron Pantanowitz, and William C. Faquin. The Role of Molecular Testing for the Indeterminate Thyroid FNA. Genes (Basel) 2019, 10, 736. [Google Scholar] [CrossRef] [PubMed]
- Pan Y, Wu L, He S, Wu J, Wang T, Zang H. Identification of hub genes in thyroid carcinoma to predict prognosis by integrated bioinformatics analysis. Bioengineered. 2021, 12, 2928–2940. [Google Scholar] [CrossRef]
- Baloch Z, LiVolsi VA. Fifty years of thyroid pathology: concepts and developments. Hum Pathol. 2020, 95, 46–54. [Google Scholar] [CrossRef]
|
Cytology diagnosis n=259 |
Histology diagnosis n=259 |
||||||
| Benign | WDT-UMP | NIFT | PTC | FTC | HCC | Total | |
| 1.ND 2.Benign 3.AUS 4.FN 5.SM 6.Malignant |
0 (0%) 25 (9.7%) 12 (4.6%) 11 (4.2%) 2 (0.8%) 0 (0%) |
2 (0.8%) 1 (0.4%) 1 (0.4%) 5 (1.9%) 1 (0.4%) 1 (0.4%) |
2 (0.8%) 3 (1.2%) 0 (0%) 1 (0.4%) 0 (0%) 0 (0%) |
11 (4.2%) 15 (5.8%) 30 (11.6%) 36 (13.9%) 35 (13.5%) 53 (20.5%) |
0 (0%) 2 (0.8%) 0 (0%) 2 (0.8%) 3 (1.2%) 0 (0%) |
0 (0%) 1(0.4%) 0 (0%) 3 (1.2%) 1 (0.4%) 0 (0%) |
15 (5.8%) 47 (18.1%) 43 (16.6%) 58 (22.4%) 42 (16.2%) 54 (20.9%) |
| Total | 50 (19.3%) | 11 (4.2%) | 6 (2.3%) | 180(69.5%) | 7 (2.7%) | 5 (1.9%) | 259 (100%) |
| Genetic mutations | Cytology | Histology | ||||
|---|---|---|---|---|---|---|
| n* | Mutated n (%) |
Mutation type | n* | Mutated n (%) |
Mutation type | |
| TERTp | 246 | 9 (3.7) | 08 (-124 G>A) 01 (-146 G>A) |
254 | 20 (7.9) | 13 (-124G>A) 07 (-146 G>A) |
| BRAF | 251 | 49 (19.5) | 48 (p.V600E) 01 (p.K601E) |
255 | 64 (25.1) | 62 (p.V600E) 02 (p.K601E) |
| NRAS | 250 | 11 (4.4) | 11 (p.Q61R) | 254 | 20 (7.9) | 20 (p.Q61R) |
| HRAS | 250 | 12 (4.8) | 07 (p.Q61R ) 05 (p.Q61K) |
251 | 19 (7.6) | 12 (p.Q61R) 06 (p.Q61K) 01 (p.G13A) |
| KRAS | 250 | 04 (1.6) | 04 (p.Q61R) | 251 | 07 (2.8) | 05 (p.Q61R) 01 ( p.G12A) 01 (p.G12R) |
| Total | 85 (32.8) | 130 (50.2) | ||||
| Mutations |
Histology subtypes n=259 |
||||||
|
Benign n=50 |
WT-UMD n=10 |
NIFT n=6 |
PTC n=176 |
FTC n=7 |
HCC n=5 |
total |
|
| TERT | |||||||
| H | 0 | 1 | 0 | 19 | 0 | 0 | 20 (7.9%) |
| n=254 | 0 | 0 | 0 | 9 | 0 | 0 | 9 (3.7%) |
| C | |||||||
| n=246 | |||||||
| BRAF | |||||||
| H | |||||||
| n=255 | 0 | 1 | 0 | 63 | 0 | 0 | 64 (25.1%) |
| C | 0 | 1 | 0 | 48 | 0 | 0 | 49 (19.5%) |
| n=251 | |||||||
| RAS | |||||||
| H | |||||||
| n=251 | 3 | 2 | 1 | 38 | 1 | 0 | 45 (17.9%) |
| C | 1 | 1 | 0 | 25 | 0 | 0 | 27 (10.8%) |
| n=250 | |||||||
| Total | |||||||
| Histology | 3 | 4 | 1 | 120 | 1 | 0 | 129 (100%) |
| 1 | 2 | 0 | 82 | 0 | 0 | 85 (100%) | |
| Cytology | |||||||
| Genetic mutations |
Cytology (mutated) n=25 (24.8%) |
Histology (mutated) n=48 (47.5%) |
||||||
| Histology | n |
Benign n=23 |
Malignant n=78 |
total n=101 |
n | Benign n=23 |
Malignant n=78 |
total n=101 |
| TERTp | 94 | 0 (0%) | 4 (5.6%) | 4 (4.3%) | 99 | 0 (0%) | 11 (14.5%) | 11 (11.1%) |
| BRAF | 97 | 0 (0%) | 7 (9.3%) | 7 (7.2%) | 100 | 0 (0%) | 13 (16.9%) | 13 (13%) |
| RAS | 97 | 1 (1%) | 13 (17.3%) | 14 (14.4%) | 98 | 2 (8.7%) | 22 (29.3%) | 24 (24.5%) |
| All series n=259 |
PTCs n=182 |
Indeterminate nodules n=101 |
||||
|---|---|---|---|---|---|---|
| Concordance (%) | Cohen’s k | Concordance (%) | Cohen’s k | Concordance (%) | Cohen’s k | |
| Genes (Total) | 94.9% | 0.670 | 94.6% | 0.659 | 95.6% | 0.643 |
| TERTp | 94.6% | 0.493 | 94.5% | 0.512 | 94.6% | 0.591 |
| BRAF | 92.7% | 0.790 | 91.9% | 0.781 | 94.8% | 0.710 |
| NRAS | 95% | 0.576 | 95.5% | 0.620 | 95.8% | 0.579 |
| HRAS | 97% | 0.744 | 96.8% | 0.724 | 93.7% | 0.695 |
| Mutations | DTCs n=209 |
PTCs n=180 |
Indeterminate nodules n=101 |
||||||
|---|---|---|---|---|---|---|---|---|---|
| Se (%) | Sp (%) | PPV (%) | Se (%) | Sp (%) | PPV (%) | Se (%) | Sp (%) | PPV (%) | |
|
TERTp histology cytology |
9.8 4.6 |
100 100 |
100 100 |
10.8 5.26 |
100 100 |
100 100 |
14.5 5.56 |
100 100 |
100 100 |
|
BRAF histology cytology |
31.2 24.3 |
100 100 |
100 100 |
35.6 27.4 |
100 100 |
100 100 |
16.9 9.33 |
100 100 |
100 100 |
|
RAS histology cytology |
21 12.9 |
94 98 |
93.3 96.3 |
22.1 14.3 |
94 98 |
92.7 96.2 |
29.3 17.3 |
91.3 95.5 |
91.7 92.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
