Submitted:
24 December 2023
Posted:
26 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
2.1. Plant material and extract preparation
2.2. Biochemical contents analysis
2.3. Screening of seed extract for antibacterial activity
2.4. Screening of seed extract for Qs inhibitor activity
2.4.1. Performing the biofilm test
2.4.2. Performing the elastolytic test
2.4.3. Performing the pyocyanin test
2.5. Molecular docking
2.6. Statistical analysis
3. Results
3.1. HPLC analysis of compounds
3.2. Antibacterial activity
3.3. Confirmation of the anti-QS activity
3.4. Molecular docking
3.5. Discussion
6. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Studies involving plants
Abbreviations
References
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic Resistance. J Infect Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas Aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct Target Ther. 2022, 7. [Google Scholar] [CrossRef]
- Malešević, M.; di Lorenzo, F.; Filipić, B.; Stanisavljević, N.; Novović, K.; Senerovic, L.; Polović, N.; Molinaro, A.; Kojić, M.; Jovčić, B. Pseudomonas Aeruginosa Quorum Sensing Inhibition by Clinical Isolate Delftia Tsuruhatensis 11304: Involvement of N-Octadecanoylhomoserine Lactones. Sci Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Kadiroğlu, P.; Ekici, H. Prediction of Bioactive Properties of Walnut Green Husks Using FT-IR Spectroscopy. Akademik Gıda. 2018, 16, 20–26. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, D.T.; Kumara, K.A.H.; Kaushalya, K.A.D.; Chandrika, U.G.; Alwis, D.D.D.H. Phytochemical Screening, Total Polyphenol, Flavonoid Content, in Vitro Antioxidant and Antibacterial Activities of Sri Lankan Varieties of Murraya Koenigii and Micromelum Minutum Leaves. Heliyon 2021, 7. [Google Scholar] [CrossRef]
- Chen, B.W.; Pan, H.F.; Zhao, W.; He, J.L.; Zhao, F.; Pang, X.L.; Zhang, Q. Effects of Pre-Processing on the Active Compounds before Drying Eucommia Ulmoides Leaves. Food Science and Technology (Brazil) 2023, 43. [Google Scholar] [CrossRef]
- Khan, A.; Ikram, M.; Hahm, J.R.; Kim, M.O. Antioxidant and Anti-inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants 2020, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Liang Q; Chen H; Zhou X; Deng Q; Hu E; Zhao C; Gong X Optimized Microwave-assistant Extraction Combined Ultrasonic Pretreatment of Flavonoids from Periploca Forrestii Schltr. and Evaluation of Its Anti-allergic Activity. Electrophoresis 2017, 1113–1121. [CrossRef]
- Onur Çağlar, H.; Yılmaz Süslüer, S.; Kavaklı, Ş.; Gündüz, C.; Ertürk, B.; Özkınay, F.; Haydaroğlu, A.; Üniversitesi, E.; Bilimleri Enstitüsü, S.; Hücre Anabilim Dalı, K.; et al. Ellagic Acid Induced Expression of MiRNAs in Breast Cancer Stem Cells and Effect of Ellagic Acid on Apoptosis. 2017, 56. [Google Scholar]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020, 25. [Google Scholar] [CrossRef]
- Ming, D.; Wang, D.; Cao, F.; Xiang, H.; Mu, D.; Cao, J.; Li, B.; Zhong, L.; Dong, X.; Zhong, X.; et al. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus Aureus. Front Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Šuran, J.; Cepanec, I.; Mašek, T.; Starčević, K.; Gajger, I.T.; Vranješ, M.; Radić, B.; Radić, S.; Kosalec, I.; Vlainić, J. Nonaqueous Polyethylene Glycol as a Safer Alternative to Ethanolic Propolis Extracts with Comparable Antioxidant and Antimicrobial Activity. Antioxidants 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Galal, T.M.; Al-Yasi, H.M.; Fawzy, M.A.; Abdelkader, T.G.; Hamza, R.Z.; Eid, E.M.; Ali, E.F. Evaluation of the Phytochemical and Pharmacological Potential of Taif’s Rose (Rosa Damascena Mill Var. Trigintipetala) for Possible Recycling of Pruning Wastes. Life 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Attallah, N.G.M.; El-Sherbeni, S.A.; El-Kadem, A.H.; Elekhnawy, E.; El-Masry, T.A.; Elmongy, E.I.; Altwaijry, N.; Negm, W.A. Elucidation of the Metabolite Profile of Yucca Gigantea and Assessment of Its Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities. Molecules 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.-B.; Callaghan, K.D.; Ghio, A.J.; Haile, D.J.; Yang, F.; Yang Hepcidin, F.; Yang, F. Expression and Iron Transport in Alveolar Macrophages. Am J Physiol Lung Cell Mol Physiol. 2006, 291, 417–425. [Google Scholar] [CrossRef]
- Guo, S.; Guo, R.; Xia, Y.; Dong, T.; Wang, H.; Zhan, H. Quantitative Analysis of Fermented Aerial Part of Bupleurum Chinense and Prediction of Their Antimicrobial Activity. Zhongguo Zhong Yao Za Zhi. 2020, 45, 4238–4245. [Google Scholar] [CrossRef]
- Otsuka, N.; Liu, M.-H.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Anti-Methicillin Resistant Staphylococcus Aureus (MRSA) Compounds Isolated from Laurus Nobilis. 2008, 31. [Google Scholar] [CrossRef] [PubMed]
- Khuda, F.; Alam, N.; Khalil, A.A.K.; Jan, A.; Naureen, F.; Ullah, Z.; Alotaibi, A.; Ullah, R.; Ullah, S.; Shah, Y.; et al. Screening of Rhamnus Purpurea (Edgew.) Leaves for Antimicrobial, Antioxidant, and Cytotoxic Potential. ACS Omega 2022, 7, 22977–22985. [Google Scholar] [CrossRef] [PubMed]
- Eminaoğlu, Ö.; Özcan, M.; Erşen Bak, F.; Yüksel, E.; Akyıldırım Beğen, H. Morphological, Anatomical and Micromorphological Characterization of Rhamnus Microcarpa (Rhamnaceae). Turkish Journal of Biodiversity 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Hamed, M.M.; Refahy, L.A.; Abdel-Aziz, M.S. Evaluation of Antimicrobial Activity of Some Compounds Isolated from Rhamnus Cathartica L. Oriental Journal of Chemistry 2015, 31, 1133–1140. [Google Scholar] [CrossRef]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial Mechanism of Flavonoids against Escherichia Coli ATCC 25922 by Model Membrane Study. Appl Surf Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Rowlett, V.W.; Mallampalli, V.K.P.S.; Karlstaedt, A.; Dowhan, W.; Taegtmeyer, H.; Margolin, W.; Vitrac, H. Impact of Membrane Phospholipid Alterations in Escherichia Coli on Cellular Function and Bacterial Stress Adaptation. 2017. [Google Scholar] [CrossRef]
- Al-Nour, M.Y.; Ibrahim, M.M.; Elsaman, T. Ellagic Acid, Kaempferol, and Quercetin from Acacia Nilotica: Promising Combined Drug With Multiple Mechanisms of Action. Curr Pharmacol Rep. 2019, 5, 255–280. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Huang, C.C.; Chen, C.C.; Yang, K.J.; Huang, C.Y. Inhibition of Staphylococcus Aureus PriA Helicase by Flavonol Kaempferol. Protein Journal 2015, 34, 169–172. [Google Scholar] [CrossRef] [PubMed]
- İlkimen H; Yenikaya C; İmdat G; Tunca E; Bülbül M. Synthesis and Characterization of Proton Transfer Salts Between 2-Aminopyridine Derivatives and Maleamic Acid Derivate Containing Sulfonamide and Their Cu(II) Complexes, and Investigation of Their Effects on Human Erythrocyte Carbonic Anhydrase Isoenzymes. Journal of Natural and Applied Sciences 2017, 21, 480–494. [CrossRef]
- Nouraldin, A.A.M.; Baddour, M.M.; Harfoush, R.A.H.; Essa, S.A.M. Bacteriophage-Antibiotic Synergism to Control Planktonic and Biofilm Producing Clinical Isolates of Pseudomonas Aeruginosa. Alexandria Journal of Medicine 2016, 52, 99–105. [Google Scholar] [CrossRef]
- Wu, S.; Liu, G.; Jin, W.; Xiu, P.; Sun, C. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide against Pseudomonas Aeruginosa. Front Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J Vis Exp. 2011, (47), 2437. [Google Scholar] [CrossRef]
- Ibrahim, B. Evaluation of the Effect of Pinus Nigra L. and Pinus Brutia L. (Pine) Alcoholic Bark Extracts on Production Potential of Virulence Factors About Anti-QS Activity Against Pseudomonas Aeruginosa and Chromobacterium Violaceum. SDÜ J. Health Sci. 2022, 171–178. [Google Scholar] [CrossRef]
- Bottomley, M.J.; Muraglia, E.; Bazzo, R.; Carfì, A. Molecular Insights into Quorum Sensing in the Human Pathogen Pseudomonas Aeruginosa from the Structure of the Virulence Regulator LasR Bound to Its Autoinducer. Journal of Biological Chemistry 2007, 282, 13592–13600. [Google Scholar] [CrossRef]
- Schütz, C.; Hodzic, A.; Hamed, M.; Abdelsamie, A.S.; Kany, A.M.; Bauer, M.; Röhrig, T.; Schmelz, S.; Scrima, A.; Blankenfeldt, W.; et al. Divergent Synthesis and Biological Evaluation of 2-(Trifluoromethyl)Pyridines as Virulence-Attenuating Inverse Agonists Targeting PqsR. Eur J Med Chem. 2021, 226. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A. Autodock Vina: Improving the Speed and Accuracy of Docking. J Comput Chem 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- BIOVIA, Dassault Systèmes, Discovery Studio 2020.
- Paczkowski, J.E.; Mukherjee, S.; McCready, A.R.; Cong, J.P.; Aquino, C.J.; Kim, H.; Henke, B.R.; Smith, C.D.; Bassler, B.L. Flavonoids Suppress Pseudomonas Aeruginosa Virulence through Allosteric Inhibition of Quorum-Sensing Receptors. JOURNAL OF BIOLOGICAL CHEMISTRY 2017, 292, 4064–4076. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, 8(3), 425. [Google Scholar] [CrossRef]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A.; Ikryannikova, L.N. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Nigussie, G.; Melak, H.; Endale, M. Traditional Medicinal Uses, Phytochemicals, and Pharmacological Activities of Genus Rhamnus: A Review. JOTCSA 2021, 8, 899–932. [Google Scholar] [CrossRef]
- Prasad, B.; Thakur, C. Antiinflammatory Activity of Stem Bark of Rhamnus Purpureus. Int. J. Adv. Microbiol. Health Res. 2019, 3(1), 21–28. [Google Scholar]
- Nekkaa, A.; Benaissa, A.; Mutelet, F.; Canabady-Rochelle, L. Rhamnus Alaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants 2021, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Escandón, R.A.; del Campo, M.; López-Solis, R.; Obreque-Slier, E.; Toledo, H. Antibacterial Effect of Kaempferol and (−)-Epicatechin on Helicobacter Pylori. European Food Research and Technology 2016, 242, 1495–1502. [Google Scholar] [CrossRef]
- Ming, D.; Wang, D.; Cao, F.; Xiang, H.; Mu, D.; Cao, J.; Li, B.; Zhong, L.; Dong, X.; Zhong, X.; et al. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus Aureus. Front Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Sırıken B, Ö.V. Pseudomonas Aeruginosa: Characteristics and Quorum Sensing Mechanism. Journal of Food and Feed Science-Technology 2017, 18, 42–52. [Google Scholar] [CrossRef]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of Different Detection Methods of Biofilm Formation in the Clinical Isolates. Braz J Infect Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Al-Wrafy, F.; Brzozowska, E.; Górska, S.; Gamian, A. Pathogenic Factors of Pseudomonas Aeruginosa - the Role of Biofilm in Pathogenicity and as a Target for Phage Therapy. Postepy Hig Med Dosw. 2017, 71, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K.; Song, D. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. Biomed Res Int. 2019, 4, 2019, 2015978. [Google Scholar] [CrossRef] [PubMed]
- Van, L.T.; Hagiu, I.; Popovici, A.; Marinescu, F.; Gheorghe, I.; Curutiu, C.; Ditu, L.M.; Holban, A.M.; Sesan, T.E.; Lazar, V. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas Aeruginosa Isolates. Plants 2022, 11. [Google Scholar] [CrossRef]
- Dereli, F.T.G.; Onem, E.; Arin, E.; Ozaydin, A.G.; Muhammed, M.T. Persea Americana Mill.: As a Potent Quorum Sensing Inhibitor of Pseudomonas Aeruginosa PAO1 Virulence. International Journal of Secondary Metabolite 2022, 9, 14–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).