Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Attachment of Proteolytic Enzyme Inhibitors to Vascular Prosthesis – an Analysis of Binding and Antimicrobial Properties

Version 1 : Received: 19 December 2023 / Approved: 22 December 2023 / Online: 22 December 2023 (08:03:49 CET)

A peer-reviewed article of this Preprint also exists.

Mordzińska-Rak, A.; Szałapata, K.; Wydrych, J.; Gagoś, M.; Jarosz-Wilkołazka, A. Attachment of Proteolytic Enzyme Inhibitors to Vascular Prosthesis—An Analysis of Binding and Antimicrobial Properties. Molecules 2024, 29, 935. Mordzińska-Rak, A.; Szałapata, K.; Wydrych, J.; Gagoś, M.; Jarosz-Wilkołazka, A. Attachment of Proteolytic Enzyme Inhibitors to Vascular Prosthesis—An Analysis of Binding and Antimicrobial Properties. Molecules 2024, 29, 935.

Abstract

Prosthetic infections are associated with high morbidity, mortality, and relapse rates making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, the work proposed a method of combating pathogenic microorganisms by modifying the surface of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors - 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on immobilization of biologically active molecules, it is important to monitor changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g. FTIR) are ideal. The ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surface of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride was demonstrated.

Keywords

vascular prosthesis; AEBSF; puromycin; Staphylococcus aureus; FTIR analysis

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.