Submitted:
04 January 2024
Posted:
05 January 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Organization of the retina
Neurotransmitters
Glutamate
γ-Aminobutyric acid (GABA)
Dopamine
Endocannabinoid system
TRP Channels
Location and function of TRP vanilloids in the retina
Adenosine
Neuropeptides: PACAP
Nitric Oxide
Gliotransmitters
Nucleotide receptors
Nucleotides and retinal cell proliferation
Nucleotides and retinal cell migration
Nucleotides and the induction of cell death in the retina
P2X7 glial receptors and retinal development
Antioxidants
Glutathione
Vitamin C
Reciprocal interactions between retinal transmitters
Dopamine and adenosine
Glutamate and adenosine
Glutamate and vitamin C
Glutamate and GABA
Dopamine and glutamate
Endocannabinoid and dopamine
Dopamine, glutamate, and vitamin C
Adenosine, vitamin C and nitric oxide
The Diseased Retina
Glaucoma
Diabetic retina
Investigation of innovative therapeutic strategies
Gene therapy and the future of vision recovery
Cell reprogramming
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vergara, M. N.; Canto-Soler, M. V. , Rediscovering the chick embryo as a model to study retinal development. Neural Development 2012, 7, 22. [Google Scholar] [CrossRef]
- L. Belecky-Adams, T.; Haynes, T.; M. Wilson, J.; Del Rio-Tsonis, K. Chapter 8 - The Chick as a Model for Retina Development and Regeneration. In Animal Models in Eye Research; Tsonis, P. A., Ed.; Academic Press: London, 2008; pp. 102–119. [Google Scholar]
- Cebulla, C. M.; Zelinka, C. P.; Scott, M. A.; Lubow, M.; Bingham, A.; Rasiah, S.; Mahmoud, A. M.; Fischer, A. J. , A chick model of retinal detachment: cone rich and novel. PLoS One 2012, 7, e44257. [Google Scholar] [CrossRef]
- Al Sabaani, N. , Exendin-4 inhibits high glucose-induced oxidative stress in retinal pigment epithelial cells by modulating the expression and activation of p(66)Shc. Cutan Ocul Toxicol 2021, 40, 175–186. [Google Scholar] [CrossRef]
- Ventura, A. L. M.; De Mello, F. G.; De Melo Reis, R. A. , Methods of dopamine research in retina cells. Methods in Molecular Biology 2013, 964, 25–42. [Google Scholar]
- Tempone, M. H.; Freitas, H. R.; Schitine, C. S.; de Melo Reis, R. A. , Visualizing Shifts on Neuron-Glia Circuit with the Calcium Imaging Technique. J Vis Exp 2022. [Google Scholar] [CrossRef]
- Arthur, P.; Muok, L.; Nathani, A.; Zeng, E. Z.; Sun, L.; Li, Y.; Singh, M. , Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022, 11. [Google Scholar] [CrossRef]
- Calaza, K. d. C.; Fluminense, U. F.; Gardino, P. F.; Janeiro, U. F. d. R. d. Neurochemical phenotype and birthdating of specific cell populations in the chick retina. Anais da Academia Brasileira de Ciências 2010, 82, 595–608. [Google Scholar] [CrossRef]
- Yamagata, M.; Yan, W.; Sanes, J. R. , A cell atlas of the chick retina based on single-cell transcriptomics. eLife 2021, 10, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, N.; Bian, P.; Tian, X.; Wang, X.; Wang, Y.; Jia, X.; Heller, R.; Wang, M.; Wang, F.; Dai, X.; Luo, R.; Guo, Y.; Wang, X.; Yang, P.; Hu, D.; Liu, Z.; Fu, W.; Zhang, S.; Li, X.; Wen, C.; Lan, F.; Siddiki, A. Z.; Suwannapoom, C.; Zhao, X.; Nie, Q.; Hu, X.; Jiang, Y.; Yang, N. , De Novo Assembly of 20 Chicken Genomes Reveals the Undetectable Phenomenon for Thousands of Core Genes on Microchromosomes and Subtelomeric Regions. Molecular Biology and Evolution 2023, 39. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.; Okawa, H.; Della Santina, L.; Wong, R. O. L. Functional architecture of the retina: Development and disease. In Progress in Retinal and Eye Research; Elsevier Ltd, 2014; Vol. 42, pp. 44–84. [Google Scholar]
- Reichenbach, A.; Bringmann, A. , New functions of Müller cells. Glia 2013, 61, 651–78. [Google Scholar] [CrossRef] [PubMed]
- Karl, M. O.; Reh, T. A. , Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 2010, 16, 193–202. [Google Scholar] [CrossRef]
- Vecino, E.; Rodriguez, F. D.; Ruzafa, N.; Pereiro, X.; Sharma, S. C. , Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2016, 51, 1–40. [Google Scholar] [CrossRef]
- Seifert, M.; Baden, T.; Osorio, D. The retinal basis of vision in chicken. In Seminars in Cell and Developmental Biology; Elsevier Ltd, 2020. [Google Scholar]
- Baden, T.; Osorio, D. , The Retinal Basis of Vertebrate Color Vision. Annu Rev Vis Sci 2019, 5, 177–200. [Google Scholar] [CrossRef] [PubMed]
- Barnstable, C. J. , Glutamate and GABA in retinal circuitry. Curr Opin Neurobiol 1993, 3, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Münch, T. A.; da Silveira, R. A.; Siegert, S.; Viney, T. J.; Awatramani, G. B.; Roska, B. , Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 2009, 12, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Pourcho, R. G. , Neurotransmitters in the retina. Curr Eye Res 1996, 15, 797–803. [Google Scholar] [CrossRef]
- Martins, R. A.; Pearson, R. A. , Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain research 2008, 1192, 37–60. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.; Okawa, H.; Della Santina, L.; Wong, R. O. , Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014, 42, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I. L.; Duarte, C. B.; Carvalho, A. P. , Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death. European Journal of Pharmacology 1996, 302, 153–162. [Google Scholar] [CrossRef]
- Rodríguez Villanueva, J.; Martín Esteban, J.; Rodríguez Villanueva, L. J. , Retinal Cell Protection in Ocular Excitotoxicity Diseases. Possible Alternatives Offered by Microparticulate Drug Delivery Systems and Future Prospects. Pharmaceutics 2020, 12, 94. [Google Scholar] [CrossRef]
- Carpi-Santos, R.; de Melo Reis, R. A.; Gomes, F. C. A.; Calaza, K. C. , Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants 2022, 11, 617. [Google Scholar]
- Santos, A. E.; Carvalho, A. L.; Lopes, M. C.; Carvalho, A. P. , Differential postreceptor signaling events triggered by excitotoxic stimulation of different ionotropic glutamate receptors in retinal neurons. J Neurosci Res 2001, 66, 643–55. [Google Scholar] [CrossRef]
- Lambuk, L.; Jafri, A. J. A.; Iezhitsa, I.; Agarwal, R.; Bakar, N. S.; Agarwal, P.; Abdullah, A.; Ismail, N. M. , Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats. Int J Ophthalmol 2019, 12, 746–753. [Google Scholar]
- Rosenstein, R. E. , New actors in optic neuritis pathogenesis: An Editorial for "Influence of retinal NMDA receptor activity during autoimmune optic neuritis" on page 693. J Neurochem 2020, 153, 671–673. [Google Scholar] [CrossRef]
- Ikonomidou, C.; Turski, L. , Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002, 1, 383–6. [Google Scholar] [CrossRef] [PubMed]
- Traynelis, S. F.; Wollmuth, L. P.; McBain, C. J.; Menniti, F. S.; Vance, K. M.; Ogden, K. K.; Hansen, K. B.; Yuan, H.; Myers, S. J.; Dingledine, R. , Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010, 62, 405–96. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M. C. X.; Kihara, A. H.; Goulart, V. A. M.; Tonelli, F. M. P.; Gomes, K. N.; Ulrich, H.; Resende, R. R. , Calcium signaling and cell proliferation. Cellular Signalling 2015, 27, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- de Melo Reis, R. A.; Freitas, H. R.; de Mello, F. G. , Cell Calcium Imaging as a Reliable Method to Study Neuron-Glial Circuits. Front Neurosci 2020, 14, 569361. [Google Scholar] [CrossRef]
- Dawson, T. M.; Dawson, V. L. Chapter Four - Nitric Oxide Signaling in Neurodegeneration and Cell Death. In Advances in Pharmacology; Pasternak, G. W., Coyle, J. T., Eds.; Academic Press, 2018; Vol. 82, pp. 57–83. [Google Scholar]
- Marshall, J.; Wong, K. Y.; Rupasinghe, C. N.; Tiwari, R.; Zhao, X.; Berberoglu, E. D.; Sinkler, C.; Liu, J.; Lee, I.; Parang, K.; Spaller, M. R.; Hüttemann, M.; Goebel, D. J. , Inhibition of N-Methyl-D-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. J Biol Chem 2015, 290, 22030–48. [Google Scholar] [CrossRef]
- Martel, M. A.; Ryan, T. J.; Bell, K. F.; Fowler, J. H.; McMahon, A.; Al-Mubarak, B.; Komiyama, N. H.; Horsburgh, K.; Kind, P. C.; Grant, S. G.; Wyllie, D. J.; Hardingham, G. E. , The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 2012, 74, 543–56. [Google Scholar] [CrossRef]
- Opere, C. A.; Heruye, S.; Njie-Mbye, Y. F.; Ohia, S. E.; Sharif, N. A. , Regulation of Excitatory Amino Acid Transmission in the Retina: Studies on Neuroprotection. J Ocul Pharmacol Ther 2018, 34, 107–118. [Google Scholar] [CrossRef]
- Park, Y. H.; Broyles, H. V.; He, S.; McGrady, N. R.; Li, L.; Yorio, T. , Involvement of AMPA Receptor and Its Flip and Flop Isoforms in Retinal Ganglion Cell Death Following Oxygen/Glucose Deprivation. Invest Ophthalmol Vis Sci 2016, 57, 508–26. [Google Scholar] [CrossRef]
- Cossenza, M.; Cadilhe, D. V.; Coutinho, R. N.; Paes-de-Carvalho, R. , Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production. J Neurochem 2006, 97, 1481–93. [Google Scholar] [CrossRef]
- Gladulich, L. F. H.; Peixoto-Rodrigues, M. C.; Campello-Costa, P.; Paes-de-Carvalho, R.; Cossenza, M. , NMDA-induced nitric oxide generation and CREB activation in central nervous system is dependent on eukaryotic elongation factor 2 kinase. Biochim Biophys Acta Mol Cell Res 2020, 1867, 118783. [Google Scholar] [CrossRef]
- Carlberg, U.; Nilsson, A.; Nygård, O. , Functional properties of phosphorylated elongation factor 2. Eur J Biochem 1990, 191, 639–45. [Google Scholar] [CrossRef] [PubMed]
- Nairn, A. C.; Matsushita, M.; Nastiuk, K.; Horiuchi, A.; Mitsui, K.; Shimizu, Y.; Palfrey, H. C. , Elongation factor-2 phosphorylation and the regulation of protein synthesis by calcium. Prog Mol Subcell Biol 2001, 27, 91–129. [Google Scholar]
- Price, N. T.; Redpath, N. T.; Severinov, K. V.; Campbell, D. G.; Russell, J. M.; Proud, C. G. , Identification of the phosphorylation sites in elongation factor-2 from rabbit reticulocytes. FEBS Lett 1991, 282, 253–8. [Google Scholar] [CrossRef]
- Rodnina, M. V.; Savelsbergh, A.; Wintermeyer, W. , Dynamics of translation on the ribosome: molecular mechanics of translocation. FEMS Microbiol Rev 1999, 23, 317–33. [Google Scholar] [CrossRef] [PubMed]
- Ryazanov, A. G.; Shestakova, E. A.; Natapov, P. G. , Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 1988, 334, 170–3. [Google Scholar] [CrossRef]
- Scheetz, A. J.; Nairn, A. C.; Constantine-Paton, M. , N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-aspartate receptors in controlling protein synthesis. Proc Natl Acad Sci U S A 1997, 94, 14770–5. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W. L.; Chung, H. W.; Wu, C. Y.; Wu, H. I.; Lee, Y. T.; Chen, E. C.; Fang, W.; Chang, Y. C. , Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem 2015, 290, 20748–20760. [Google Scholar] [CrossRef]
- Dieterich, D. C.; Hodas, J. J.; Gouzer, G.; Shadrin, I. Y.; Ngo, J. T.; Triller, A.; Tirrell, D. A.; Schuman, E. M. , In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 2010, 13, 897–905. [Google Scholar] [CrossRef]
- Scheetz, A. J.; Nairn, A. C.; Constantine-Paton, M. , NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 2000, 3, 211–6. [Google Scholar] [CrossRef]
- Verpelli, C.; Piccoli, G.; Zibetti, C.; Zanchi, A.; Gardoni, F.; Huang, K.; Brambilla, D.; Di Luca, M.; Battaglioli, E.; Sala, C. , Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. J Neurosci 2010, 30, 5830–42. [Google Scholar] [CrossRef]
- Cossenza, M.; Socodato, R.; Mejía-García, T. A.; Domith, I.; Portugal, C. C.; Gladulich, L. F. H.; Duarte-Silva, A. T.; Khatri, L.; Antoine, S.; Hofmann, F.; Ziff, E. B.; Paes-de-Carvalho, R. , Protein synthesis inhibition promotes nitric oxide generation and activation of CGKII-dependent downstream signaling pathways in the retina. Biochim Biophys Acta Mol Cell Res 2020, 1867, 118732. [Google Scholar] [CrossRef]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. , BDNF function and intracellular signaling in neurons. Histol Histopathol 2010, 25, 237–58. [Google Scholar]
- Schmid, R. S.; Graff, R. D.; Schaller, M. D.; Chen, S.; Schachner, M.; Hemperly, J. J.; Maness, P. F. , NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J Neurobiol 1999, 38, 542–58. [Google Scholar] [CrossRef]
- Singh, L.; Bhatti, R. , Signaling Pathways Involved in the Neuroprotective Effect of Osthole: Evidence and Mechanisms. Mol Neurobiol 2023. [Google Scholar] [CrossRef] [PubMed]
- Luhmann, H. J.; Kirischuk, S.; Sinning, A.; Kilb, W. , Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol 2014, 26, 72–8. [Google Scholar] [CrossRef] [PubMed]
- Mosinger, J. L.; Yazulla, S.; Studholme, K. M. , GABA-like immunoreactivity in the vertebrate retina: a species comparison. Exp Eye Res 1986, 42, 631–44. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, D. , GABA receptors in brain development, function, and injury. Metab Brain Dis 2015, 30, 367–79. [Google Scholar] [CrossRef]
- Siucinska, E. , Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019, 376, 112224. [Google Scholar] [CrossRef]
- Nuss, P. , Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 2015, 11, 165–75. [Google Scholar]
- Wässle, H. , Parallel processing in the mammalian retina. Nat Rev Neurosci 2004, 5, 747–57. [Google Scholar] [CrossRef] [PubMed]
- Calaza Kda, C.; Gardino, P. F. , Neurochemical phenotype and birthdating of specific cell populations in the chick retina. An Acad Bras Cienc 2010, 82, 595–608. [Google Scholar] [CrossRef] [PubMed]
- De Sampaio Schitine, C.; Kubrusly, R. C.; De Melo Reis, R. A.; Yamasaki, E. N.; De Mello, M. C.; De Mello, F. G. , GABA uptake by purified avian Müller glia cells in culture. Neurotox Res 2007, 12, 145–53. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D. D.; Stutz, B.; de Mello, F. G.; Reis, R. A.; Kubrusly, R. C. , Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors. Neuroscience 2014, 281, 208–15. [Google Scholar] [CrossRef] [PubMed]
- Frederick, J. M. , The emergence of GABA-accumulating neurons during retinal histogenesis in the embryonic chick. Exp Eye Res 1987, 45, 933–45. [Google Scholar] [CrossRef] [PubMed]
- Hokoç, J. N.; Ventura, A. L.; Gardino, P. F.; De Mello, F. G. , Developmental immunoreactivity for GABA and GAD in the avian retina: possible alternative pathway for GABA synthesis. Brain research 1990, 532, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Crossland, W. J. , Quantitative assessment of localization and colocalization of glutamate, aspartate, glycine, and GABA immunoreactivity in the chick retina. Anat Rec 2000, 260, 158–79. [Google Scholar] [CrossRef]
- Lee, S. E.; Lee, Y.; Lee, G. H. , The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res 2019, 42, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Soghomonian, J. J.; Martin, D. L. , Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 1998, 19, 500–5. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, E. N.; Barbosa, V. D.; De Mello, F. G.; Hokoc, J. N. , GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development. Int J Dev Neurosci 1999, 17, 201–13. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K. K.; White, H. S.; Schousboe, A. , Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 2010, 125, 394–401. [Google Scholar] [CrossRef]
- Pinal, C. S.; Tobin, A. J. , Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 1998, 5, 109–18. [Google Scholar]
- Wu, Z.; Guo, Z.; Gearing, M.; Chen, G. , Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model. Nat Commun 2014, 5, 4159. [Google Scholar] [CrossRef]
- Kwak, H.; Koh, W.; Kim, S.; Song, K.; Shin, J. I.; Lee, J. M.; Lee, E. H.; Bae, J. Y.; Ha, G. E.; Oh, J. E.; Park, Y. M.; Kim, S.; Feng, J.; Lee, S. E.; Choi, J. W.; Kim, K. H.; Kim, Y. S.; Woo, J.; Lee, D.; Son, T.; Kwon, S. W.; Park, K. D.; Yoon, B. E.; Lee, J.; Li, Y.; Lee, H.; Bae, Y. C.; Lee, C. J.; Cheong, E. , Astrocytes Control Sensory Acuity via Tonic Inhibition in the Thalamus. Neuron 2020, 108, 691–706.e10. [Google Scholar] [CrossRef]
- Krantis, A. , GABA in the Mammalian Enteric Nervous System. News Physiol Sci 2000, 15, 284–290. [Google Scholar] [CrossRef]
- De, A.; Dos, S.; Nora, H.; Yamasaki, E.; Gardino, P.; Mello, F. , Regulation of glutamic acid decarboxylase of chick and rat retina cells by GABA and excitatory amino acids. Anais da Academia Brasileira de Ciências 2000, 72. [Google Scholar]
- Sequerra, E. B.; Gardino, P.; Hedin-Pereira, C.; de Mello, F. G. , Putrescine as an important source of GABA in the postnatal rat subventricular zone. Neuroscience 2007, 146, 489–93. [Google Scholar] [CrossRef]
- Kim, J. I.; Ganesan, S.; Luo, S. X.; Wu, Y. W.; Park, E.; Huang, E. J.; Chen, L.; Ding, J. B. , Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 2015, 350, 102–6. [Google Scholar] [CrossRef]
- Magri, C.; Giacopuzzi, E.; La Via, L.; Bonini, D.; Ravasio, V.; Elhussiny, M. E. A.; Orizio, F.; Gangemi, F.; Valsecchi, P.; Bresciani, R.; Barbon, A.; Vita, A.; Gennarelli, M. , A novel homozygous mutation in GAD1 gene described in a schizophrenic patient impairs activity and dimerization of GAD67 enzyme. Sci Rep 2018, 8, 15470. [Google Scholar] [CrossRef]
- Fletcher, E. L.; Phipps, J. A.; Ward, M. M.; Puthussery, T.; Wilkinson-Berka, J. L. , Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des 2007, 13, 2699–712. [Google Scholar] [CrossRef]
- Malomouzh, A.; Ilyin, V.; Nikolsky, E. , Components of the GABAergic signaling in the peripheral cholinergic synapses of vertebrates: a review. Amino Acids 2019, 51, 1093–1102. [Google Scholar] [CrossRef]
- Eskandari, S.; Willford, S. L.; Anderson, C. M. , Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. Adv Neurobiol 2017, 16, 85–116. [Google Scholar]
- Gether, U.; Andersen, P. H.; Larsson, O. M.; Schousboe, A. , Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 2006, 27, 375–83. [Google Scholar] [CrossRef] [PubMed]
- Kubrusly, R. C.; da Cunha, M. C.; Reis, R. A.; Soares, H.; Ventura, A. L.; Kurtenbach, E.; de Mello, M. C.; de Mello, F. G. , Expression of functional receptors and transmitter enzymes in cultured Muller cells. Brain research 2005, 1038, 141–9. [Google Scholar] [CrossRef] [PubMed]
- Scimemi, A. , Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 2014, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Calaza, K. C.; Gardino, P. F.; de Mello, F. G. , Transporter mediated GABA release in the retina: role of excitatory amino acids and dopamine. Neurochem Int 2006, 49, 769–77. [Google Scholar] [CrossRef]
- Schwartz, E. A. , Transport-mediated synapses in the retina. Physiol Rev 2002, 82, 875–91. [Google Scholar] [CrossRef]
- Leviel, V. , Dopamine release mediated by the dopamine transporter, facts and consequences. J Neurochem 2011, 118, 475–89. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, D.; Attwell, D. , The release and uptake of excitatory amino acids. Trends Pharmacol Sci 1990, 11, 462–8. [Google Scholar] [CrossRef] [PubMed]
- Roux, M. J.; Supplisson, S. , Neuronal and glial glycine transporters have different stoichiometries. Neuron 2000, 25, 373–83. [Google Scholar] [CrossRef] [PubMed]
- Calaza Kda, C.; de Mello, M. C.; de Mello, F. G.; Gardino, P. F. , Local differences in GABA release induced by excitatory amino acids during retina development: selective activation of NMDA receptors by aspartate in the inner retina. Neurochem Res 2003, 28, 1475–85. [Google Scholar] [CrossRef] [PubMed]
- Yazulla, S.; Kleinschmidt, J. , Dopamine blocks carrier-mediated release of GABA from retinal horizontal cells. Brain research 1982, 233, 211–5. [Google Scholar] [CrossRef]
- Do Nascimento, J. L.; Kubrusly, R. C.; Reis, R. A.; De Mello, M. C.; De Mello, F. G. , Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells. Eur J Pharmacol 1998, 343, 103–10. [Google Scholar] [CrossRef]
- Maggesissi, R. S.; Gardino, P. F.; Guimarães-Souza, E. M.; Paes-de-Carvalho, R.; Silva, R. B.; Calaza, K. C. , Modulation of GABA release by nitric oxide in the chick retina: different effects of nitric oxide depending on the cell population. Vision Res 2009, 49, 2494–502. [Google Scholar] [CrossRef]
- Ferreira, I. L.; Duarte, C. B.; Santos, P. F.; Carvalho, C. M.; Carvalho, A. P. , Release of [3H]GABA evoked by glutamate receptor agonists in cultured chick retina cells: effect of Ca2+. Brain research 1994, 664, 252–6. [Google Scholar] [CrossRef]
- Melone, M.; Ciappelloni, S.; Conti, F. , Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front Neuroanat 2014, 8, 72. [Google Scholar] [CrossRef]
- do Nascimento, J. L.; Ventura, A. L.; Paes de Carvalho, R. , Veratridine- and glutamate-induced release of [3H]-GABA from cultured chick retina cells: possible involvement of a GAT-1-like subtype of GABA transporter. Brain research 1998, 798, 217–222. [Google Scholar] [CrossRef]
- Borges-Martins, V. P. P.; Ferreira, D. D. P.; Souto, A. C.; Oliveira Neto, J. G.; Pereira-Figueiredo, D.; da Costa Calaza, K.; de Jesus Oliveira, K.; Manhaes, A. C.; de Melo Reis, R. A.; Kubrusly, R. C. C. , Caffeine regulates GABA transport via A1R blockade and cAMP signaling. Neurochem Int 2019, 104550. [Google Scholar] [CrossRef] [PubMed]
- Tapia, R.; Arias, C. , Selective stimulation of neurotransmitter release from chick retina by kainic and glutamic acids. J Neurochem 1982, 39, 1169–78. [Google Scholar] [CrossRef]
- Calaza, K. C.; de Mello, F. G.; Gardino, P. F. , GABA release induced by aspartate-mediated activation of NMDA receptors is modulated by dopamine in a selective subpopulation of amacrine cells. J Neurocytol 2001, 30, 181–93. [Google Scholar] [CrossRef] [PubMed]
- Pohl-Guimarães, F.; Calaza Kda, C.; Yamasaki, E. N.; Kubrusly, R. C.; Reis, R. A. , Ethanol increases GABA release in the embryonic avian retina. Int J Dev Neurosci 2010, 28, 189–94. [Google Scholar] [CrossRef]
- Cristóvão-Ferreira, S.; Vaz, S. H.; Ribeiro, J. A.; Sebastião, A. M. , Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT-1. J Neurochem 2009, 109, 336–47. [Google Scholar] [CrossRef]
- Ehinger, B.; Florén, I. , Quantitation of the uptake of indoleamines and dopamine in the rabbit retina. Exp Eye Res 1978, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Feldkaemper, M.; Schaeffel, F. , An updated view on the role of dopamine in myopia. Exp Eye Res 2013, 114, 106–19. [Google Scholar] [CrossRef]
- Reis, R. A.; Ventura, A. L.; Kubrusly, R. C.; de Mello, M. C.; de Mello, F. G. , Dopaminergic signaling in the developing retina. Brain Res Rev 2007, 54, 181–8. [Google Scholar] [CrossRef]
- Lankford, K. L.; DeMello, F. G.; Klein, W. L. , D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proc Natl Acad Sci U S A 1988, 85, 4567–71. [Google Scholar] [CrossRef]
- Gardino, P. F.; dos Santos, R. M.; Hokoç, J. N. , Histogenesis and topographical distribution of tyrosine hydroxylase immunoreactive amacrine cells in the developing chick retina. Brain Res Dev Brain Res 1993, 72, 226–36. [Google Scholar] [CrossRef]
- Kubrusly, R. C.; Guimarães, M. Z.; Vieira, A. P.; Hokoç, J. N.; Casarini, D. E.; de Mello, M. C.; de Mello, F. G. , L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development. J Neurochem 2003, 86, 45–54. [Google Scholar] [CrossRef]
- Ming, M.; Li, X.; Fan, X.; Yang, D.; Li, L.; Chen, S.; Gu, Q.; Le, W. , Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease. J Transl Med 2009, 7, 53. [Google Scholar] [CrossRef]
- de Mello, M. C.; Ventura, A. L.; Paes de Carvalho, R.; Klein, W. L.; de Mello, F. G. , Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture. Proc Natl Acad Sci U S A 1982, 79, 5708–12. [Google Scholar] [CrossRef]
- Callier, S.; Snapyan, M.; Le Crom, S.; Prou, D.; Vincent, J. D.; Vernier, P. , Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 2003, 95, 489–502. [Google Scholar] [CrossRef]
- Soares, H. C.; de Melo Reis, R. A.; De Mello, F. G.; Ventura, A. L.; Kurtenbach, E. , Differential expression of D(1A) and D(1B) dopamine receptor mRNAs in the developing avian retina. J Neurochem 2000, 75, 1071–5. [Google Scholar] [CrossRef]
- de Mello, M. C.; Pinheiro, M. C.; de Mello, F. G. , Transient expression of an atypical D1-like dopamine receptor system during avian retina differentiation. Braz J Med Biol Res 1996, 29, 1035–44. [Google Scholar]
- Kubrusly, R. C.; Ventura, A. L.; de Melo Reis, R. A.; Serra, G. C.; Yamasaki, E. N.; Gardino, P. F.; de Mello, M. C.; de Mello, F. G. , Norepinephrine acts as D1-dopaminergic agonist in the embryonic avian retina: late expression of beta1-adrenergic receptor shifts norepinephrine specificity in the adult tissue. Neurochem Int 2007, 50, 211–8. [Google Scholar] [CrossRef] [PubMed]
- Paes de Carvalho, R.; de Mello, F. G. , Expression of A1 adenosine receptors modulating dopamine-dependent cyclic AMP accumulation in the chick embryo retina. J Neurochem 1985, 44, 845–51. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M. Z.; Hokoç, J. N.; Duvoisin, R.; Reis, R. A.; De Mello, F. G. , Dopaminergic retinal cell differentiation in culture: modulation by forskolin and dopamine. Eur J Neurosci 2001, 13, 1931–7. [Google Scholar] [CrossRef] [PubMed]
- Borba, J. C.; Henze, I. P.; Silveira, M. S.; Kubrusly, R. C.; Gardino, P. F.; de Mello, M. C.; Hokoc, J. N.; de Mello, F. G. , Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as determinant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development. Brain Res Dev Brain Res 2005, 156, 193–201. [Google Scholar] [CrossRef]
- Katona, I.; Freund, T. F. , Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 2008, 14, 923–30. [Google Scholar] [CrossRef]
- Heifets, B. D.; Castillo, P. E. , Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 2009, 71, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Bockmann, E. C.; Brito, R.; Madeira, L. F.; da Silva Sampaio, L.; de Melo Reis, R. A.; França, G. R.; Calaza, K. D. C. , The Role of Cannabinoids in CNS Development: Focus on Proliferation and Cell Death. Cell Mol Neurobiol 2022. [Google Scholar] [CrossRef]
- Miranzadeh Mahabadi, H.; Bhatti, H.; Laprairie, R. B.; Taghibiglou, C. , Cannabinoid receptors distribution in mouse cortical plasma membrane compartments. Mol Brain 2021, 14, 89. [Google Scholar] [CrossRef]
- Fernández-Ruiz, J. J.; Berrendero, F.; Hernández, M. L.; Romero, J.; Ramos, J. A. , Role of endocannabinoids in brain development. Life Sci 1999, 65, 725–36. [Google Scholar] [CrossRef] [PubMed]
- da Silva Sampaio, L.; Kubrusly, R. C. C.; Colli, Y. P.; Trindade, P. P.; Ribeiro-Resende, V. T.; Einicker-Lamas, M.; Paes-de-Carvalho, R.; Gardino, P. F.; de Mello, F. G.; De Melo Reis, R. A. , Cannabinoid Receptor Type 1 Expression in the Developing Avian Retina: Morphological and Functional Correlation With the Dopaminergic System. Front Cell Neurosci 2018, 12, 58. [Google Scholar] [CrossRef]
- Kubrusly, R. C. C.; Gunter, A.; Sampaio, L.; Martins, R. S.; Schitine, C. S.; Trindade, P.; Fernandes, A.; Borelli-Torres, R.; Miya-Coreixas, V. S.; Rego Costa, A. C.; Freitas, H. R.; Gardino, P. F.; de Mello, F. G.; Calaza, K. C.; Reis, R. A. M. , Neuro-glial cannabinoid receptors modulate signaling in the embryonic avian retina. Neurochem Int 2018, 112, 27–37. [Google Scholar] [CrossRef]
- Jo, A. O.; Noel, J. M.; Lakk, M.; Yarishkin, O.; Ryskamp, D. A.; Shibasaki, K.; McCall, M. A.; Križaj, D. , Mouse retinal ganglion cell signalling is dynamically modulated through parallel anterograde activation of cannabinoid and vanilloid pathways. J Physiol 2017, 595, 6499–6516. [Google Scholar] [CrossRef]
- Straiker, A.; Sullivan, J. M. , Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. J Neurophysiol 2003, 89, 2647–54. [Google Scholar] [CrossRef]
- Gallo Afflitto, G.; Aiello, F.; Scuteri, D.; Bagetta, G.; Nucci, C. , CB(1)R, CB(2)R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review. Biomed Pharmacother 2022, 150, 112981. [Google Scholar] [CrossRef]
- Cairns, E. A.; Baldridge, W. H.; Kelly, M. E. , The Endocannabinoid System as a Therapeutic Target in Glaucoma. Neural Plast 2016, 2016, 9364091. [Google Scholar] [CrossRef]
- Nucci, C.; Gasperi, V.; Tartaglione, R.; Cerulli, A.; Terrinoni, A.; Bari, M.; De Simone, C.; Agrò, A. F.; Morrone, L. A.; Corasaniti, M. T.; Bagetta, G.; Maccarrone, M. , Involvement of the endocannabinoid system in retinal damage after high intraocular pressure-induced ischemia in rats. Invest Ophthalmol Vis Sci 2007, 48, 2997–3004. [Google Scholar] [CrossRef]
- Rapino, C.; Tortolani, D.; Scipioni, L.; Maccarrone, M. , Neuroprotection by (endo)Cannabinoids in Glaucoma and Retinal Neurodegenerative Diseases. Current neuropharmacology 2018, 16, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Schlicker, E.; Timm, J.; Göthert, M. , Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn Schmiedebergs Arch Pharmacol 1996, 354, 791–5. [Google Scholar] [CrossRef] [PubMed]
- Buckley, N. E.; Hansson, S.; Harta, G.; Mezey, E. , Expression of the CB1 and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience 1998, 82, 1131–49. [Google Scholar] [CrossRef] [PubMed]
- Diacou, R.; Nandigrami, P.; Fiser, A.; Liu, W.; Ashery-Padan, R.; Cvekl, A. , Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022, 101093. [Google Scholar] [CrossRef]
- Buckley, N. E.; Hansson, S.; Harta, G.; Mezey, É. , Expression of the CB1 and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience 1998, 82, 1131–1149. [Google Scholar] [CrossRef]
- Schwitzer, T.; Schwan, R.; Angioi-Duprez, K.; Giersch, A.; Laprevote, V. , The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications. Neural Plast 2016, 2016, 2916732. [Google Scholar] [CrossRef]
- Straiker, A.; Stella, N.; Piomelli, D.; Mackie, K.; Karten, H. J.; Maguire, G. , Cannabinoid CB1 receptors and ligands in vertebrate retina: localization and function of an endogenous signaling system. Proc Natl Acad Sci U S A 1999, 96, 14565–70. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kanemitsu, N.; Nakamura, A.; Mimura, Y.; Ueda, N.; Kurahashi, Y.; Yamamoto, S. , Metabolism of Anandamide, an Endogenous Cannabinoid Receptor Ligand, in Porcine Ocular Tissues. Experimental Eye Research 1997, 64, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Freitas, H. R.; Isaac, A. R.; Silva, T. M.; Diniz, G. O. F.; Dos Santos Dabdab, Y.; Bockmann, E. C.; Guimaraes, M. Z. P.; da Costa Calaza, K.; de Mello, F. G.; Ventura, A. L. M.; de Melo Reis, R. A.; Franca, G. R. , Cannabinoids Induce Cell Death and Promote P2X7 Receptor Signaling in Retinal Glial Progenitors in Culture. Mol Neurobiol 2019, 56, 6472–6486. [Google Scholar] [CrossRef]
- Yates, C. F.; Huang, J. Y.; Protti, D. A. , Tonic Endocannabinoid Levels Modulate Retinal Signaling. Int J Environ Res Public Health 2022, 19. [Google Scholar] [CrossRef]
- Begbie, J.; Doherty, P.; Graham, A. , Cannabinoid receptor, CB1, expression follows neuronal differentiation in the early chick embryo. Journal of Anatomy 2004, 205, 213–218. [Google Scholar] [CrossRef]
- Leonelli, M.; Britto, L. R. G.; Chaves, G. P.; Torrão, A. S. , Developmental expression of cannabinoid receptors in the chick retinotectal system. Developmental Brain Research 2005, 156, 176–182. [Google Scholar] [CrossRef]
- Hu, S. S.; Arnold, A.; Hutchens, J. M.; Radicke, J.; Cravatt, B. F.; Wager-Miller, J.; Mackie, K.; Straiker, A. , Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 2010, 518, 3848–66. [Google Scholar] [PubMed]
- Felder, C. C.; Glass, M. , Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol 1998, 38, 179–200. [Google Scholar] [CrossRef] [PubMed]
- Warrier, A.; Wilson, M. , Endocannabinoid signaling regulates spontaneous transmitter release from embryonic retinal amacrine cells. Visual Neuroscience 2007, 24, 25–35. [Google Scholar] [CrossRef]
- Chaves, G. P.; Nogueira, T. C. A.; Britto, L. R. G.; Bordin, S.; Torrão, A. S. , Retinal removal up-regulates cannabinoid CB1 receptors in the chick optic tectum. Journal of Neuroscience Research 2008, 86, 1626–1634. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D. S. M.; Miya-Coreixas, V. S.; Pandolfo, P.; Calaza, K. C. , Cannabinoid receptors and TRPA1 on neuroprotection in a model of retinal ischemia. Experimental Eye Research 2017, 154, 116–125. [Google Scholar] [CrossRef]
- Faria, R. X.; Freitas, H. R.; Reis, R. A. M. , P2X7 receptor large pore signaling in avian Müller glial cells. J Bioenerg Biomembr 2017, 49, 215–229. [Google Scholar] [CrossRef]
- Faria, R. X.; Reis, R. A.; Ferreira, L. G.; Cezar-de-Mello, P. F.; Moraes, M. O. , P2X7R large pore is partially blocked by pore forming proteins antagonists in astrocytes. J Bioenerg Biomembr 2016, 48, 309–24. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Tang, Y.; Illes, P. , Astrocytic and Oligodendrocytic P2X7 Receptors Determine Neuronal Functions in the CNS. Frontiers in Molecular Neuroscience 2021, 14. [Google Scholar] [CrossRef]
- Freitas, H. R.; Reis, R. A. M.; Ventura, A. L. M.; Franca, G. R. , Interaction between cannabinoid and nucleotide systems as a new mechanism of signaling in retinal cell death. Neural Regen Res 2019, 14, 2093–2094. [Google Scholar]
- De Melo Reis, R. A.; Schitine, C. S.; Köfalvi, A.; Grade, S.; Cortes, L.; Gardino, P. F.; Malva, J. O.; de Mello, F. G. , Functional identification of cell phenotypes differentiating from mice retinal neurospheres using single cell calcium imaging. Cell Mol Neurobiol 2011, 31, 835–46. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W. A.; Blum, S.; Reske, A.; Hoang, T.; Blackshaw, S.; Fischer, A. J. , Cannabinoid signaling promotes the de-differentiation and proliferation of Müller glia-derived progenitor cells. Glia 2021, 69, 2503–2521. [Google Scholar] [CrossRef] [PubMed]
- Cosens, D. J.; Manning, A. , Abnormal electroretinogram from a Drosophila mutant. Nature 1969, 224, 285–7. [Google Scholar] [CrossRef] [PubMed]
- Gees, M.; Owsianik, G.; Nilius, B.; Voets, T. , TRP channels. Compr Physiol 2012, 2, 563–608. [Google Scholar] [PubMed]
- Zhao, Y.; McVeigh, B. M.; Moiseenkova-Bell, V. Y. , Structural Pharmacology of TRP Channels. J Mol Biol 2021, 433, 166914. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, T.; Delton-Vandenbroucke, I.; Milone, A.; Lagarde, M.; Di Marzo, V. , Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina. Arch Biochem Biophys 1999, 370, 300–7. [Google Scholar] [CrossRef]
- Bazan, N. G. , Metabolism of arachidonic acid in the retina and retinal pigment epithelium: biological effects of oxygenated metabolites of arachidonic acid. Prog Clin Biol Res 1989, 312, 15–37. [Google Scholar]
- Sawamura, S.; Shirakawa, H.; Nakagawa, T.; Mori, Y.; Kaneko, S. , Frontiers in Neuroscience TRP Channels in the Brain: What Are They There For? In Neurobiology of TRP Channels; Emir, T. L. R., Ed.; CRC Press/Taylor & Francis © 2018 by Taylor & Francis Group, LLC.: Boca Raton (FL), 2017; pp. 295–322. [Google Scholar]
- Thébault, S. , Minireview: Insights into the role of TRP channels in the retinal circulation and function. Neurosci Lett 2021, 765, 136285. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, J. C.; Wensel, T. G. , TRP channel gene expression in the mouse retina. Vision Res 2011, 51, 2440–52. [Google Scholar] [CrossRef] [PubMed]
- Rychkov, G.; Barritt, G. J. , TRPC1 Ca(2+)-permeable channels in animal cells. Handb Exp Pharmacol 2007, 23–52. [Google Scholar]
- Lakk, M.; Young, D.; Baumann, J. M.; Jo, A. O.; Hu, H.; Križaj, D. , Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci 2018, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Molnar, T.; Barabas, P.; Birnbaumer, L.; Punzo, C.; Kefalov, V.; Križaj, D. , Store-operated channels regulate intracellular calcium in mammalian rods. J Physiol 2012, 590, 3465–81. [Google Scholar] [CrossRef] [PubMed]
- Tóth, A.; Czikora, A.; Pásztor, E. T.; Dienes, B.; Bai, P.; Csernoch, L.; Rutkai, I.; Csató, V.; Mányiné, I. S.; Pórszász, R.; Edes, I.; Papp, Z.; Boczán, J. , Vanilloid receptor-1 (TRPV1) expression and function in the vasculature of the rat. J Histochem Cytochem 2014, 62, 129–44. [Google Scholar] [CrossRef] [PubMed]
- Crousillac, S.; LeRouge, M.; Rankin, M.; Gleason, E. , Immunolocalization of TRPC channel subunits 1 and 4 in the chicken retina. Vis Neurosci 2003, 20, 453–63. [Google Scholar] [CrossRef]
- Da Silva, N.; Herron, C. E.; Stevens, K.; Jollimore, C. A.; Barnes, S.; Kelly, M. E. , Metabotropic receptor-activated calcium increases and store-operated calcium influx in mouse Müller cells. Invest Ophthalmol Vis Sci 2008, 49, 3065–73. [Google Scholar] [CrossRef]
- Witkovsky, P.; Gábriel, R.; Krizaj, D. , Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol 2008, 510, 158–74. [Google Scholar] [CrossRef]
- Maddox, J. W.; Khorsandi, N.; Gleason, E. , TRPC5 is required for the NO-dependent increase in dendritic Ca(2+) and GABA release from chick retinal amacrine cells. J Neurophysiol 2018, 119, 262–273. [Google Scholar] [CrossRef]
- Morgans, C. W.; Zhang, J.; Jeffrey, B. G.; Nelson, S. M.; Burke, N. S.; Duvoisin, R. M.; Brown, R. L. , TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci U S A 2009, 106, 19174–8. [Google Scholar] [CrossRef]
- Hasan, N.; Pangeni, G.; Cobb, C. A.; Ray, T. A.; Nettesheim, E. R.; Ertel, K. J.; Lipinski, D. M.; McCall, M. A.; Gregg, R. G. , Presynaptic Expression of LRIT3 Transsynaptically Organizes the Postsynaptic Glutamate Signaling Complex Containing TRPM1. Cell Rep 2019, 27, 3107–3116.e3. [Google Scholar] [CrossRef]
- Anastassov, I. A.; Wang, W.; Dunn, F. A. , Synaptogenesis and synaptic protein localization in the postnatal development of rod bipolar cell dendrites in mouse retina. J Comp Neurol 2019, 527, 52–66. [Google Scholar] [CrossRef]
- Kozuka, T.; Chaya, T.; Tamalu, F.; Shimada, M.; Fujimaki-Aoba, K.; Kuwahara, R.; Watanabe, S. I.; Furukawa, T. , The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit. J Neurosci 2017, 37, 9889–9900. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Horie, S.; Moritoh, S.; Matsushima, H.; Hori, T.; Kimori, Y.; Kitano, K.; Tsubo, Y.; Tachibana, M.; Koike, C. , Different Activity Patterns in Retinal Ganglion Cells of TRPM1 and mGluR6 Knockout Mice. Biomed Res Int 2018, 2018, 2963232. [Google Scholar] [CrossRef]
- Meléndez García, R.; Arredondo Zamarripa, D.; Arnold, E.; Ruiz-Herrera, X.; Noguez Imm, R.; Baeza Cruz, G.; Adán, N.; Binart, N.; Riesgo-Escovar, J.; Goffin, V.; Ordaz, B.; Peña-Ortega, F.; Martínez-Torres, A.; Clapp, C.; Thebault, S. , Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 2016, 7, 35–49. [Google Scholar] [CrossRef]
- Malko, P.; Syed Mortadza, S. A.; McWilliam, J.; Jiang, L. H. , TRPM2 Channel in Microglia as a New Player in Neuroinflammation Associated With a Spectrum of Central Nervous System Pathologies. Front Pharmacol 2019, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Webster, C. M.; Tworig, J.; Caval-Holme, F.; Morgans, C. W.; Feller, M. B. , The Impact of Steroid Activation of TRPM3 on Spontaneous Activity in the Developing Retina. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- McGahon, M. K.; Fernández, J. A.; Dash, D. P.; McKee, J.; Simpson, D. A.; Zholos, A. V.; McGeown, J. G.; Curtis, T. M. , TRPV2 Channels Contribute to Stretch-Activated Cation Currents and Myogenic Constriction in Retinal Arterioles. Invest Ophthalmol Vis Sci 2016, 57, 5637–5647. [Google Scholar] [CrossRef]
- Souza Monteiro de Araújo, D.; De Logu, F.; Adembri, C.; Rizzo, S.; Janal, M. N.; Landini, L.; Magi, A.; Mattei, G.; Cini, N.; Pandolfo, P.; Geppetti, P.; Nassini, R.; Calaza, K. D. C. , TRPA1 mediates damage of the retina induced by ischemia and reperfusion in mice. Cell Death Dis 2020, 11, 633. [Google Scholar] [CrossRef]
- Davis, J. B.; Gray, J.; Gunthorpe, M. J.; Hatcher, J. P.; Davey, P. T.; Overend, P.; Harries, M. H.; Latcham, J.; Clapham, C.; Atkinson, K.; Hughes, S. A.; Rance, K.; Grau, E.; Harper, A. J.; Pugh, P. L.; Rogers, D. C.; Bingham, S.; Randall, A.; Sheardown, S. A. , Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–7. [Google Scholar] [CrossRef]
- Dhaka, A.; Uzzell, V.; Dubin, A. E.; Mathur, J.; Petrus, M.; Bandell, M.; Patapoutian, A. , TRPV1 is activated by both acidic and basic pH. J Neurosci 2009, 29, 153–8. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D. E. , TRP channels as cellular sensors. Nature 2003, 426, 517–24. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V. , Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 2008, 160, 1–24. [Google Scholar] [PubMed]
- Benítez-Angeles, M.; Morales-Lázaro, S. L.; Juárez-González, E.; Rosenbaum, T. , TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef]
- Jo, A. O.; Ryskamp, D. A.; Phuong, T. T.; Verkman, A. S.; Yarishkin, O.; MacAulay, N.; Križaj, D. , TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia. J Neurosci 2015, 35, 13525–37. [Google Scholar] [CrossRef] [PubMed]
- Ryskamp, D. A.; Redmon, S.; Jo, A. O.; Križaj, D. , TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision. Cells 2014, 3, 914–38. [Google Scholar] [CrossRef]
- Sappington, R. M.; Calkins, D. J. , Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 2008, 49, 3004–17. [Google Scholar] [CrossRef]
- Sappington, R. M.; Sidorova, T.; Long, D. J.; Calkins, D. J. , TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 2009, 50, 717–28. [Google Scholar] [CrossRef]
- Yazulla, S. , Endocannabinoids in the retina: from marijuana to neuroprotection. Prog Retin Eye Res 2008, 27, 501–26. [Google Scholar] [CrossRef]
- Leonelli, M.; Martins, D. O.; Kihara, A. H.; Britto, L. R. , Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina. Int J Dev Neurosci 2009, 27, 709–18. [Google Scholar] [CrossRef]
- Shen, Y.; Heimel, J. A.; Kamermans, M.; Peachey, N. S.; Gregg, R. G.; Nawy, S. , A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 2009, 29, 6088–93. [Google Scholar] [CrossRef]
- Glaser, S. T.; Deutsch, D. G.; Studholme, K. M.; Zimov, S.; Yazulla, S. , Endocannabinoids in the intact retina: 3 H-anandamide uptake, fatty acid amide hydrolase immunoreactivity and hydrolysis of anandamide. Vis Neurosci 2005, 22, 693–705. [Google Scholar] [CrossRef]
- Bisogno, T.; Hanus, L.; De Petrocellis, L.; Tchilibon, S.; Ponde, D. E.; Brandi, I.; Moriello, A. S.; Davis, J. B.; Mechoulam, R.; Di Marzo, V. , Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 2001, 134, 845–52. [Google Scholar] [CrossRef]
- Anand, U.; Jones, B.; Korchev, Y.; Bloom, S. R.; Pacchetti, B.; Anand, P.; Sodergren, M. H. , CBD Effects on TRPV1 Signaling Pathways in Cultured DRG Neurons. J Pain Res 2020, 13, 2269–2278. [Google Scholar] [CrossRef]
- de Almeida, D. L.; Devi, L. A. , Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect 2020, 8, e00682. [Google Scholar] [CrossRef] [PubMed]
- Yazulla, S.; Studholme, K. M. , Vanilloid receptor like 1 (VRL1) immunoreactivity in mammalian retina: colocalization with somatostatin and purinergic P2X1 receptors. J Comp Neurol 2004, 474, 407–18. [Google Scholar] [CrossRef] [PubMed]
- Thermos, K. , Functional mapping of somatostatin receptors in the retina: a review. Vision Res 2003, 43, 1805–15. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S. H. , Adenosine as a neuromodulator. Annu Rev Neurosci 1985, 8, 103–24. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B. B.; Chen, J. F.; Cunha, R. A.; Svenningsson, P.; Vaugeois, J. M. , Adenosine and brain function. Int Rev Neurobiol 2005, 63, 191–270. [Google Scholar] [PubMed]
- Blazynski, C.; Perez, M. T. , Adenosine in vertebrate retina: localization, receptor characterization, and function. Cell Mol Neurobiol 1991, 11, 463–84. [Google Scholar] [CrossRef]
- Shewan, D.; Dwivedy, A.; Anderson, R.; Holt, C. E. , Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nat Neurosci 2002, 5, 955–62. [Google Scholar] [CrossRef]
- Zhang, M.; Budak, M. T.; Lu, W.; Khurana, T. S.; Zhang, X.; Laties, A. M.; Mitchell, C. H. , Identification of the A3 adenosine receptor in rat retinal ganglion cells. Mol Vis 2006, 12, 937–48. [Google Scholar]
- Portugal, C. C.; da Encarnação, T. G.; Sagrillo, M. A.; Pereira, M. R.; Relvas, J. B.; Socodato, R.; Paes-de-Carvalho, R. , Activation of adenosine A3 receptors regulates vitamin C transport and redox balance in neurons. Free Radic Biol Med 2021, 163, 43–55. [Google Scholar] [CrossRef]
- Duarte-Silva, A. T.; Ximenes, L. G. R.; Guimarães-Souza, M.; Domith, I.; Paes-de-Carvalho, R. , Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways. Front Cell Dev Biol 2022, 10, 1058925. [Google Scholar] [CrossRef] [PubMed]
- Paes de Carvalho, R. , Development of A1 adenosine receptors in the chick embryo retina. J Neurosci Res 1990, 25, 236–42. [Google Scholar] [CrossRef]
- Paes de Carvalho, R.; de Mello, F. G. , Adenosine-elicited accumulation of adenosine 3', 5'-cyclic monophosphate in the chick embryo retina. J Neurochem 1982, 38, 493–500. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, R. P.; Braas, K. M.; Adler, R.; Snyder, S. H. , Developmental regulation of adenosine A1 receptors, uptake sites and endogenous adenosine in the chick retina. Brain Res Dev Brain Res 1992, 70, 87–95. [Google Scholar] [CrossRef]
- dos Santos-Rodrigues, A.; Ferreira, J. M.; Paes-de-Carvalho, R. , Differential adenosine uptake in mixed neuronal/glial or purified glial cultures of avian retinal cells: modulation by adenosine metabolism and the ERK cascade. Biochem Biophys Res Commun 2011, 414, 175–80. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M. R.; Hang, V. R.; Vardiero, E.; de Mello, F. G.; Paes-de-Carvalho, R. , Modulation of A1 adenosine receptor expression by cell aggregation and long-term activation of A2a receptors in cultures of avian retinal cells: involvement of the cyclic AMP/PKA pathway. J Neurochem 2010, 113, 661–73. [Google Scholar] [CrossRef]
- Paes-de-Carvalho, R.; Maia, G. A.; Ferreira, J. M. , Adenosine regulates the survival of avian retinal neurons and photoreceptors in culture. Neurochem Res 2003, 28, 1583–90. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J. M.; Paes-de-Carvalho, R. , Long-term activation of adenosine A(2a) receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain research 2001, 900, 169–76. [Google Scholar] [CrossRef] [PubMed]
- Socodato, R.; Brito, R.; Calaza, K. C.; Paes-de-Carvalho, R. , Developmental regulation of neuronal survival by adenosine in the in vitro and in vivo avian retina depends on a shift of signaling pathways leading to CREB phosphorylation or dephosphorylation. J Neurochem 2011, 116, 227–39. [Google Scholar] [CrossRef] [PubMed]
- Paes de Carvalho, R.; Braas, K. M.; Snyder, S. H.; Adler, R. , Analysis of adenosine immunoreactivity, uptake, and release in purified cultures of developing chick embryo retinal neurons and photoreceptors. J Neurochem 1990, 55, 1603–11. [Google Scholar] [CrossRef]
- Paes-de-Carvalho, R.; Dias, B. V.; Martins, R. A.; Pereira, M. R.; Portugal, C. C.; Lanfredi, C. , Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II. Neurochem Int 2005, 46, 441–51. [Google Scholar] [CrossRef]
- Langer, I.; Jeandriens, J.; Couvineau, A.; Sanmukh, S.; Latek, D. , Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022, 10. [Google Scholar] [CrossRef]
- Hirabayashi, T.; Nakamachi, T.; Shioda, S. , Discovery of PACAP and its receptors in the brain. J Headache Pain 2018, 19, 28. [Google Scholar] [CrossRef]
- May, V.; Parsons, R. L. , G Protein-Coupled Receptor Endosomal Signaling and Regulation of Neuronal Excitability and Stress Responses: Signaling Options and Lessons From the PAC1 Receptor. J Cell Physiol 2017, 232, 698–706. [Google Scholar] [CrossRef]
- Onali, P.; Olianas, M. C. , PACAP is a potent and highly effective stimulator of adenylyl cyclase activity in the retinas of different mammalian species. Brain research 1994, 641, 132–4. [Google Scholar] [CrossRef]
- Denes, V.; Geck, P.; Mester, A.; Gabriel, R. , Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019, 8. [Google Scholar] [CrossRef]
- Shioda, S.; Takenoya, F.; Wada, N.; Hirabayashi, T.; Seki, T.; Nakamachi, T. , Pleiotropic and retinoprotective functions of PACAP. Anat Sci Int 2016, 91, 313–24. [Google Scholar] [CrossRef] [PubMed]
- Njaine, B.; Martins, R. A.; Santiago, M. F.; Linden, R.; Silveira, M. S. , Pituitary adenylyl cyclase-activating polypeptide controls the proliferation of retinal progenitor cells through downregulation of cyclin D1. Eur J Neurosci 2010, 32, 311–21. [Google Scholar] [CrossRef] [PubMed]
- Njaine, B.; Rocha-Martins, M.; Vieira-Vieira, C. H.; De-Melo, L. D.; Linden, R.; Braas, K.; May, V.; Martins, R. A.; Silveira, M. S. , Pleiotropic functions of pituitary adenylyl cyclase-activating polypeptide on retinal ontogenesis: involvement of KLF4 in the control of progenitor cell proliferation. J Mol Neurosci 2014, 54, 430–42. [Google Scholar] [CrossRef] [PubMed]
- Fleming, R. L.; Silveira, M. S.; Santos, L. E.; Henze, I. P.; Gardino, P. F.; de Mello, M. C.; de Mello, F. G. , Pituitary adenylyl cyclase-activating polypeptide receptor re-sensitization induces plastic changes in the dopaminergic phenotype in the mature avian retina. J Neurochem 2013, 124, 621–31. [Google Scholar] [CrossRef]
- Silveira, M. S.; Costa, M. R.; Bozza, M.; Linden, R. , Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J Biol Chem 2002, 277, 16075–80. [Google Scholar] [CrossRef]
- Denes, V.; Hideg, O.; Nyisztor, Z.; Lakk, M.; Godri, Z.; Berta, G.; Geck, P.; Gabriel, R. , The Neuroprotective Peptide PACAP1-38 Contributes to Horizontal Cell Development in Postnatal Rat Retina. Invest Ophthalmol Vis Sci 2019, 60, 770–778. [Google Scholar] [CrossRef]
- Seki, T.; Itoh, H.; Nakamachi, T.; Endo, K.; Wada, Y.; Nakamura, K.; Shioda, S. , Suppression of rat retinal ganglion cell death by PACAP following transient ischemia induced by high intraocular pressure. J Mol Neurosci 2011, 43, 30–4. [Google Scholar] [CrossRef]
- Danyadi, B.; Szabadfi, K.; Reglodi, D.; Mihalik, A.; Danyadi, T.; Kovacs, Z.; Batai, I.; Tamas, A.; Kiss, P.; Toth, G.; Gabriel, R. , PACAP application improves functional outcome of chronic retinal ischemic injury in rats-evidence from electroretinographic measurements. J Mol Neurosci 2014, 54, 293–9. [Google Scholar] [CrossRef]
- Kvarik, T.; Mammel, B.; Reglodi, D.; Kovacs, K.; Werling, D.; Bede, B.; Vaczy, A.; Fabian, E.; Toth, G.; Kiss, P.; Tamas, A.; Ertl, T.; Gyarmati, J.; Atlasz, T. , PACAP Is Protective in a Rat Model of Retinopathy of Prematurity. J Mol Neurosci 2016, 60, 179–85. [Google Scholar] [CrossRef]
- Kvarik, T.; Reglodi, D.; Werling, D.; Vaczy, A.; Kovari, P.; Szabo, E.; Kovacs, K.; Hashimoto, H.; Ertl, T.; Gyarmati, J.; Atlasz, T. , The Protective Effects of Endogenous PACAP in Oxygen-Induced Retinopathy. J Mol Neurosci 2021, 71, 2546–2557. [Google Scholar] [CrossRef]
- Patko, E.; Szabo, E.; Vaczy, A.; Molitor, D.; Tari, E.; Li, L.; Csutak, A.; Toth, G.; Reglodi, D.; Atlasz, T. , Protective Effects of Pituitary Adenylate-Cyclase-Activating Polypeptide on Retinal Vasculature and Molecular Responses in a Rat Model of Moderate Glaucoma. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Atlasz, T.; Szabadfi, K.; Kiss, P.; Marton, Z.; Griecs, M.; Hamza, L.; Gaal, V.; Biro, Z.; Tamas, A.; Hild, G.; Nyitrai, M.; Toth, G.; Reglodi, D.; Gabriel, R. , Effects of PACAP in UV-A radiation-induced retinal degeneration models in rats. J Mol Neurosci 2011, 43, 51–7. [Google Scholar] [CrossRef] [PubMed]
- Gábriel, R.; Pöstyéni, E.; Dénes, V. , Neuroprotective Potential of Pituitary Adenylate Cyclase Activating Polypeptide in Retinal Degenerations of Metabolic Origin. Front Neurosci 2019, 13, 1031. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Guo, M.; Dong, X.; Liao, M.; Du, M.; Wang, X.; Yin, H.; Yan, H. , Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats With Traumatic Optic Neuropathy. Front Cell Dev Biol 2021, 9, 659783. [Google Scholar] [CrossRef] [PubMed]
- Van, C.; Condro, M. C.; Ko, H. H.; Hoang, A. Q.; Zhu, R.; Lov, K.; Ricaflanca, P. T.; Diep, A. L.; Nguyen, N. N. M.; Lipshutz, G. S.; MacKenzie-Graham, A.; Waschek, J. A. , Targeted deletion of PAC1 receptors in retinal neurons enhances neuron loss and axonopathy in a model of multiple sclerosis and optic neuritis. Neurobiol Dis 2021, 160, 105524. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, I. M.; Ostwald, P.; Roth, S. , Nitric oxide: a review of its role in retinal function and disease. Vision Res 1996, 36, 2979–94. [Google Scholar] [CrossRef]
- Toda, N.; Nakanishi-Toda, M. , Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res 2007, 26, 205–38. [Google Scholar] [CrossRef]
- Cossenza, M.; Socodato, R.; Portugal, C. C.; Domith, I. C.; Gladulich, L. F.; Encarnação, T. G.; Calaza, K. C.; Mendonça, H. R.; Campello-Costa, P.; Paes-de-Carvalho, R. , Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. Vitam Horm 2014, 96, 79–125. [Google Scholar] [PubMed]
- Cossenza, M.; Paes de Carvalho, R. , L-arginine uptake and release by cultured avian retinal cells: differential cellular localization in relation to nitric oxide synthase. J Neurochem 2000, 74, 1885–94. [Google Scholar] [CrossRef]
- Do, K. Q.; Grima, G.; Benz, B.; Salt, T. E. , Glial-neuronal transfer of arginine and S-nitrosothiols in nitric oxide transmission. Ann N Y Acad Sci 2002, 962, 81–92. [Google Scholar] [CrossRef]
- Grima, G.; Benz, B.; Do, K. Q. , Glutamate-induced release of the nitric oxide precursor, arginine, from glial cells. Eur J Neurosci 1997, 9, 2248–58. [Google Scholar] [CrossRef]
- Grima, G.; Benz, B.; Do, K. Q. , Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicity. Eur J Neurosci 2001, 14, 1762–70. [Google Scholar] [CrossRef]
- Bredt, D. S.; Ferris, C. D.; Snyder, S. H. , Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem 1992, 267, 10976–10981. [Google Scholar] [CrossRef] [PubMed]
- Lamas, S.; Marsden, P. A.; Li, G. K.; Tempst, P.; Michel, T. , Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A 1992, 89, 6348–52. [Google Scholar] [CrossRef]
- Cho, H. J.; Xie, Q. W.; Calaycay, J.; Mumford, R. A.; Swiderek, K. M.; Lee, T. D.; Nathan, C. , Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 1992, 176, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Garthwaite, J. , Nitric oxide signalling in the nervous system. Seminars in Neuroscience 1993, 5, 171–180. [Google Scholar] [CrossRef]
- Garthwaite, J.; Boulton, C. L. , Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995, 57, 683–706. [Google Scholar] [CrossRef]
- Garthwaite, J.; Charles, S. L.; Chess-Williams, R. , Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988, 336, 385–8. [Google Scholar] [CrossRef]
- Garthwaite, J.; Garthwaite, G. , Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. J Neurochem 1987, 48, 29–39. [Google Scholar] [CrossRef]
- Brenman, J. E.; Bredt, D. S. , Synaptic signaling by nitric oxide. Curr Opin Neurobiol 1997, 7, 374–8. [Google Scholar] [CrossRef]
- Brenman, J. E.; Chao, D. S.; Gee, S. H.; McGee, A. W.; Craven, S. E.; Santillano, D. R.; Wu, Z.; Huang, F.; Xia, H.; Peters, M. F.; Froehner, S. C.; Bredt, D. S. , Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 1996, 84, 757–67. [Google Scholar] [CrossRef]
- Dawson, T. M.; Bredt, D. S.; Fotuhi, M.; Hwang, P. M.; Snyder, S. H. , Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 1991, 88, 7797–801. [Google Scholar] [CrossRef] [PubMed]
- Hope, B. T.; Michael, G. J.; Knigge, K. M.; Vincent, S. R. , Neuronal NADPH Diaphorase is a Nitric Oxide Synthase. Proceedings of the National Academy of Sciences of the United States of America 1991, 88, 2811–2814. [Google Scholar] [CrossRef] [PubMed]
- Kurenny, D. E.; Moroz, L. L.; Turner, R. W.; Sharkey, K. A.; Barnes, S. , Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 1994, 13, 315–24. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Bredt, D. S.; Snyder, S. H.; Stone, R. A. , The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 1993, 54, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Vielma, A. H.; Retamal, M. A.; Schmachtenberg, O. , Nitric oxide signaling in the retina: what have we learned in two decades? Brain research 2012, 1430, 112–25. [Google Scholar] [CrossRef]
- Andrade da Costa, B. L.; Hokoç, J. N. , Coexistence of GAD-65 and GAD-67 with tyrosine hydroxylase and nitric oxide synthase in amacrine and interplexiform cells of the primate, Cebus apella. Vis Neurosci 2003, 20, 153–63. [Google Scholar] [CrossRef]
- Vardi, N.; Auerbach, P. , Specific cell types in cat retina express different forms of glutamic acid decarboxylase. J Comp Neurol 1995, 351, 374–84. [Google Scholar] [CrossRef]
- Socodato, R.; Brito, R.; Portugal, C. C.; de Oliveira, N. A.; Calaza, K. C.; Paes-de-Carvalho, R. , The nitric oxide-cGKII system relays death and survival signals during embryonic retinal development via AKT-induced CREB1 activation. Cell Death Differ 2014, 21, 915–28. [Google Scholar] [CrossRef]
- Pang, J. J.; Gao, F.; Wu, S. M. , Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina. J Comp Neurol 2010, 518, 2456–74. [Google Scholar] [CrossRef]
- Blom, J.; Giove, T.; Deshpande, M.; Eldred, W. D. , Characterization of nitric oxide signaling pathways in the mouse retina. J Comp Neurol 2012, 520, 4204–17. [Google Scholar] [CrossRef]
- Tekmen-Clark, M.; Gleason, E. , Nitric oxide production and the expression of two nitric oxide synthases in the avian retina. Vis Neurosci 2013, 30, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Djamgoz, M. B.; Sekaran, S.; Angotzi, A. R.; Haamedi, S.; Vallerga, S.; Hirano, J.; Yamada, M. , Light-adaptive role of nitric oxide in the outer retina of lower vertebrates: a brief review. Philos Trans R Soc Lond B Biol Sci 2000, 355, 1199–203. [Google Scholar] [CrossRef] [PubMed]
- Giove, T. J.; Deshpande, M. M.; Eldred, W. D. , Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J Neurosci Res 2009, 87, 3134–42. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Teves, M. M.; Lillywhite, A.; Pagtalunan, E. B.; Stell, W. K. , Light adaptation in the chick retina: Dopamine, nitric oxide, and gap-junction coupling modulate spatiotemporal contrast sensitivity. Exp Eye Res 2020, 195, 108026. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Ohtsuka, T.; Stell, W. K. , Endogenous nitric oxide enhances the light-response of cones during light-adaptation in the rat retina. Vision Res 2011, 51, 131–7. [Google Scholar] [CrossRef] [PubMed]
- DeVries, S. H.; Schwartz, E. A. , Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J Physiol 1989, 414, 351–75. [Google Scholar] [CrossRef]
- Mills, S. L.; Massey, S. C. , Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 1995, 377, 734–7. [Google Scholar] [CrossRef]
- Ding, J. D.; Weinberg, R. J. , Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol 2007, 500, 734–45. [Google Scholar] [CrossRef]
- Hirooka, K.; Kourennyi, D. E.; Barnes, S. , Calcium channel activation facilitated by nitric oxide in retinal ganglion cells. J Neurophysiol 2000, 83, 198–206. [Google Scholar] [CrossRef]
- Wexler, E. M.; Stanton, P. K.; Nawy, S. , Nitric oxide depresses GABAA receptor function via coactivation of cGMP-dependent kinase and phosphodiesterase. J Neurosci 1998, 18, 2342–9. [Google Scholar] [CrossRef]
- McMahon, D. G.; Ponomareva, L. V. , Nitric oxide and cGMP modulate retinal glutamate receptors. J Neurophysiol 1996, 76, 2307–15. [Google Scholar] [CrossRef]
- McMahon, D. G.; Schmidt, K. F. , Horizontal cell glutamate receptor modulation by NO: mechanisms and functional implications for the first visual synapse. Vis Neurosci 1999, 16, 425–33. [Google Scholar] [CrossRef]
- Ientile, R.; Pedale, S.; Picciurro, V.; Macaione, V.; Fabiano, C.; Macaione, S. , Nitric oxide mediates NMDA-evoked [3H]GABA release from chick retina cells. FEBS Lett 1997, 417, 345–8. [Google Scholar] [CrossRef]
- Ientile, R.; Picciurro, V.; Pedale, S.; Nucci, C.; Malecka, B.; Nisticò, G.; Macaione, S. , Nitric oxide enhances amino acid release from immature chick embryo retina. Neurosci Lett 1996, 219, 79–82. [Google Scholar] [CrossRef]
- Yu, D.; Eldred, W. D. , Nitric oxide stimulates gamma-aminobutyric acid release and inhibits glycine release in retina. J Comp Neurol 2005, 483, 278–91. [Google Scholar] [CrossRef]
- Tsukaguchi, H.; Tokui, T.; Mackenzie, B.; Berger, U. V.; Chen, X. Z.; Wang, Y.; Brubaker, R. F.; Hediger, M. A. , A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999, 399, 70–5. [Google Scholar] [CrossRef]
- Portugal, C. C.; da Encarnação, T. G.; Socodato, R.; Moreira, S. R.; Brudzewsky, D.; Ambrósio, A. F.; Paes-de-Carvalho, R. , Nitric oxide modulates sodium vitamin C transporter 2 (SVCT-2) protein expression via protein kinase G (PKG) and nuclear factor-κB (NF-κB). J Biol Chem 2012, 287, 3860–72. [Google Scholar] [CrossRef]
- Portugal, C. C.; Miya, V. S.; Calaza Kda, C.; Santos, R. A.; Paes-de-Carvalho, R. , Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells. J Neurochem 2009, 108, 507–20. [Google Scholar] [CrossRef]
- Socodato, R. E.; Magalhaes, C. R.; Paes-de-Carvalho, R. , Glutamate and nitric oxide modulate ERK and CREB phosphorylation in the avian retina: evidence for direct signaling from neurons to Muller glial cells. J Neurochem 2009, 108, 417–29. [Google Scholar] [CrossRef]
- Moriyama, S.; Hiasa, M. , Expression of Vesicular Nucleotide Transporter in the Mouse Retina. Biol Pharm Bull 2016, 39, 564–9. [Google Scholar] [CrossRef]
- Xia, J.; Lim, J. C.; Lu, W.; Beckel, J. M.; Macarak, E. J.; Laties, A. M.; Mitchell, C. H. , Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 2012, 590, 2285–304. [Google Scholar] [CrossRef]
- Mitchell, C. H. , Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol 2001, (Pt 1) Pt 1, 193–202. [Google Scholar] [CrossRef]
- Santos, P. F.; Caramelo, O. L.; Carvalho, A. P.; Duarte, C. B. , Characterization of ATP release from cultures enriched in cholinergic amacrine-like neurons. J Neurobiol 1999, 41, 340–8. [Google Scholar] [CrossRef]
- Newman, E. A. , Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 2005, 25, 5502–10. [Google Scholar] [CrossRef]
- Uckermann, O.; Wolf, A.; Kutzera, F.; Kalisch, F.; Beck-Sickinger, A. G.; Wiedemann, P.; Reichenbach, A.; Bringmann, A. , Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. J Neurosci Res 2006, 83, 538–50. [Google Scholar] [CrossRef]
- Loiola, E. C.; Ventura, A. L. , Release of ATP from avian Müller glia cells in culture. Neurochem Int 2011, 58, 414–22. [Google Scholar] [CrossRef]
- Ventura, A. L. M.; Dos Santos-Rodrigues, A.; Mitchell, C. H.; Faillace, M. P. , Purinergic signaling in the retina: From development to disease. Brain Res Bull 2019, 151, 92–108. [Google Scholar] [CrossRef]
- de Almeida-Pereira, L.; Magalhães, C. F.; Repossi, M. G.; Thorstenberg, M. L. P.; Sholl-Franco, A.; Coutinho-Silva, R.; Ventura, A. L. M.; Fragel-Madeira, L. , Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y(1) Receptor. Mol Neurobiol 2017, 54, 5142–5155. [Google Scholar] [CrossRef]
- Jacques, F. J.; Silva, T. M.; da Silva, F. E.; Ornelas, I. M.; Ventura, A. L. M. , Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture. Cell Signal 2017, 35, 95–106. [Google Scholar] [CrossRef]
- Sugioka, M.; Fukuda, Y.; Yamashita, M. , Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina. J Physiol 1996, 493, 855–63. [Google Scholar] [CrossRef]
- Pearson, R.; Catsicas, M.; Becker, D.; Mobbs, P. , Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone. J Neurosci 2002, 22, 7569–79. [Google Scholar] [CrossRef]
- Pearson, R. A.; Catsicas, M.; Becker, D. L.; Bayley, P.; Lüneborg, N. L.; Mobbs, P. , Ca(2+) signalling and gap junction coupling within and between pigment epithelium and neural retina in the developing chick. Eur J Neurosci 2004, 19, 2435–45. [Google Scholar] [CrossRef]
- Sanches, G.; de Alencar, L. S.; Ventura, A. L. , ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int J Dev Neurosci 2002, 20, 21–7. [Google Scholar] [CrossRef]
- França, G. R.; Freitas, R. C.; Ventura, A. L. , ATP-induced proliferation of developing retinal cells: regulation by factors released from postmitotic cells in culture. Int J Dev Neurosci 2007, 25, 283–91. [Google Scholar] [CrossRef]
- Sholl-Franco, A.; Fragel-Madeira, L.; Macama Ada, C.; Linden, R.; Ventura, A. L. , ATP controls cell cycle and induces proliferation in the mouse developing retina. Int J Dev Neurosci 2010, 28, 63–73. [Google Scholar] [CrossRef]
- Nunes, P. H.; Calaza Kda, C.; Albuquerque, L. M.; Fragel-Madeira, L.; Sholl-Franco, A.; Ventura, A. L. , Signal transduction pathways associated with ATP-induced proliferation of cell progenitors in the intact embryonic retina. Int J Dev Neurosci 2007, 25, 499–508. [Google Scholar] [CrossRef]
- Sugioka, M.; Zhou, W. L.; Hofmann, H. D.; Yamashita, M. , Ca2+ mobilization and capacitative Ca2+ entry regulate DNA synthesis in cultured chick retinal neuroepithelial cells. Int J Dev Neurosci 1999, 17, 163–72. [Google Scholar] [CrossRef]
- Sugioka, M.; Zhou, W. L.; Hofmann, H. D.; Yamashita, M. , Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Dev Neurosci 1999, 17, 135–44. [Google Scholar] [CrossRef]
- Yamashita, M. , From neuroepithelial cells to neurons: changes in the physiological properties of neuroepithelial stem cells. Arch Biochem Biophys 2013, 534, 64–70. [Google Scholar] [CrossRef]
- Ornelas, I. M.; Ventura, A. L. , Involvement of the PI3K/AKT pathway in ATP-induced proliferation of developing retinal cells in culture. Int J Dev Neurosci 2010, 28, 503–11. [Google Scholar] [CrossRef]
- Moll, V.; Weick, M.; Milenkovic, I.; Kodal, H.; Reichenbach, A.; Bringmann, A. , P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 2002, 43, 766–73. [Google Scholar]
- Milenkovic, I.; Weick, M.; Wiedemann, P.; Reichenbach, A.; Bringmann, A. , P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 2003, 44, 1211–20. [Google Scholar] [CrossRef]
- Ornelas, I. M.; Silva, T. M.; Fragel-Madeira, L.; Ventura, A. L. , Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina. PLoS One 2013, 8, e53517. [Google Scholar] [CrossRef]
- Massé, K.; Bhamra, S.; Eason, R.; Dale, N.; Jones, E. A. , Purine-mediated signalling triggers eye development. Nature 2007, 449, 1058–62. [Google Scholar] [CrossRef]
- Gampe, K.; Haverkamp, S.; Robson, S. C.; Gachet, C.; Hüser, L.; Acker-Palmer, A.; Zimmermann, H. , NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation. Purinergic Signal 2015, 11, 155–60. [Google Scholar] [CrossRef]
- Lewis, G. P.; Chapin, E. A.; Luna, G.; Linberg, K. A.; Fisher, S. K. , The fate of Müller's glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation. Mol Vis 2010, 16, 1361–72. [Google Scholar]
- Reichenbach, A.; Bringmann, A. , Role of Purines in Müller Glia. J Ocul Pharmacol Ther 2016, 32, 518–533. [Google Scholar] [CrossRef]
- Silva, T. M.; França, G. R.; Ornelas, I. M.; Loiola, E. C.; Ulrich, H.; Ventura, A. L. , Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures. Purinergic Signal 2015, 11, 183–201. [Google Scholar] [CrossRef]
- Resta, V.; Novelli, E.; Vozzi, G.; Scarpa, C.; Caleo, M.; Ahluwalia, A.; Solini, A.; Santini, E.; Parisi, V.; Di Virgilio, F.; Galli-Resta, L. , Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 2007, 25, 2741–54. [Google Scholar] [CrossRef]
- Anccasi, R. M.; Ornelas, I. M.; Cossenza, M.; Persechini, P. M.; Ventura, A. L. , ATP induces the death of developing avian retinal neurons in culture via activation of P2X7 and glutamate receptors. Purinergic Signal 2013, 9, 15–29. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Laties, A. M.; Mitchell, C. H. , Stimulation of P2X7 receptors elevates Ca2+ and kills retinal ganglion cells. Invest Ophthalmol Vis Sci 2005, 46, 2183–91. [Google Scholar] [CrossRef]
- Hu, H.; Lu, W.; Zhang, M.; Zhang, X.; Argall, A. J.; Patel, S.; Lee, G. E.; Kim, Y. C.; Jacobson, K. A.; Laties, A. M.; Mitchell, C. H. , Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. Exp Eye Res 2010, 91, 425–32. [Google Scholar] [CrossRef]
- Sugiyama, T.; Oku, H.; Shibata, M.; Fukuhara, M.; Yoshida, H.; Ikeda, T. , Involvement of P2X7 receptors in the hypoxia-induced death of rat retinal neurons. Invest Ophthalmol Vis Sci 2010, 51, 3236–43. [Google Scholar] [CrossRef]
- Niyadurupola, N.; Sidaway, P.; Ma, N.; Rhodes, J. D.; Broadway, D. C.; Sanderson, J. , P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration. Invest Ophthalmol Vis Sci 2013, 54, 2163–70. [Google Scholar] [CrossRef]
- Campagno, K. E.; Lu, W.; Jassim, A. H.; Albalawi, F.; Cenaj, A.; Tso, H. Y.; Clark, S. P.; Sripinun, P.; Gómez, N. M.; Mitchell, C. H. , Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. J Neuroinflammation 2021, 18, 217. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, G. L.; Xu, M. X.; Zhou, H.; Li, F.; Miao, Y.; Lei, B.; Yang, X. L.; Wang, Z. , Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation 2021, 18, 303. [Google Scholar] [CrossRef]
- Kakurai, K.; Sugiyama, T.; Kurimoto, T.; Oku, H.; Ikeda, T. , Involvement of P2X(7) receptors in retinal ganglion cell death after optic nerve crush injury in rats. Neurosci Lett 2013, 534, 237–41. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Xie, Y.; Xue, Y.; Hu, N.; Zhang, G.; Guan, H.; Ji, M. , Involvement of P2X(7) receptors in retinal ganglion cell apoptosis induced by activated Müller cells. Exp Eye Res 2016, 153, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Franke, H.; Klimke, K.; Brinckmann, U.; Grosche, J.; Francke, M.; Sperlagh, B.; Reichenbach, A.; Liebert, U. G.; Illes, P. , P2X(7) receptor-mRNA and -protein in the mouse retina; changes during retinal degeneration in BALBCrds mice. Neurochem Int 2005, 47, 235–42. [Google Scholar] [CrossRef]
- Puthussery, T.; Fletcher, E. , Extracellular ATP induces retinal photoreceptor apoptosis through activation of purinoceptors in rodents. J Comp Neurol 2009, 513, 430–40. [Google Scholar] [CrossRef]
- Notomi, S.; Hisatomi, T.; Kanemaru, T.; Takeda, A.; Ikeda, Y.; Enaida, H.; Kroemer, G.; Ishibashi, T. , Critical involvement of extracellular ATP acting on P2RX7 purinergic receptors in photoreceptor cell death. Am J Pathol 2011, 179, 2798–809. [Google Scholar] [CrossRef]
- Cao, M.; Huang, X.; Zou, J.; Peng, Y.; Wang, Y.; Zheng, X.; Tang, L.; Zhang, L. , Attenuation of Microglial Activation and Pyroptosis by Inhibition of P2X7 Pathway Promotes Photoreceptor Survival in Experimental Retinal Detachment. Invest Ophthalmol Vis Sci 2023, 64, 34. [Google Scholar] [CrossRef]
- Rice, M. E.; Russo-Menna, I. , Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 1998, 82, 1213–23. [Google Scholar] [CrossRef] [PubMed]
- Raj Rai, S.; Bhattacharyya, C.; Sarkar, A.; Chakraborty, S.; Sircar, E.; Dutta, S.; Sengupta, R. , Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021, 6, 4566–4590. [Google Scholar] [CrossRef]
- Gu, F.; Chauhan, V.; Chauhan, A. , Glutathione redox imbalance in brain disorders. Current Opinion in Clinical Nutrition & Metabolic Care 2015, 18. [Google Scholar]
- Bjørklund, G.; Tinkov, A. A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O. P.; Chirumbolo, S.; Skalnaya, M. G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J. B.; Aaseth, J.; Skalny, A. V. , The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radical Biology and Medicine 2020, 160, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Freitas, H. R.; Reis, R. A. , Glutathione induces GABA release through P2X7R activation on Muller glia. Neurogenesis (Austin, Tex.) 2017, 4, e1283188. [Google Scholar] [CrossRef]
- Freitas, H. R.; Ferraz, G.; Ferreira, G. C.; Ribeiro-Resende, V. T.; Chiarini, L. B.; do Nascimento, J. L.; Matos Oliveira, K. R.; Pereira Tde, L.; Ferreira, L. G.; Kubrusly, R. C.; Faria, R. X.; Herculano, A. M.; Reis, R. A. , Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells. PLoS One 2016, 11, e0153677. [Google Scholar] [CrossRef] [PubMed]
- Pow, D. V.; Crook, D. K. , Immunocytochemical evidence for the presence of high levels of reduced glutathione in radial glial cells and horizontal cells in the rabbit retina. Neuroscience Letters 1995, 193, 25–28. [Google Scholar] [CrossRef]
- Schütte, M.; Werner, P. , Redistribution of glutathione in the ischemic rat retina. Neuroscience Letters 1998, 246, 53–56. [Google Scholar] [CrossRef]
- Castagné, V.; Clarke, P. G. H. , Inhibition of glutathione synthesis can enhance cycloheximide-induced protection of developing neurons against axotomy. Developmental Brain Research 1997, 102, 285–290. [Google Scholar] [CrossRef]
- Castagné, V.; Clarke, P. G. H. , Cooperation between glutathione depletion and protein synthesis inhibition against naturally occurring neuronal death. Neuroscience 1998, 86, 895–902. [Google Scholar] [CrossRef]
- Corpe, C. P.; Tu, H.; Eck, P.; Wang, J.; Faulhaber-Walter, R.; Schnermann, J.; Margolis, S.; Padayatty, S.; Sun, H.; Wang, Y.; Nussbaum, R. L.; Espey, M. G.; Levine, M. , Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. J Clin Invest 2010, 120, 1069–83. [Google Scholar] [CrossRef]
- Ferrada, L.; Magdalena, R.; Barahona, M. J.; Ramírez, E.; Sanzana, C.; Gutiérrez, J.; Nualart, F. , Two Distinct Faces of Vitamin C: AA vs. DHA. Antioxidants (Basel) 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S. J.; Levine, M. , Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016, 22, 463–93. [Google Scholar] [CrossRef]
- Diliberto, E. J.; Allen, P. L. , Semidehydroascorbate as a product of the enzymic conversion of dopamine to norepinephrine. Coupling of semidehydroascorbate reductase to dopamine-beta-hydroxylase. Mol Pharmacol 1980, 17, 421–426. [Google Scholar] [PubMed]
- Qiu, S.; Li, L.; Weeber, E. J.; May, J. M. , Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res 2007, 85, 1046–56. [Google Scholar] [CrossRef]
- Eldridge, C. F.; Bunge, M. B.; Bunge, R. P.; Wood, P. M. , Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 1987, 105, 1023–34. [Google Scholar] [CrossRef]
- Covarrubias-Pinto, A.; Acuña, A. I.; Beltrán, F. A.; Torres-Díaz, L.; Castro, M. A. , Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders. Int J Mol Sci 2015, 16, 28194–217. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Luchowska-Kocot, D.; Kiełczykowska, M.; Musik, I.; Kurzepa, J. , Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 2017, 9. [Google Scholar] [CrossRef]
- Moretti, M.; Fraga, D. B.; Rodrigues, A. L. S. , Ascorbic Acid to Manage Psychiatric Disorders. CNS Drugs 2017, 31, 571–583. [Google Scholar] [CrossRef]
- Renner, O.; Burkard, M.; Michels, H.; Vollbracht, C.; Sinnberg, T.; Venturelli, S. , Parenteral high-dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021, 58. [Google Scholar] [CrossRef]
- De Mello, F. G. , The ontogeny of dopamine-dependent increase of adenosine 3',5'-cyclic monophosphate in the chick retina. J Neurochem 1978, 31, 1049–53. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S. , Role of glutamate in the development of visual pathways. Frontiers in Ophthalmology 2023, 3. [Google Scholar] [CrossRef]
- Domith, I.; Socodato, R.; Portugal, C. C.; Munis, A. F.; Duarte-Silva, A. T.; Paes-de-Carvalho, R. , Vitamin C modulates glutamate transport and NMDA receptor function in the retina. J Neurochem 2018, 144, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Telegina, D. V.; Antonenko, A. K.; Fursova, A. Z.; Kolosova, N. G. , The glutamate/GABA system in the retina of male rats: effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1. Biogerontology 2022, 23, 571–585. [Google Scholar] [CrossRef]
- do Nascimento, J. L.; de Mello, F. G. , Induced release of gamma-aminobutyric acid by a carrier-mediated, high-affinity uptake of L-glutamate in cultured chick retina cells. J Neurochem 1985, 45, 1820–7. [Google Scholar] [CrossRef]
- Schitine, C. S.; de Mello, F. G.; Reis, R. A. , Neurochemical plasticity of Müller cells after retinal injury: overexpression of GAT-3 may potentiate excitotoxicity. Neural Regen Res 2015, 10, 1376–8. [Google Scholar]
- de Almeida, O. M.; Gardino, P. F.; Loureiro dos Santos, N. E.; Yamasaki, E. N.; de Mello, M. C.; Hokoç, J. N.; de Mello, F. G. , Opposite roles of GABA and excitatory amino acids on the control of GAD expression in cultured retina cells. Brain research 2002, 925, 89–99. [Google Scholar] [CrossRef]
- Socodato, R.; Santiago, F. N.; Portugal, C. C.; Domith, I.; Encarnação, T. G.; Loiola, E. C.; Ventura, A. L.; Cossenza, M.; Relvas, J. B.; Castro, N. G.; Paes-de-Carvalho, R. , Dopamine promotes NMDA receptor hypofunction in the retina through D(1) receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation. Sci Rep 2017, 7, 40912. [Google Scholar] [CrossRef]
- Lowry, W. E.; Huang, J.; Ma, Y. C.; Ali, S.; Wang, D.; Williams, D. M.; Okada, M.; Cole, P. A.; Huang, X. Y. , Csk, a critical link of g protein signals to actin cytoskeletal reorganization. Dev Cell 2002, 2, 733–44. [Google Scholar] [CrossRef]
- Salter, M. W.; Kalia, L. V. , Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 2004, 5, 317–28. [Google Scholar] [CrossRef]
- Batty, N. J.; Fenrich, K. K.; Fouad, K. , The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neuroscience Letters 2017, 652, 56–63. [Google Scholar] [CrossRef]
- Lankford, K.; De Mello, F. G.; Klein, W. L. , A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retina neurons. Neurosci Lett 1987, 75, 169–74. [Google Scholar] [CrossRef] [PubMed]
- da Encarnação, T. G.; Portugal, C. C.; Nogueira, C. E.; Santiago, F. N.; Socodato, R.; Paes-de-Carvalho, R. , Dopamine Promotes Ascorbate Release from Retinal Neurons: Role of D(1) Receptors and the Exchange Protein Directly Activated by cAMP type 2 (EPAC2). Mol Neurobiol 2018, 55, 7858–7871. [Google Scholar] [CrossRef] [PubMed]
- Portugal, C. C.; da Encarnacao, T. G.; Domith, I.; Dos Santos Rodrigues, A.; de Oliveira, N. A.; Socodato, R.; Paes-de-Carvalho, R. , Dopamine-Induced Ascorbate Release From Retinal Neurons Involves Glutamate Release, Activation of AMPA/Kainate Receptors and Downstream Signaling Pathways. Front Neurosci 2019, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Paes-De-Carvalho, R. , Adenosine as a signaling molecule in the retina: biochemical and developmental aspects. An Acad Bras Cienc 2002, 74, 437–51. [Google Scholar] [CrossRef] [PubMed]
- Garthwaite, J. , Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 1991, 14, 60–7. [Google Scholar] [CrossRef]
- Sohocki, M. M.; Daiger, S. P.; Bowne, S. J.; Rodriquez, J. A.; Northrup, H.; Heckenlively, J. R.; Birch, D. G.; Mintz-Hittner, H.; Ruiz, R. S.; Lewis, R. A.; Saperstein, D. A.; Sullivan, L. S. , Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 2001, 17, 42–51. [Google Scholar] [CrossRef]
- Kumaran, N.; Michaelides, M.; Smith, A. J.; Ali, R. R.; Bainbridge, J. W. B. , Retinal gene therapy. Br Med Bull 2018, 126, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Carss, K. J.; Arno, G.; Erwood, M.; Stephens, J.; Sanchis-Juan, A.; Hull, S.; Megy, K.; Grozeva, D.; Dewhurst, E.; Malka, S.; Plagnol, V.; Penkett, C.; Stirrups, K.; Rizzo, R.; Wright, G.; Josifova, D.; Bitner-Glindzicz, M.; Scott, R. H.; Clement, E.; Allen, L.; Armstrong, R.; Brady, A. F.; Carmichael, J.; Chitre, M.; Henderson, R. H. H.; Hurst, J.; MacLaren, R. E.; Murphy, E.; Paterson, J.; Rosser, E.; Thompson, D. A.; Wakeling, E.; Ouwehand, W. H.; Michaelides, M.; Moore, A. T.; Webster, A. R.; Raymond, F. L. , Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. Am J Hum Genet 2017, 100, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Wong, W. L.; Su, X.; Li, X.; Cheung, C. M.; Klein, R.; Cheng, C. Y.; Wong, T. Y. , Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014, 2, e106–16. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, M.; Keenan, T. D. L.; Guymer, R. H.; Chakravarthy, U.; Schmitz-Valckenberg, S.; Klaver, C. C.; Wong, W. T.; Chew, E. Y. , Age-related macular degeneration. Nat Rev Dis Primers 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Saaddine, J. B.; Honeycutt, A. A.; Narayan, K. M.; Zhang, X.; Klein, R.; Boyle, J. P. , Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005-2050. Arch Ophthalmol 2008, 126, 1740–7. [Google Scholar] [CrossRef]
- Lucchesi, M.; Marracci, S.; Amato, R.; Filippi, L.; Cammalleri, M.; Dal Monte, M. , Neurosensory Alterations in Retinopathy of Prematurity: A Window to Neurological Impairments Associated to Preterm Birth. Biomedicines 2022, 10. [Google Scholar] [CrossRef]
- Quigley, H. A. , Understanding Glaucomatous Optic Neuropathy: The Synergy Between Clinical Observation and Investigation. Annu Rev Vis Sci 2016, 2, 235–254. [Google Scholar] [CrossRef]
- Amerasinghe, N.; Zhang, J.; Thalamuthu, A.; He, M.; Vithana, E. N.; Viswanathan, A.; Wong, T. Y.; Foster, P. J.; Aung, T. , The heritability and sibling risk of angle closure in Asians. Ophthalmology 2011, 118, 480–5. [Google Scholar] [CrossRef]
- Nickells, R. W. , Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv Ophthalmol 1999, 43 Suppl 1, S151–61. [Google Scholar] [CrossRef]
- Tham, Y. C.; Li, X.; Wong, T. Y.; Quigley, H. A.; Aung, T.; Cheng, C. Y. , Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–90. [Google Scholar] [CrossRef]
- Bravo Filho, V. T.; Ventura, R. U.; Brandt, C. T.; Sarteschi, C.; Ventura, M. C. , [Visual impairment impact on the quality of life of the elderly population that uses the public health care system from the western countryside of Pernambuco State, Brazil]. Arq Bras Oftalmol 2012, 75, 161–5. [Google Scholar] [CrossRef]
- Allison, K.; Patel, D.; Alabi, O. , Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef]
- Lusthaus, J.; Goldberg, I. , Current management of glaucoma. Med J Aust 2019, 210, 180–187. [Google Scholar] [CrossRef]
- Lo, J.; Mehta, K.; Dhillon, A.; Huang, Y. K.; Luo, Z.; Nam, M. H.; Al Diri, I.; Chang, K. C. , Therapeutic strategies for glaucoma and optic neuropathies. Mol Aspects Med 2023, 94, 101219. [Google Scholar] [CrossRef]
- Killer, H. E.; Pircher, A. , Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond) 2018, 32, 924–930. [Google Scholar] [CrossRef]
- Souza Monteiro de Araújo, D.; De Logu, F.; Adembri, C.; Rizzo, S.; Janal, M. N.; Landini, L.; Magi, A.; Mattei, G.; Cini, N.; Pandolfo, P.; Geppetti, P.; Nassini, R.; Calaza, K. d. C. , TRPA1 mediates damage of the retina induced by ischemia and reperfusion in mice. Cell Death & Disease 2020, 11, 633. [Google Scholar]
- Heng, L. Z.; Comyn, O.; Peto, T.; Tadros, C.; Ng, E.; Sivaprasad, S.; Hykin, P. G. , Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med 2013, 30, 640–50. [Google Scholar] [CrossRef] [PubMed]
- Lechner, J.; O'Leary, O. E.; Stitt, A. W. , The pathology associated with diabetic retinopathy. Vision Res 2017, 139, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lo, A. C. Y. , Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci 2018, 19. [Google Scholar] [CrossRef]
- Zheng, Y.; He, M.; Congdon, N. , The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 2012, 60, 428–31. [Google Scholar] [PubMed]
- Ting, D. S.; Cheung, G. C.; Wong, T. Y. , Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol 2016, 44, 260–77. [Google Scholar] [CrossRef] [PubMed]
- Leasher, J. L.; Bourne, R. R.; Flaxman, S. R.; Jonas, J. B.; Keeffe, J.; Naidoo, K.; Pesudovs, K.; Price, H.; White, R. A.; Wong, T. Y.; Resnikoff, S.; Taylor, H. R. , Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes Care 2016, 39, 1643–9. [Google Scholar] [CrossRef] [PubMed]
- Barber, A. J.; Baccouche, B. , Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res 2017, 139, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Tanaka, T.; Nawa, H.; Usui, T.; Fukuchi, T.; Ikeda, K.; Abe, H.; Takei, N. , Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 2004, 53, 2412–9. [Google Scholar] [CrossRef]
- Gastinger, M. J.; Singh, R. S.; Barber, A. J. , Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 2006, 47, 3143–50. [Google Scholar] [CrossRef]
- Miya-Coreixas, V. S.; Maggesissi Santos, R.; Carpi Santos, R.; Gardino, P. F.; Calaza, K. , Regulation of GABA content by glucose in the chick retina. Exp Eye Res 2013, 115, 206–15. [Google Scholar] [CrossRef]
- Carpi-Santos, R.; Ferreira, M. J.; Pereira Netto, A. D.; Giestal-de-Araujo, E.; Ventura, A. L. M.; Cossenza, M.; Calaza, K. C. , Early changes in system [Formula: see text] and glutathione in the retina of diabetic rats. Exp Eye Res 2016, 146, 35–42. [Google Scholar] [CrossRef]
- Carpi-Santos, R.; Calaza, K. C. , Alterations in System x(c)(-) Expression in the Retina of Type 1 Diabetic Rats and the Role of Nrf2. Mol Neurobiol 2018, 55, 7941–7948. [Google Scholar] [CrossRef]
- Wong, T. Y.; Cheung, C. M.; Larsen, M.; Sharma, S.; Simó, R. , Diabetic retinopathy. Nat Rev Dis Primers 2016, 2, 16012. [Google Scholar] [CrossRef]
- Barber, A. J.; Lieth, E.; Khin, S. A.; Antonetti, D. A.; Buchanan, A. G.; Gardner, T. W. , Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998, 102, 783–91. [Google Scholar] [CrossRef]
- Mendonca, H. R.; Carpi-Santos, R.; da Costa Calaza, K.; Blanco Martinez, A. M. , Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res 2020, 15, 625–635. [Google Scholar]
- Carpineto, P.; Toto, L.; Aloia, R.; Ciciarelli, V.; Borrelli, E.; Vitacolonna, E.; Di Nicola, M.; Di Antonio, L.; Mastropasqua, R. , Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye (Lond) 2016, 30, 673–9. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Li, P.; Tang, L.; Bai, Y. , Casein Kinase 2-Interacting Protein-1 Alleviates High Glucose-Reduced Autophagy, Oxidative Stress, and Apoptosis in Retinal Pigment Epithelial Cells via Activating the p62/KEAP1/NRF2 Signaling Pathway. J Ophthalmol 2021, 2021, 6694050. [Google Scholar] [CrossRef]
- Lopes de Faria, J. M.; Duarte, D. A.; Simó, R.; García-Ramirez, M.; Dátilo, M. N.; Pasqualetto, F. C.; Lopes de Faria, J. B. , δ Opioid Receptor Agonism Preserves the Retinal Pigmented Epithelial Cell Tight Junctions and Ameliorates the Retinopathy in Experimental Diabetes. Invest Ophthalmol Vis Sci 2019, 60, 3842–3853. [Google Scholar] [CrossRef]
- Feng, L.; Liang, L.; Zhang, S.; Yang, J.; Yue, Y.; Zhang, X. , HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy 2022, 18, 320–339. [Google Scholar] [CrossRef] [PubMed]
- Janani, R.; Anitha, R. E.; Perumal, M. K.; Divya, P.; Baskaran, V. , Astaxanthin mediated regulation of VEGF through HIF1α and XBP1 signaling pathway: An insight from ARPE-19 cell and streptozotocin mediated diabetic rat model. Exp Eye Res 2021, 206, 108555. [Google Scholar] [CrossRef] [PubMed]
- Gao, L. M.; Fu, S.; Liu, F.; Wu, H. B.; Li, W. J. , Astragalus Polysaccharide Regulates miR-182/Bcl-2 Axis to Relieve Metabolic Memory through Suppressing Mitochondrial Damage-Mediated Apoptosis in Retinal Pigment Epithelial Cells. Pharmacology 2021, 106, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. , Oxidative stress and diabetic complications. Circ Res 2010, 107, 1058–70. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R. A.; Mishra, M. , Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta 2015, 1852, 2474–83. [Google Scholar] [CrossRef]
- Rodríguez, M. L.; Pérez, S.; Mena-Mollá, S.; Desco, M. C.; Ortega Á, L. , Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. Oxid Med Cell Longev 2019, 2019, 4940825. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Sun, Y.; Zhu, J.; Wang, X.; Ji, C.; Zhang, J.; Chen, S.; Yu, Y.; Xu, W.; Qian, H. , Mesenchymal stem cells-derived small extracellular vesicles alleviate diabetic retinopathy by delivering NEDD4. Stem Cell Res Ther 2022, 13, 293. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Zhang, D.; Han, W. , Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. Bioengineered 2022, 13, 8240–8254. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ye, Z.; Yang, W.; Xu, Y. J.; Tan, C. P.; Liu, Y. , Blueberry Anthocyanins from Commercial Products: Structure Identification and Potential for Diabetic Retinopathy Amelioration. Molecules 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- D'Agata, V.; D'Amico, A. G.; Maugeri, G.; Bucolo, C.; Rossi, S.; Giunta, S. , Carnosol attenuates high glucose damage in human retinal endothelial cells through regulation of ERK/Nrf2/HO-1 pathway. J Asian Nat Prod Res 2023, 25, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Albert-Garay, J. S.; Riesgo-Escovar, J. R.; Salceda, R. , High glucose concentrations induce oxidative stress by inhibiting Nrf2 expression in rat Müller retinal cells in vitro. Sci Rep 2022, 12, 1261. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Chen, L.; Zhang, Z.; Cui, L.; Wei, T. , Loss of pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 has protective effects on high glucose-injured retinal ganglion cells via the effect on the Akt-GSK-3β-Nrf2 pathway. Inflamm Res 2023, 72, 373–385. [Google Scholar] [CrossRef]
- Fang, J.; Bai, W.; Yang, L. , Astaxanthin inhibits oxidative stress and apoptosis in diabetic retinopathy. Acta Histochem 2023, 125, 152069. [Google Scholar] [CrossRef]
- Yang, X.; Li, D. , Tricin attenuates diabetic retinopathy by inhibiting oxidative stress and angiogenesis through regulating Sestrin2/Nrf2 signaling. Hum Exp Toxicol 2023, 42, 9603271231171642. [Google Scholar] [CrossRef]
- Bannai, S.; Tateishi, N. , Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol 1986, 89, 1–8. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, H.; Bai, S.; Xu, Z.; Jiao, Y. , Loss of serine/threonine protein kinase 25 in retinal ganglion cells ameliorates high glucose-elicited damage through regulation of the AKT-GSK-3β/Nrf2 pathway. Biochem Biophys Res Commun 2022, 600, 87–93. [Google Scholar] [CrossRef]
- Hayes, J. D.; Chowdhry, S.; Dinkova-Kostova, A. T.; Sutherland, C. , Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem Soc Trans 2015, 43, 611–20. [Google Scholar] [CrossRef] [PubMed]
- Rojo, A. I.; Sagarra, M. R.; Cuadrado, A. , GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem 2008, 105, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Rojo, A. I.; Rada, P.; Egea, J.; Rosa, A. O.; López, M. G.; Cuadrado, A. , Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci 2008, 39, 125–32. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Du, X.; Carratú, A.; Gerfen, G. J.; D'Apolito, M.; Giardino, I.; Rasola, A.; Marin, O.; Divakaruni, A. S.; Murphy, A. N.; Shah, M. S.; Brownlee, M. , GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop. Diabetes 2015, 64, 3273–84. [Google Scholar] [CrossRef] [PubMed]
- Miller, W. P.; Toro, A. L.; Barber, A. J.; Dennis, M. D. , REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice. Invest Ophthalmol Vis Sci 2019, 60, 2369–2379. [Google Scholar] [CrossRef]
- Miller, W. P.; Sunilkumar, S.; Giordano, J. F.; Toro, A. L.; Barber, A. J.; Dennis, M. D. , The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. J Biol Chem 2020, 295, 7350–7361. [Google Scholar] [CrossRef]
- Schrufer, T. L.; Antonetti, D. A.; Sonenberg, N.; Kimball, S. R.; Gardner, T. W.; Jefferson, L. S. , Ablation of 4E-BP1/2 prevents hyperglycemia-mediated induction of VEGF expression in the rodent retina and in Muller cells in culture. Diabetes 2010, 59, 2107–16. [Google Scholar] [CrossRef]
- Dennis, M. D.; Kimball, S. R.; Fort, P. E.; Jefferson, L. S. , Regulated in development and DNA damage 1 is necessary for hyperglycemia-induced vascular endothelial growth factor expression in the retina of diabetic rodents. J Biol Chem 2015, 290, 3865–74. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, X. , Diosgenin protects retinal pigment epithelial cells from inflammatory damage and oxidative stress induced by high glucose by activating AMPK/Nrf2/HO-1 pathway. Immun Inflamm Dis 2022, 10, e698. [Google Scholar] [CrossRef]
- Barouch, F. C.; Miyamoto, K.; Allport, J. R.; Fujita, K.; Bursell, S. E.; Aiello, L. P.; Luscinskas, F. W.; Adamis, A. P. , Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci 2000, 41, 1153–8. [Google Scholar]
- Joussen, A. M.; Poulaki, V.; Le, M. L.; Koizumi, K.; Esser, C.; Janicki, H.; Schraermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; Kern, T. S.; Adamis, A. P. , A central role for inflammation in the pathogenesis of diabetic retinopathy. Faseb j 2004, 18, 1450–2. [Google Scholar] [CrossRef] [PubMed]
- Kasza, M.; Meleg, J.; Vardai, J.; Nagy, B., Jr.; Szalai, E.; Damjanovich, J.; Csutak, A.; Ujhelyi, B.; Nagy, V. , Plasma E-selectin levels can play a role in the development of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2017, 255, 25–30. [Google Scholar] [CrossRef]
- Miyamoto, K.; Khosrof, S.; Bursell, S. E.; Rohan, R.; Murata, T.; Clermont, A. C.; Aiello, L. P.; Ogura, Y.; Adamis, A. P. , Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A 1999, 96, 10836–41. [Google Scholar] [CrossRef]
- Schröder, S.; Palinski, W.; Schmid-Schönbein, G. W. , Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991, 139, 81–100. [Google Scholar]
- Boss, J. D.; Singh, P. K.; Pandya, H. K.; Tosi, J.; Kim, C.; Tewari, A.; Juzych, M. S.; Abrams, G. W.; Kumar, A. , Assessment of Neurotrophins and Inflammatory Mediators in Vitreous of Patients With Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017, 58, 5594–5603. [Google Scholar] [CrossRef] [PubMed]
- Koleva-Georgieva, D. N.; Sivkova, N. P.; Terzieva, D. , Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy. Folia Med (Plovdiv) 2011, 53, 44–50. [Google Scholar]
- Rangasamy, S.; McGuire, P. G.; Franco Nitta, C.; Monickaraj, F.; Oruganti, S. R.; Das, A. , Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One 2014, 9, e108508. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakazawa, M.; Suzuki, K.; Yamazaki, H.; Miyagawa, Y. , Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 2011, 55, 256–263. [Google Scholar] [CrossRef]
- Abcouwer, S. F. , Müller Cell-Microglia Cross Talk Drives Neuroinflammation in Diabetic Retinopathy. Diabetes 2017, 66, 261–263. [Google Scholar] [CrossRef]
- Sorrentino, F. S.; Allkabes, M.; Salsini, G.; Bonifazzi, C.; Perri, P. , The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci 2016, 162, 54–9. [Google Scholar] [CrossRef]
- Xu, Z.; Li, S.; Li, K.; Wang, X.; Li, X.; An, M.; Yu, X.; Long, X.; Zhong, R.; Liu, Q.; Wang, X.; Yang, Y.; Tian, N. , Urolithin A ameliorates diabetic retinopathy via activation of the Nrf2/HO-1 pathway. Endocr J 2022, 69, 971–982. [Google Scholar] [CrossRef]
- Mansour, S. E.; Browning, D. J.; Wong, K.; Flynn, H. W., Jr.; Bhavsar, A. R. , The Evolving Treatment of Diabetic Retinopathy. Clin Ophthalmol 2020, 14, 653–678. [Google Scholar] [CrossRef]
- Jakus, V.; Rietbrock, N. , Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 2004, 53, 131–42. [Google Scholar] [CrossRef]
- Haritoglou, C.; Gerss, J.; Sauerland, C.; Kampik, A.; Ulbig, M. W. , Effect of calcium dobesilate on occurrence of diabetic macular oedema (CALDIRET study): randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2009, 373, 1364–71. [Google Scholar] [CrossRef]
- Mayer-Davis, E. J.; Bell, R. A.; Reboussin, B. A.; Rushing, J.; Marshall, J. A.; Hamman, R. F. , Antioxidant nutrient intake and diabetic retinopathy: the San Luis Valley Diabetes Study. Ophthalmology 1998, 105, 2264–70. [Google Scholar] [CrossRef]
- Millen, A. E.; Klein, R.; Folsom, A. R.; Stevens, J.; Palta, M.; Mares, J. A. , Relation between intake of vitamins C and E and risk of diabetic retinopathy in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr 2004, 79, 865–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hua, Z.; Zheng, Z.; Ma, X.; Zhu, L.; Li, Y. , Acteoside inhibits high glucose-induced oxidative stress injury in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway. Exp Eye Res 2023, 232, 109496. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lu, S.; Wang, L.; Liu, S.; Zhang, L.; Du, J.; Wu, Z.; Huang, X. , Effects of amygdalin on ferroptosis and oxidative stress in diabetic retinopathy progression via the NRF2/ARE signaling pathway. Exp Eye Res 2023, 234, 109569. [Google Scholar] [CrossRef] [PubMed]
- Ail, D.; Ren, D.; Brazhnikova, E.; Nouvel-Jaillard, C.; Bertin, S.; Mirashrafi, S. B.; Fisson, S.; Dalkara, D. , Systemic and local immune responses to intraocular AAV vector administration in non-human primates. Mol Ther Methods Clin Dev 2022, 24, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Maguire, A. M. , Lessons Learned from the Development of the First FDA-Approved Gene Therapy Drug, Voretigene Neparvovec-rzyl. Cold Spring Harb Perspect Med 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Haider, N. B.; Ikeda, A.; Naggert, J. K.; Nishina, P. M. , Genetic modifiers of vision and hearing. Hum Mol Genet 2002, 11, 1195–206. [Google Scholar] [CrossRef]
- Dipple, K. M.; McCabe, E. R. , Modifier genes convert "simple" Mendelian disorders to complex traits. Mol Genet Metab 2000, 71, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Toms, M.; Ward, N.; Moosajee, M. , Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023, 14. [Google Scholar] [CrossRef]
- Maeder, M. L.; Stefanidakis, M.; Wilson, C. J.; Baral, R.; Barrera, L. A.; Bounoutas, G. S.; Bumcrot, D.; Chao, H.; Ciulla, D. M.; DaSilva, J. A.; Dass, A.; Dhanapal, V.; Fennell, T. J.; Friedland, A. E.; Giannoukos, G.; Gloskowski, S. W.; Glucksmann, A.; Gotta, G. M.; Jayaram, H.; Haskett, S. J.; Hopkins, B.; Horng, J. E.; Joshi, S.; Marco, E.; Mepani, R.; Reyon, D.; Ta, T.; Tabbaa, D. G.; Samuelsson, S. J.; Shen, S.; Skor, M. N.; Stetkiewicz, P.; Wang, T.; Yudkoff, C.; Myer, V. E.; Albright, C. F.; Jiang, H. , Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 2019, 25, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Nirenberg, S.; Pandarinath, C. , Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci U S A 2012, 109, 15012–7. [Google Scholar] [CrossRef]
- Batabyal, S.; Gajjeraman, S.; Pradhan, S.; Bhattacharya, S.; Wright, W.; Mohanty, S. , Sensitization of ON-bipolar cells with ambient light activatable multi-characteristic opsin rescues vision in mice. Gene Ther 2021, 28, 162–176. [Google Scholar] [CrossRef]
- Sahel, J. A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J. N.; Esposti, S. D.; Delaux, A.; de Saint Aubert, J. B.; de Montleau, C.; Gutman, E.; Audo, I.; Duebel, J.; Picaud, S.; Dalkara, D.; Blouin, L.; Taiel, M.; Roska, B. , Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med 2021, 27, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Miltner, A. M.; La Torre, A. , Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019, 248, 118–128. [Google Scholar] [CrossRef]
- Lahne, M.; Nagashima, M.; Hyde, D. R.; Hitchcock, P. F. , Reprogramming Müller Glia to Regenerate Retinal Neurons. Annu Rev Vis Sci 2020, 6, 171–193. [Google Scholar] [CrossRef]
- Goldman, D. , Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 2014, 15, 431–42. [Google Scholar] [CrossRef]
- Blackshaw, S. , Why Has the Ability to Regenerate Following CNS Injury Been Repeatedly Lost Over the Course of Evolution? Front Neurosci 2022, 16, 831062. [Google Scholar] [CrossRef]
- Hoang, T.; Wang, J.; Boyd, P.; Wang, F.; Santiago, C.; Jiang, L.; Yoo, S.; Lahne, M.; Todd, L. J.; Jia, M.; Saez, C.; Keuthan, C.; Palazzo, I.; Squires, N.; Campbell, W. A.; Rajaii, F.; Parayil, T.; Trinh, V.; Kim, D. W.; Wang, G.; Campbell, L. J.; Ash, J.; Fischer, A. J.; Hyde, D. R.; Qian, J.; Blackshaw, S. , Gene regulatory networks controlling vertebrate retinal regeneration. Science 2020, 370. [Google Scholar] [CrossRef]
- Pollak, J.; Wilken, M. S.; Ueki, Y.; Cox, K. E.; Sullivan, J. M.; Taylor, R. J.; Levine, E. M.; Reh, T. A. , ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development 2013, 140, 2619–31. [Google Scholar] [CrossRef] [PubMed]
- Ueki, Y.; Wilken, M. S.; Cox, K. E.; Chipman, L.; Jorstad, N.; Sternhagen, K.; Simic, M.; Ullom, K.; Nakafuku, M.; Reh, T. A. , Transgenic expression of the proneural transcription factor Ascl1 in Muller glia stimulates retinal regeneration in young mice. Proc Natl Acad Sci U S A 2015, 112, 13717–22. [Google Scholar] [CrossRef] [PubMed]
- Jorstad, N. L.; Wilken, M. S.; Grimes, W. N.; Wohl, S. G.; VandenBosch, L. S.; Yoshimatsu, T.; Wong, R. O.; Rieke, F.; Reh, T. A. , Stimulation of functional neuronal regeneration from Muller glia in adult mice. Nature 2017, 548, 103–107. [Google Scholar] [CrossRef]
- Todd, L.; Hooper, M. J.; Haugan, A. K.; Finkbeiner, C.; Jorstad, N.; Radulovich, N.; Wong, C. K.; Donaldson, P. C.; Jenkins, W.; Chen, Q.; Rieke, F.; Reh, T. A. , Efficient stimulation of retinal regeneration from Muller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep 2021, 37, 109857. [Google Scholar] [CrossRef] [PubMed]
- Todd, L.; Jenkins, W.; Finkbeiner, C.; Hooper, M. J.; Donaldson, P. C.; Pavlou, M.; Wohlschlegel, J.; Ingram, N.; Rieke, F.; Reh, T. A.; Mu, X. , Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors. Sci Adv 2022, 8, eabq7219. [Google Scholar] [CrossRef]
- Xiao, D.; Jin, K.; Qiu, S.; Lei, Q.; Huang, W.; Chen, H.; Su, J.; Xu, Q.; Xu, Z.; Gou, B.; Tie, X.; Liu, F.; Liu, S.; Liu, Y.; Xiang, M. , In vivo Regeneration of Ganglion Cells for Vision Restoration in Mammalian Retinas. Front Cell Dev Biol 2021, 9, 755544. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Su, J.; Hu, X.; Zhou, C.; Li, H.; Chen, Z.; Xiao, Q.; Wang, B.; Wu, W.; Sun, Y.; Zhou, Y.; Tang, C.; Liu, F.; Wang, L.; Feng, C.; Liu, M.; Li, S.; Zhang, Y.; Xu, H.; Yao, H.; Shi, L.; Yang, H. , Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020, 181, 590–603.e16. [Google Scholar] [CrossRef]
- Yao, K.; Qiu, S.; Wang, Y. V.; Park, S. J. H.; Mohns, E. J.; Mehta, B.; Liu, X.; Chang, B.; Zenisek, D.; Crair, M. C.; Demb, J. B.; Chen, B. , Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018, 560, 484–488. [Google Scholar] [CrossRef]
- Le, N.; Appel, H.; Pannullo, N.; Hoang, T.; Blackshaw, S. , Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina. Front Cell Dev Biol 2022, 10, 914386. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. L.; Zhang, C. L. , Therapeutic Potential of PTBP1 Inhibition, If Any, Is Not Attributed to Glia-to-Neuron Conversion. Annu Rev Neurosci 2023, 46, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, J.; Chen, B. , Critical examination of Ptbp1-mediated glia-to-neuron conversion in the mouse retina. Cell Rep 2022, 39, 110960. [Google Scholar] [CrossRef]
- Blackshaw, S.; Sanes, J. R. , Turning lead into gold: reprogramming retinal cells to cure blindness. J Clin Invest 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Ling, J. P.; Bygrave, A. M.; Santiago, C. P.; Carmen-Orozco, R. P.; Trinh, V. T.; Yu, M.; Li, Y.; Liu, Y.; Bowden, K. D.; Duncan, L. H.; Han, J.; Taneja, K.; Dongmo, R.; Babola, T. A.; Parker, P.; Jiang, L.; Leavey, P. J.; Smith, J. J.; Vistein, R.; Gimmen, M. Y.; Dubner, B.; Helmenstine, E.; Teodorescu, P.; Karantanos, T.; Ghiaur, G.; Kanold, P. O.; Bergles, D.; Langmead, B.; Sun, S.; Nielsen, K. J.; Peachey, N.; Singh, M. S.; Dalton, W. B.; Rajaii, F.; Huganir, R. L.; Blackshaw, S. , Cell-specific regulation of gene expression using splicing-dependent frameshifting. Nat Commun 2022, 13, 5773. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fang, K.; Yan, Z.; Zhang, H.; Geng, G.; Wu, W.; Xu, D.; Zhang, H.; Zhong, N.; Wang, Q.; Cai, M.; Zuo, E.; Yang, H. , Develop an efficient and specific AAV-based labeling system for Muller glia in mice. Sci Rep 2022, 12, 22410. [Google Scholar] [CrossRef]
- Tresenrider, A.; Hooper, M.; Todd, L.; Kierney, F.; Blasdel, N.; Trapnell, C.; Reh, T. A. , A multiplexed, single-cell sequencing screen identifies compounds that increase neurogenic reprogramming of murine Muller glia. bioRxiv 2023. [Google Scholar]
- Oliveira-Valenca, V. M.; Bosco, A.; Vetter, M. L.; Silveira, M. S. , On the Generation and Regeneration of Retinal Ganglion Cells. Front Cell Dev Biol 2020, 8, 581136. [Google Scholar] [CrossRef]
- Soucy, J. R.; Aguzzi, E. A.; Cho, J.; Gilhooley, M. J.; Keuthan, C.; Luo, Z.; Monavarfeshani, A.; Saleem, M. A.; Wang, X. W.; Wohlschlegel, J.; Baranov, P.; Di Polo, A.; Fortune, B.; Gokoffski, K. K.; Goldberg, J. L.; Guido, W.; Kolodkin, A. L.; Mason, C. A.; Ou, Y.; Reh, T. A.; Ross, A. G.; Samuels, B. C.; Welsbie, D.; Zack, D. J.; Johnson, T. V. , Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023, 18, 64. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
