Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Improved Dynamic Performance of Average-Value Modelled Active Front-End Rectifiers

Version 1 : Received: 19 December 2023 / Approved: 20 December 2023 / Online: 20 December 2023 (05:24:31 CET)

A peer-reviewed article of this Preprint also exists.

Ebadpour, M. Improved Dynamic Performance of Average-Value Modelled Active Front-End Rectifiers. Electronics 2024, 13, 445. Ebadpour, M. Improved Dynamic Performance of Average-Value Modelled Active Front-End Rectifiers. Electronics 2024, 13, 445.

Abstract

Active front-end (AFE) rectifiers have been becoming widely employed in power systems to achieve unity power factor and harmonic mitigations. The typical modeling approaches applied for AFE rectifiers in the literature mostly relied on two baselines named the detailed model and the time average model. The former approach deals with the switching element model (SEM) leads to significant harmonics in currents with distorted waveforms. The latter approach uses the average-value model (AVM) to overcome the currents’ harmonics as well as provide fast responses. However, even the AVM baseline has contained problems during the starting stage (lack of control signals) and over the dead-time periods which causes serious issues in the implementation process. This paper presents an improved dynamic AVM for AFE rectifiers by precisely considering the issues mentioned above along with the practical starting procedure and desirable initialization. The studied AFE rectifier is developed using the voltage-oriented control (VOC) technique based on the different modeling methodologies including SEM, Conventional AVM, and the proposed AVM. The performance of all models is analyzed and compared using simulation results with MATLAB/Simulink R2023a Function blocks for all the algorithm parts and SimScape elements for the electrical circuit model. The simulation results illustrate that the performance of the proposed AVM approach can closely resemble the behavior of the SEM baseline with low harmonic distortion.

Keywords

Active front-end rectifier; average-value model; switching element model; dead-time effect; voltage-oriented control.

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.