Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Silver Powder Microstructure on the Performance of Silver Powder and Front-Side Solar Silver Paste

Version 1 : Received: 25 December 2023 / Approved: 25 December 2023 / Online: 27 December 2023 (05:44:24 CET)

A peer-reviewed article of this Preprint also exists.

Yu, X.; Sun, H.; Qian, Z.; Li, W.; Li, W.; Huang, F.; Li, J.; Gan, G. Effect of Silver Powder Microstructure on the Performance of Silver Powder and Front-Side Solar Silver Paste. Materials 2024, 17, 445. Yu, X.; Sun, H.; Qian, Z.; Li, W.; Li, W.; Huang, F.; Li, J.; Gan, G. Effect of Silver Powder Microstructure on the Performance of Silver Powder and Front-Side Solar Silver Paste. Materials 2024, 17, 445.

Abstract

Silver powder, as the primary component of solar silver paste, significantly influences various aspects of paste performance, including printing, sintering, and conductivity. Silver powders prepared using the liquid-phase reduction method exhibit different microstructures depending on whether the growth process is dominated by aggregation or crystalline growth. This study explores the impact of different silver powder microstructures on packing density and sintering activity. It is observed that polycrystalline aggregated silver powder possesses higher surface energy, lower packing density, and greater sintering activity. Investigation into the influence of different silver powders on the electrical conductivity, adhesion, and structural density of silver paste reveals that polycrystalline aggregated silver powder is more suitable for lower sintering temperature pastes, whereas crystalline growth-type silver powder is better suited for higher sintering temperature pastes, resulting in a denser sintered silver layer. Finally, an analysis of the impact of various silver powders on the aspect ratio and electrical performance of solar cell silver grid lines yields higher aspect ratios (0.40) and photoelectric conversion efficiency (19.26%).

Keywords

Silver powder; solar cell; aggregation growth; crystalline growth; sintering activity.

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.