Submitted:
08 December 2023
Posted:
11 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mechanisms of Food Allergen Immunotherapy
3. Oral Immunotherapy (OIT)
3.1. Efficacy of OIT
3.1.1. Milk OIT
3.1.2. Egg OIT
3.1.3. Peanut OIT
3.1.4. OIT to Other Food Allergens
3.2. Safety of OIT
4. Sublingual Immunotherapy (SLIT)
4.1. Efficacy of SLIT
4.2. Safety of SLIT
5. Epicutaneous Immunotherapy (EPIT)
5.1. Efficacy of EPIT
5.2. Safety of EPIT
6. Food Allergen Immunotherapy and Biologics
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pajno, G.B.; Fernandez-Rivas, M.; Arasi, S.; Roberts, G.; Akdis, C.A.; Alvaro-Lozano, M.; Beyer, K.; Bindslev-Jensen, C.; Burks, W.; Ebisawa, M.; et al. EAACI Allergen Immunotherapy Guidelines Group. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018, 73, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Alviani, C.; Angier, E.; Arasi, S.; Arzt-Gradwohl, L.; Barber, D.; Bazire, R.; Cavkaytar, O.; et al. Allergen Immunotherapy User’s Guide. Pediatr. Allergy Immunol. 2020, 31, 1–101. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; de Silva, D.; Halken, S.; Worm, M.; Khaleva, E.; Arasi, S.; Dunn-Galvin, A.; Nwaru, B.I.; De Jong, N.W.; Rodríguez Del Río, P.; et al. GA2LEN Food Allergy Guideline Group; GALEN Food Allergy Guideline Group. Managing food allergy: GA2LEN guideline 2022. World Allergy Organ J 2022, 15, 100687. [Google Scholar] [CrossRef] [PubMed]
- Hise, K.; Rabin, R.L. Oral Immunotherapy for Food Allergy-a US Regulatory Perspective. Curr. Allergy Asthma Rep. 2020, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.A.; Laubach, S.; Wang, J. Integrating oral immunotherapy into clinical practice. J. Allergy Clin. Immunol. 2021, 147, 1–3. [Google Scholar] [CrossRef]
- Kim, E.H.; Perry, T.T.; Wood, R.A.; Leung, D.Y.M.; Berin, M.C.; Burks, A.W.; Cho, C.B.; Jones, S.M.; Scurlock, A.; Sicherer, S.H.; et al. Consortium for Food Allergy Research (CoFAR). Induction of sustained unresponsiveness after egg oral immunotherapy compared to baked egg therapy in children with egg allergy. J. Allergy Clin. Immunol. 2020, 146, 851–862.e10. [Google Scholar] [CrossRef]
- Jones, S.M.; Burks, A.W.; Keet, C.; Vickery, B.P.; Scurlock, A.M.; Wood, R.A.; Liu, A.H.; Sicherer, S.H.; Henning, A.K.; Lindblad, R.W.; et al. Long-term treatment with egg oral immunotherapy enhances sustained unresponsiveness that persists after cessation of therapy. J. Allergy Clin. Immunol. 2016, 137, 1117–1127.E10. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Sindher, S.B.; Alvarez Pinzon, A.M.; Nadeau, K.C. Can Food Allergy be Cured? What are the Future Prospects? Allergy 2020, 75, 1316–1326. [Google Scholar] [CrossRef]
- Du Toit, G.; Roberts, G.; Sayre, P.H.; Bahnson, H.T.; Radulovic, S.; Santos, A.F.; Brough, H.A.; Phippard, D.; Basting, M.; Feeney, M.; et al. LEAP Study Team. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 2015, 372, 803–813. [Google Scholar] [CrossRef]
- Akdis, C.A.; Akdis, M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ. J. 2015, 8, 17. [Google Scholar] [CrossRef]
- Kulis, M.D. , Patil, S.U., Wambre, E., Vickery, B.P. Immune mechanisms of oral immunotherapy. J. Allergy Clin. Immunol. 2018, 141, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Schoos, A.M.; Bullens, D.; Chawes, B.L.; Costa, J.; De Vlieger, L.; DunnGalvin, A.; Epstein, M.M.; Garssen, J.; Hilger, C.; Knipping, K.; et al. Immunological Outcomes of Allergen-Specific Immunotherapy in Food Allergy. Front. Immunol. 2020, 11, 568–598. [Google Scholar] [CrossRef] [PubMed]
- Monian, B.; Tu, A.A.; Ruiter, B.; Morgan, D.M.; Petrossian, P.M.; Smith, N.P.; Gierahn, T.M.; Ginder, J.H.; Shreffler, W.G.; Love, J.C.; et al. Peanut Oral Immunotherapy Suppresses Clonally Distinct Subsets of T Helper Cells. SSRN Electron. J. 2020, 132, e150634. [Google Scholar] [CrossRef]
- Wawrzyniak, M.; O’Mahony, L.; Akdis, M. ; Role of regulatory cells in oral tolerance. Allergy Asthma Immunol. Res. 2017, 9, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Baloh, C.H.; Huffaker, M.F.; Laidlaw, T. Biomarkers and mechanisms of tolerance induction in food allergic patients drive new therapeutic approaches. Front. Immunol. 2022, 13, 972103. [Google Scholar] [CrossRef] [PubMed]
- Ponsonby, A.L. , Collier, F.; O'Hely, M.; Tang, M.LK.; Ranganathan, S.; Gray, L.; Morwitch, E.; Saffery, R.; Burgner, D.; Dwyer, T.; et al. BIS Investigator Group. Household size, T regulatory cell development, and early allergic disease: A birth cohort study. Pediatr. Allergy Immunol. 2022, 33, e13810. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.; Garcia, M.A.; Lyu, S.C.; Bucayu, R.; Kohli, A.; Ishida, S.; Berglund, J.P.; Tsai, M.; Maecker, H.; O'Riordan, G.; et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J. Allergy Clin. Immunol. 2014, 133, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Vardar Acar, N.; Cavkaytar, Ö.; Arik Yilmaz, E.; Büyüktiryaki, A.B.; Uysal Soyer, Ö.; Şahiner, Ü.M.; Şekerel, B.E.; Karaaslan, I.Ç.; Saçkesen, C. Rare occurrence of common filaggrin mutations in Turkish children with food allergy and atopic dermatitis. Turk. J. Med. Sci. 2020, 50, 1865–1871. [Google Scholar] [CrossRef]
- Monian, B.; Tu, A.A.; Ruiter, B.; Morgan, D.M.; Petrossian, P.M.; Smith, N.P.; Gierahn, T.M.; Ginder, J.H.; Shreffler, W.G.; Love, J.C. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J. Clin. Invest. 2022, 132, e150634. [Google Scholar] [CrossRef]
- Bajzik, V.; DeBerg, H.A.; Garabatos, N.; Rust, B.J.; Obrien, K.K.; Nguyen, Q.A.; O'Rourke, C.; Smith, A.; Walker, A.H.; Quinn, C.; et al. Oral desensitization therapy for peanut allergy induces dynamic changes in peanut-specific immune responses. Allergy 2022, 77, 2534–2548. [Google Scholar] [CrossRef]
- Berin, M.C.; Agashe, C.; Burks, A.W.; Chiang, D.; Davidson, WF.; Dawson, P.; Grishin, A.; Henning, A.K.; Jones, S.M.; Kim, E.H.; et al. Allergen-specific T cells and clinical features of food allergy: Lessons from CoFAR immunotherapy cohorts. J. Allergy Clin. Immunol. 2022, 149, 1373–1382.e12. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.; Mukai, K.; Chinthrajah, R.S.; Nadeau, K.C.; Galli, S.J. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. J. Allergy Clin. Immunol. 2020, 145, 885–896.e6. [Google Scholar] [CrossRef]
- Kulis, M.; Yue, X.; Guo, R.; Zhang, H.; Orgel, K.; Ye, P.; Li, Q.; Liu, Y.; Kim, E.; Burks, A.W.; et al. High- and low-dose oral immunotherapy similarly suppress pro-allergic cytokines and basophil activation in young children. Clin. Exp. Allergy 2019, 49, 180–189. [Google Scholar] [CrossRef]
- Patil, S.U.; Steinbrecher, J.; Calatroni, A.; Smith, N.; Ma, A.; Ruiter, B.; Virkud, Y.; Schneider, M.; Shreffler, W.G. Early decrease in basophil sensitivity to Ara h 2 precedes sustained unresponsiveness after peanut oral immunotherapy. J. Allergy Clin. Immunol. 2019, 144, 1310–1319.e4. [Google Scholar] [CrossRef]
- Gorelik, M.; Narisety, S.D.; Guerrerio, A.L.; Chichester, K.L.; Keet, C.A.; Bieneman, A.P.; Hamilton, R.G.; Wood, R.A.; Schroeder, J.T.; Frischmeyer-Guerrerio, P.A. Suppression of the immunologic response to peanut during immunotherapy is often transient. J. Allergy Clin. Immunol. 2015, 135, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.U.; Ogunniyi, A.O.; Calatroni, A.; Tadigotla, V.R.; Ruiter, B.; Ma, A.; Moon, J.; Love, J.C.; Shreffler, W.G. Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects. J. Allergy Clin. Immunol. 2015; 136, 125–134.e12. [Google Scholar] [CrossRef]
- Vickery, B.P.; Scurlock, A.M.; Kulis, M.; Steele, P.H.; Kamilaris, J.; Berglund, J.P.; Burk, C.; Hiegel, A.; Carlisle, S.; Christie, L.; et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J. Allergy Clin. Immunol. 2014, 133, 468–75. [Google Scholar] [CrossRef]
- Kulis, M.; Saba, K.; Kim, E.H.; Bird, J.A.; Kamilaris, N.; Vickery, B.P.; Staats, H.; Burks, A.W. Increased peanut-specific IgA levels in saliva correlate with food challenge outcomes after peanut sublingual immunotherapy. J. Allergy Clin. Immunol. 2012, 129, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Pier, J.; Liu, E.G.; Eisenbarth, S.; Järvinen, K.M. The role of immunoglobulin A in oral tolerance and food allergy. Ann. Allergy Asthma Immunol. 2021, 126, 467–468. [Google Scholar] [CrossRef]
- Santos, A.F.; James, L.K.; Kwok, M.; McKendry, R.T.; Anagnostou, K.; Clark, A.T.; Lack, G. Peanut oral immunotherapy induces blocking antibodies but does not change the functional characteristics of peanut specific IgE. J. Allergy Clin. Immunol. 2020, 145, 440–443.e5. [Google Scholar] [CrossRef]
- Kulis, M.; Smeekens, J.; Larson, D.; Qin, T.; Burks, A.W. Peanut-Specific IgA and IgG4 in Saliva are Modulated by Peanut OIT. J. Allergy Clin. Immunol. 2020, 145, AB181. [Google Scholar] [CrossRef]
- van de Veen, W.; Stanic, B.; Yaman, G.; Wawrzyniak, M.; Söllner, S.; Akdis, D.G.; Rückert, B.; Akdis, C.A.; Akdis, M. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 2013, 131, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Kulis, M.D.; Patil, S.U.; Wambre, E.; Vickery, B.P. Immune mechanisms of oral immunotherapy. J. Allergy Clin. Immunol. 2018, 141, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Takasato, Y.; Kurashima, Y.; Kiuchi, M.; Hirahara, K.; Murasaki, S.; Arai, F.; Izawa, K.; Kaitani, A.; Shimada, K.; Saito, Y.; et al. Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal Immunol. 2021, 14, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Chinthrajah, R.S.; Purington, N.; Andorf, S.; Long, A.; O'Laughlin, K.L.; Lyu, S.C.; Manohar, M.; Boyd, S.D.; Tibshirani, R.; Maecker, H; et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): A large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2019, 394, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Anvari, S.; Watkin, L.B.; Minard, C.G.; Schuster, K.; Hassan, O.; Anagnostou, A.; Orange, J.S.; Corry, D.B.; Davis, C.M. Reduced pro-inflammatory dendritic cell phenotypes are a potential indicator of successful peanut oral immunotherapy. PLoS ONE 2022, 17, e0264674. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Sindher, S.B.; Alvarez Pinzon, A.M.; Nadeau, K.C. Can Food Allergy be Cured? What are the Future Prospects? Allergy 2020, 75, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Bégin, P.; Chan, E.S.; Kim, H.; Wagner, M.; Cellier, M.S.; Favron-Godbout, C.; Abrams, E.M.; Ben-Shoshan, M.; Cameron, S.B.; Carr, S.; et al. CSACI guidelines for the ethical, evidence-based and patient-oriented clinical practice of oral immunotherapy in IgE-mediated food allergy. Allergy Asthma Clin. Immunol. 2020, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Begin, P.; Chinthrajah, R.S.; Nadeau, K. C; Oral immunotherapy for the treatment of food allergy. Hum. Vaccin. Immunother. 2014, 10, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Skripak, J.M.; Nash, S.D.; Rowley, H.; Brereton, N.H.; Oh, S.; Hamilton, R.G.; Matsui, E.C.; Burks, A.W.; Wood, R.A. A randomized, double-blind, placebo-controlled study of milk oral immunotherapy for cow's milk allergy. J. Allergy Clin. Immunol. 2008, 122, 1154–1160. [Google Scholar] [CrossRef]
- Narisety, S.D.; Skripak, J.M.; Steele, P.; Hamilton, R.G.; Matsui, E.C.; Burks, A.W.; Wood, R.A. Open-label maintenance after milk oral immunotherapy for IgE-mediated cow's milk allergy. J. Allergy Clin. Immunol. 2009, 124, 610–612. [Google Scholar] [CrossRef]
- Maeda, M.; Imai, T.; Ishikawa, R.; Nakamura, T.; Kamiya, T.; Kimura, A.; Fujita, S.; Akashi, K.; Tada, H.; Morita, H.; et al. Effect of oral immunotherapy in children with milk allergy: The ORIMA study. Allergol. Int. 2021, 70, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Geiselhart, S.; Podzhilkova, A.; Hoffmann-Sommergruber, K. Cow's Milk Processing-Friend or Foe in Food Allergy? Foods 2021, 10, 572. [Google Scholar] [CrossRef] [PubMed]
- Nagakura, K.I.; Sato, S.; Miura, Y.; Nishino, M.; Takahashi, K.; Asaumi, T.; Ogura, K.; Ebisawa, M.; Yanagida, N. A randomized trial of oral immunotherapy for pediatric cow's milk-induced anaphylaxis: Heated vs unheated milk. Pediatr. Allergy Immunol. 2021, 32, 161–169. [Google Scholar] [CrossRef] [PubMed]
- van Boven, F.E.; Arends, N.J.T.; Sprikkelman, A.B.; Emons, J.A.M.; Hendriks, A.I.; van Splunter, M.; Schreurs, M.W.J.; Terlouw, S.; Gerth van Wijk, R.; Wichers, H.J.; et al. Tolerance Induction in Cow's Milk Allergic Children by Heated Cow's Milk Protein: The iAGE Follow-Up Study. Nutrients 2023, 15, 1181. [Google Scholar] [CrossRef] [PubMed]
- Inuo, C.; Tanaka, K.; Suzuki, S.; Nakajima, Y.; Yamawaki, K.; Tsuge, I.; Urisu, A.; Kondo, Y. Oral Immunotherapy Using Partially Hydrolyzed Formula for Cow's Milk Protein Allergy: A Randomized, Controlled Trial. Int. Arch. Allergy Immunol. 2018, 177, 259–268. [Google Scholar] [CrossRef]
- Burks, A.W.; Jones, S.M. , Wood, R.A.; Fleischer, D.M.; Sicherer, S.H.; Lindblad, R.W.; Stablein, D.; Henning, A.K.; Vickery, B.P.; Liu, A.H.; et al. Consortium of Food Allergy Research (CoFAR). Oral immunotherapy for treatment of egg allergy in children. N. Engl. J. Med. 2012, 367, 233–243. [Google Scholar] [CrossRef]
- Kim, E.H.; Jones, S.M.; Burks, A.W.; Wood, R.A.; Sicherer, S.H.; Leung, D.Y.M.; Henning, A.K.; Lindblad, R.W.; Dawson, P.; Keet, C.; et al. A 5-year summary of real-life dietary egg consumption after completion of a 4-year egg powder oral immunotherapy (eOIT) protocol. J. Allergy Clin. Immunol. 2020, 145, 1292–1295.e1. [Google Scholar] [CrossRef] [PubMed]
- Palosuo, K.; Karisola, P.; Savinko, T.; Fyhrquist, N.; Alenius, H.; Mäkelä, M.J. A Randomized, Open-Label Trial of Hen's Egg Oral Immunotherapy: Efficacy and Humoral Immune Responses in 50 Children. J. Allergy Clin. Immunol. Pract. 2021, 9, 1892–1901.e1. [Google Scholar] [CrossRef] [PubMed]
- Itoh-Nagato, N.; Inoue, Y.; Nagao, M.; Fujisawa, T.; Shimojo, N.; Iwata, T.; J-OIT group. Desensitization to a whole egg by rush oral immunotherapy improves the quality of life of guardians: A multicenter, randomized, parallel-group, delayed-start design study. Allergol. Int. 2018, 67, 209–216. [Google Scholar] [CrossRef]
- Bloom, K.A.; Huang, F.R.; Bencharitiwong, R.; Bardina, L.; Ross, A.; Sampson, H.A.; Nowak-Węgrzyn, A. Effect of heat treatment on milk and egg proteins allergenicity. Pediatr. Allergy Immunol. 2014, 25, 740–746. [Google Scholar] [CrossRef]
- Dang, T.D.; Peters, R.L.; Allen, K.J. Debates in allergy medicine: Baked egg and milk do not accelerate tolerance to egg and milk. World Allergy Organ. J. 2016, 9, 2. [Google Scholar] [CrossRef]
- Leonard, S.A. Debates in allergy medicine: Baked milk and egg ingestion accelerates resolution of milk and egg allergy. World Allergy Organ. J. 2016, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Palosuo, K.; Kukkonen, A.K.; Pelkonen, A.S.; Mäkelä, M.J. Gal d 1-specific IgE predicts allergy to heated egg in Finnish children. Pediatr. Allergy Immunol. 2018, 29, 637–643. [Google Scholar] [CrossRef]
- Lazizi, S.; Labrosse, R.; Graham, F. Transitioning peanut oral immunotherapy to clinical practice. Front. Allergy 2022, 3, 974250. [Google Scholar] [CrossRef]
- Varshney, P.; Jones, S.M.; Scurlock, A.M.; Perry, T.T.; Kemper, A.; Steele, P.; Hiegel, A.; Kamilaris, J.; Carlisle, S.; Yue, X.; et al. A randomized controlled study of peanut oral immunotherapy: Clinical desensitization and modulation of the allergic response. J. Allergy Clin. Immunol. 2011, 127, 654–660. [Google Scholar] [CrossRef]
- Anagnostou, K.; Islam, S.; King, Y.; Foley, L.; Pasea, L.; Bond, S.; Palmer, C.; Deighton, J.; Ewan, P.; Clark, A. Assessing the efficacy of oral immunotherapy for the desensitization of peanut allergy in children (STOP II): A phase 2 randomized controlled trial. Lancet 2014, 383, 1297–1304. [Google Scholar] [CrossRef]
- Vickery, BP.; Berglund, J.P.; Burk, C.M.; Fine, J.P.; Kim, E.H.; Kim, J.I.; Keet, C.A.; Kulis, M.; Orgel, K.G.; Guo, R.; et al. Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective. J. Allergy Clin. Immunol. 2017, 139, 173–181.e8. [Google Scholar] [CrossRef]
- Jones, S.M.; Kim, E.H.; Nadeau, K.C.; Nowak-Wegrzyn, A.; Wood, R.A.; Sampson, H.A.; Scurlock, A.M.; Chinthrajah, S.; Wang, J.; Pesek, R.D.; at, al. Efficacy and safety of oral immunotherapy in children aged 1-3 years with peanut allergy (the Immune Tolerance Network IMPACT trial): A randomized placebo-controlled study. Lancet 2022, 399, 359–371. [Google Scholar] [CrossRef]
- Bird, J.A.; Spergel, J.M.; Jones, S.M.; Rachid, R.; Assa'ad, A.H.; Wang, J.; Leonard, S.A.; Laubach, S.S.; Kim, E.H.; Vickery, B.P.; et al. ARC001 Study Group. Efficacy and Safety of AR101 in Oral Immunotherapy for Peanut Allergy: Results of ARC001, a Randomized, Double-Blind, Placebo-Controlled Phase 2 Clinical Trial. J. Allergy Clin. Immunol. Pract. 2018, 6, 476–485.e3. [Google Scholar] [CrossRef] [PubMed]
- Vickery, B.P.; Vereda, A.; Casale, T.B.; Beyer, K.; du Toit, G.; Hourihane, J.O.; Jones, S.M.; Shreffler, W.G.; Marcantonio, A.; Zawadzki, R.; et al. PALISADE Group of Clinical Investigators. AR101 Oral Immunotherapy for Peanut Allergy. N. Engl. J. Med. 2018, 379, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Vickery, B.P.; Vereda, A.; Nilsson, C.; du Toit, G.; Shreffler, W.G.; Burks, A.W.; Jones, S.M.; Fernández-Rivas, M.; Blümchen, K.; O'B Hourihane, J.; et al. Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. J. Allergy Clin. Immunol. Pract. 2021, 9, 1879–1889.e13. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rivas, M.; Vereda, A.; Vickery, B.P.; Sharma, V.; Nilsson, C.; Muraro, A.; Hourihane, J.O.; DunnGalvin, A.; du Toit, G.; Blumchen, K.; et al. Open-label follow-on study evaluating the efficacy, safety, and quality of life with extended daily oral immunotherapy in children with peanut allergy. Allergy 2022, 77, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Węgrzyn, A.; Wood, R.A; Nadeau, K.C.; Pongracic, J.A.; Henning, A.K.; Lindblad, R.W.; Beyer, K.; Sampson, H.A. Multicenter, randomized, double-blind, placebo-controlled clinical trial of vital wheat gluten oral immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 651–661.e9. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Lewis, M.O.; Hanna, E.; Alfaro, M.K.C.; Corrigan, K.; Buonanno, J.; Datta, R.; Brown-Whitehorn, T.; Spergel, J.M.; Cianferoni, A. Safety of Multifood Oral Immunotherapy in Children Aged 1 to 18 Years at an Academic Pediatric Clinic. J. Allergy Clin. Immunol. Pract. 2023, 11, 1907–1913.e1. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.C.; Leibowitz, K.A.; Perry, M.A.; Bitler, J.M.; Block, W.; Kaptchuk, T.J.; Nadeau, K.C.; Crum, A.J. Changing Patient Mindsets about Non-Life-Threatening Symptoms During Oral Immunotherapy: A Randomized Clinical Trial. J. Allergy Clin. Immunol. Pract. 2019, 7, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Schworer, S.A.; Kim, E.H. Sublingual immunotherapy for food allergy and its future directions. Immunotherapy 2020, 12, 921–931. [Google Scholar] [CrossRef]
- Mempel, M.; Rakoski, J.; Ring, J.; Ollert, M. Severe anaphylaxis to kiwi fruit: Immunologic changes related to successful sublingual allergen immunotherapy. J. Allergy Clin. Immunol. 2003, 111, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Kinaciyan, T.; Nagl, B.; Faustmann, S.; Frommlet, F.; Kopp, S.; Wolkersdorfer, M.; Wöhrl, S.; Bastl, K.; Huber, H.; Berger, U.; Bohle, B. Efficacy and safety of 4 months of sublingual immunotherapy with recombinant Mal d 1 and Bet v 1 in patients with birch pollen-related apple allergy. J. Allergy Clin. Immunol. 2018, 141, 1002–1008. [Google Scholar] [CrossRef]
- Enrique, E.; Pineda, F.; Malek, T.; Bartra, J.; Basagaña, M.; Tella, R.; Castelló, J.V.; Alonso, R.; de Mateo, J.A.; Cerdá-Trias, T.; et al. Sublingual immunotherapy for hazelnut food allergy: A randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J. Allergy Clin. Immunol. 2005, 116, 1073–1079. [Google Scholar] [CrossRef]
- Garrido-Fernández, S.; García, B.E.; Sanz, M.L.; Echechipía, S.; Lizaso, M.T.; Tabar, A.I. Are basophil activation and sulphidoleukotriene determination useful tests for monitoring patients with peach allergy receiving sublingual immunotherapy with a Pru p 3-enriched peach extract? J. Investig. Allergol. Clin. Immunol. 2014, 24, 106–113. [Google Scholar] [PubMed]
- Keet, C.A.; Frischmeyer-Guerrerio, P.A.; Thyagarajan, A.; Schroeder, J.T.; Hamilton, R.G.; Boden, S.; Steele, P.; Driggers, S. , Burks, A.W.; Wood, R.A. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J. Allergy Clin. Immunol. 2012, 129, 448–455, 455.e1-5. [Google Scholar] [CrossRef] [PubMed]
- Narisety, S.D.; Frischmeyer-Guerrerio, P.A.; Keet, C.A.; Gorelik, M.; Schroeder, J.; Hamilton, R.G.; Wood, R.A. A randomized, double-blind, placebo-controlled pilot study of sublingual versus oral immunotherapy for the treatment of peanut allergy. J. Allergy Clin. Immunol. 2015, 135, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Bird, J.A.; Kulis, M.; Laubach, S.; Pons, L.; Shreffler, W.; Steele, P.; Kamilaris, J.; Vickery, B.; Burks, A.W. Sublingual immunotherapy for peanut allergy: Clinical and immunologic evidence of desensitization. J. Allergy Clin. Immunol. 2011, 127, 640–646.e1. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Moneret-Vautrin, D.A.; Crevel, R.W.; Sheffield, D.; Morisset, M.; Dumont, P.; Remington, B.C.; Baumert, J.L. Threshold dose for peanut: Risk characterization based upon diagnostic oral challenge of a series of 286 peanut-allergic individuals. Food Chem. Toxicol. 2010, 48, 814–819. [Google Scholar] [CrossRef]
- Kim, E.H.; Yang, L.; Ye, P.; Guo, R.; Li, Q.; Kulis, M.D.; Burks, A.W. Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. J. Allergy Clin. Immunol. 2019, 144, 1320–1326.e1. [Google Scholar] [CrossRef] [PubMed]
- Baumert, J.L.; Taylor, S.L.; Koppelman, S.J. Quantitative Assessment of the Safety Benefits Associated with Increasing Clinical Peanut Thresholds Through Immunotherapy. J. Allergy Clin. Immunol. Pract. 2018, 6, 457–465.e4. [Google Scholar] [CrossRef]
- Kim, E.H. , Keet, C.A.; Virkud, Y.V.; Chin, S.; Ye, P.; Penumarti, A.; Smeekens, J.; Guo, R.; Yue, X.; Li Q.; et al. Open-label study of the efficacy, safety, and durability of peanut sublingual immunotherapy in peanut-allergic children. J. Allergy Clin. Immunol. 2023, 151, 1558–1565.e6. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Burks, A.W.; Vickery, B.P.; Scurlock, A.M.; Wood, R.A. , Jones, S.M., Sicherer, S.H.; Liu, A.H.; Stablein, D.; Henning, A.K. et al.; Consortium of Food Allergy Research (CoFAR). Sublingual immunotherapy for peanut allergy: A randomized, double-blind, placebo-controlled multicenter trial. J. Allergy Clin. Immunol. 2013, 131, 119–127.e17. [Google Scholar] [CrossRef] [PubMed]
- Burks, A.W.; Wood, R.A.; Jones, S.M.; Sicherer, S.H.; Fleischer, D.M.; Scurlock, A.M.; Vickery, B.P.; Liu, A.H.; Henning, A.K.; Lindblad, R.; et al.; Consortium of Food Allergy Research Sublingual immunotherapy for peanut allergy: Long-term follow-up of a randomized multicenter trial. J. Allergy Clin. Immunol. 2015, 135, 1240–1248.e1-3. [Google Scholar] [CrossRef]
- Jones, S.M.; Burks, A.W.; Dupont, C. State of the art on food allergen immunother-apy: Oral, sublingual, and epicutaneous. J. Allergy Clin. Immunol. 2014, 133, 318–323. [Google Scholar] [CrossRef]
- Sampson, H.A.; Shreffler, W.G.; Yang, W.H.; Sussman, G.L.; Brown-Whitehorn, T.F.; Nadeau, K.C.; Cheema, A.S.; Leonard, S.A.; Pongracic, J.A.; Sauvage-Delebarre, C.; et al. Effect of Varying Doses of Epicutaneous Immunotherapy vs Placebo on Reaction to Peanut Protein Exposure Among Patients With Peanut Sensitivity: A Randomized Clinical Trial. JAMA 2017, 318, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.P. Management of peanut allergy: A focus on novel immunotherapies. Am. J. Manag. Care 2018, 24, S419–27. [Google Scholar] [PubMed]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Blumenstock, J.A.; Jiang, J.; Davis, M.M.; Nadeau, K.C. The Public Health Impact of Parent-Reported Childhood Food Allergies in the United States. Pediatrics 2018, 142, e20181235. [Google Scholar] [CrossRef]
- Greenhawt, M.; Marsh, R.; Gilbert, H.; Sicherer, S.; DunnGalvin, A.; Matlock, D. Understanding caregiver goals, benefits, and acceptable risks of peanut allergy therapies. Ann. Allergy Asthma Immunol. 2018, 121, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Kansen, H.M.; Le, T.M.; Knulst, A.C.; Gorissen, D.M.W.; van der Ent, C.K.; Meijer, Y.; van Erp, F.C. Three-year follow-up after peanut food challenges: Accidental reactions in allergic children and introduction failure in tolerant children. J. Allergy Clin. Immunol. 2020, 145, 705–707.e7. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.M.; Sicherer, S.H.; Burks, A.W.; Leung, D.Y.; Lindblad, R.W.; Dawson, P.; Henning, A.K.; Berin, M.C.; Chiang, D.; Vickery, B.P.; et al. Consortium of Food Allergy Research. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J. Allergy Clin. Immunol. 2017; 139, 1242–1252.e9. [Google Scholar] [CrossRef]
- Scurlock, A.M.; Burks, A.W.; Sicherer, S.H.; Leung, D.Y.M.; Kim, E.H.; Henning, A.K.; Dawson, P.; Lindblad, R.W.; Berin, M.C.; Cho, C.B.; et al.; Consortium for Food Allergy Research (CoFAR) Epicutaneous immunotherapy for treatment of peanut allergy: Follow-up from the Consortium for Food Allergy Research. J. Allergy Clin. Immunol. 2021, 147, 992–1003.e5. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Greenhawt, M.; Sussman, G.; Bégin, P.; Nowak-Wegrzyn, A.; Petroni, D.; Beyer, K.; Brown-Whitehorn, T.; Hebert, J.; Hourihane, J.O.; et al. Effect of Epicutaneous Immunotherapy vs Placebo on Reaction to Peanut Protein Ingestion Among Children with Peanut Allergy: The PEPITES Randomized Clinical Trial. JAMA 2019, 321, 946–955. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Shreffler, W.G.; Campbell, D.E.; Green, T.D.; Anvari, S.; Assa'ad, A.; Bégin, P.; Beyer, K.; Bird, J.A.; Brown-Whitehorn, T.; et al. Long-term, open-label extension study of the efficacy and safety of epicutaneous immunotherapy for peanut allergy in children: PEOPLE 3-year results. J. Allergy Clin. Immunol. 2020, 146, 863–874. [Google Scholar] [CrossRef]
- Greenhawt, M.; Sindher, S.B.; Wang, J.; O'Sullivan, M.; du Toit, G.; Kim, E.H.; Al-bright, D.; Anvari, S.; Arends, N.; Arkwright, P.D.; et al. Phase 3 Trial of Epicutane-ous Immunotherapy in Toddlers with Peanut Allergy. N. Engl. J. Med. 2023, 388, 1755–1766. [Google Scholar] [CrossRef]
- Davis, C.M.; Lange, L.; Beyer, K.; Fleischer, D.M.; Ford, L.; Sussman, G.; Oriel, R.C.; Pongracic, J.A.; Shreffler, W.; Bee, K.J.; et al. Efficacy and safety of peanut epicuta-neous immunotherapy in patients with atopic comorbidities. J. Allergy Clin. Immunol. Glob. 2022, 2, 69–75. [Google Scholar] [CrossRef]
- Dupont, C.; Kalach, N.; Soulaines, P.; Legoué-Morillon, S.; Piloquet, H.; Benhamou, P.H. Cow's milk epicutaneous immunotherapy in children: A pilot trial of safety, acceptability, and impact on allergic reactivity. J. Allergy Clin. Immunol. 2010, 125, 1165–1167. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M.; Elci, O.U.; Muir, A.B.; Liacouras, C.A.; Wilkins, B.J.; Burke, D.; Lewis, M.O.; Brown-Whitehorn, T.; Cianferoni, A. Efficacy of Epicutaneous Immunothera-py in Children With Milk-Induced Eosinophilic Esophagitis. Clin. Gastroenterol. Hepatol. 2020, 18, 328–336.e7. [Google Scholar] [CrossRef] [PubMed]
- Pongracic, J.A.; Gagnon, R.; Sussman, G.; Siri, D.; Oriel, R.C.; Brown-Whitehorn, T.F.; Green, T.D.; Campbell, D.E.; Anvari, S.; Berger, W.E.; et al. Safety of Epicutaneous Immunotherapy in Peanut-Allergic Children: REALISE Randomized Clinical Trial Results. J. Allergy Clin. Immunol. Pract. 2022, 10, 1864–1873.e10. [Google Scholar] [CrossRef]
- Brandström, J.; Vetander, M.; Sundqvist, A.C.; Lilja, G.; Johansson, S.G.O.; Melén, E.; Sverremark-Ekström, E.; Nopp, A.; Nilsson, C. Individually dosed omalizumab facilitates peanut oral immunotherapy in peanut allergic adolescents. Clin. Exp. Allergy 2019, 49, 1328–1341. [Google Scholar] [CrossRef]
- Leung, D.Y.; Sampson, H.A.; Yunginger, J.W.; Burks, A.W., Jr.; Schneider, LC.; Wortel, C.H.; Davis, F.M.; Hyun, J.D.; Shanahan, W.R., Jr.; Avon Longitudinal Study of Parents and Children Study Team. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 2003, 348, 986–993. [Google Scholar] [CrossRef] [PubMed]
- MacGinnitie, A.J.; Rachid, R.; Gragg, H.; Little, S.V.; Lakin, P.; Cianferoni, A.; Heimall, J.; Makhija, M.; Robison, R; , Chinthrajah, R. S. et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J. Allergy Clin. Immunol. 2017, 139, 873–881.e8. [Google Scholar] [CrossRef]
- Worm, M.; Francuzik, W.; Dölle-Bierke, S.; Alexiou, A. Use of biologics in food allergy management. Allergol. Sel. 2021, 5, 103–107. [Google Scholar] [CrossRef]
| reference | design | sample | participants characteristic |
Form of allergen |
duration | Maintenance dose | Efficacy | safety |
| milk | ||||||||
| Skripak et al. (2008) [40] | Double-blind, placebo- RCT | n=20 (6-17 y)OIT: n= 12 Placebo: n= 7 |
Positive DBPCFC to 2,5g MP. Baseline median threshold: 40mg MP |
Milk powder | 5-6 months | 500mg MP (15 ml of milk) | Median threshold after OIT: OIT: 5140mg Placebo: 40mg (P=0,003) |
AE/total doses: OIT 45,4%, placebo: 11,2% AE/each participant: OIT 35%, placebo group 1%. AAR: OIT 1%, placebo 0% |
| Narisety et al. (2009) 41 | Extension of previous p study40 | N=15 (6-16y) | Negative DBPCFC to 2,5g MP | Dairy products | 3-17 months | Daily diary intake at home | OFC to 16g MP: Negative for 33% |
AE/total doses: 17% Epinephrine: 0,2% reaction |
| Inuo et al. (2018) 46 | Double-blind, placebo- RCT, 2 phase: 8 weeks pHF or eHF, then 8 weeks all on eHF |
n= 25 (1-9y) 2 group: active: pHF-pHF (n=13) placebo: eHF-eHF (n=12) |
History of systemic reactions to milk. Positive OFC to 20ml rCMF |
pHF | 16 weeks | 0,5-20ml of pHF | OFC with rCMF: Threshold at the end of first phase:Significantly elevated in pHF.pHF (P=0,048) |
AE: not severe reaction 2 participants in active group mild reaction |
| Nagakura et al (2021) 44 | Open-label RCT | n=33, >5y HM-OIT: (n=17) UM-OIT (n=16) |
Positive DBPCFC on 3-ml HM, History of milk anaphylaxis |
HM vs. UM | 1 year | 3 ml milk | Desensitization to 3ml and 25ml: HM-OIT: 35%, 18% UM-OIT; 50%, 31% (P=0,34, P=0,43) |
AE at home dose:HM: OIT: 8,1%; UM-OIT: 9,6% AE moderate/severe at home: HM-OIT: 0,7%; UM-OIT: 1,4% (P=0,0002) |
| Maeda et al. (2021) 42 | Open-label RCT | n= 28, 3-12y OIT: n=14 Control: n=14 |
Positive OFC to 10 ml milk | Liquid milk | 1 year | 100ml milk | OFC to 100ml milk: OIT: 50% Control: 0% (P< 0,01) |
AE required adrenaline: OIT: 43% participants Control: 0% participants |
| Van Boven et al. (2023) 45 | RCT follow-up study |
n=18 (6-36 months) OIT: n= 11 control: n=7 |
Milk allergy diagnosed by allergist) | iAGE | 24 months | 5% total protein intake/day | DBPCFC (4,3g MP): OIT vs. placebo: T1 (8 months); 73 vs 57% T3 (24 months): 82 vs 71% |
AE: no product related |
| reference | design | sample | participants characteristic |
Form of allergen |
duration | Maintenance dose | Efficacy | safety |
| Burks et al. (2012) 47 | Double-blind, placebo- RCT | n=55 (5-11y) OIT: 40 Placebo: 15 |
Clinical history of egg-allergy | EWP | 24 months | 2g EPW | At 10 and 22 months: Desensitization to 5 and 10g of EPW: OIT: 55% and 75% Placebo: 0% and 0% (P<0,00, P<0,0011) At 24 months: SU to 10g EPW + whole cooked egg: OIT: 11%, placebo: 0% (P<0,03) |
AE: % participantsOIT: 78%; Placebo: 20% (P<0,01) Severe AE: no |
| Jones et al. (2016) 7 | Extension of previous study47 at 4y | n=55 (5-11y) OIT: 40 Placebo: 15 |
Clinical history of egg-allergy | EWP | 2y | 2g EPW | SU to 10g EPW + whole cooked egg by 3 and 4 y: OIT: 45% and 50% |
AE during OIT dosing: 54% OIT participants, mostly mild symptoms |
| Itoh-Nogato et al. (2018) 50 | Randomized, parallel-group, delayed-start study.1st stage: early-start group on rush OIT. 2nd stage: all participants on OIT |
n=45 (5-15y) early start: n= 23 (received rush OIT for 3 months) late-group: n=22 (continue egg elimination for 3 months before OIT) |
positive DBPCFC to ≤ 500 mg dried raw EPW | EWP | 1y | 60g of cooked egg ~ 1 medium size egg or 1g EPW | Desensitization to 1000mg EPW after 3 months: Early star: 87% Late start: 22% (p< 0,001). |
AE during first stage: Early-star: 80% Late-star: 0% AE requiring adrenaline; 11,6% |
| Kim et al. (2020) 48 | Extension of previous published study47 at 5y | n=55 (5-11x) OIT: 40 Placebo: 15 |
Clinical history of egg-allergy, Completed previous OIT study |
1y | Unlimited consumption all form of egg | Ingestion all form of egg: SU-OIT: 100% Desensitized OIT: 43% Non-desensitized OIT: 17% Placebo: 36% |
AE: no OIT participants reported symptoms to any baked egg consumption | |
| Kim et al. (2020) 6 | Open label randomized trial | n= 50 (3-36y) BE-R): n=27 OIT-R): n=23. OIT-assigned (OIT-A) comparison: 39 |
Negative DBPCFC to BE Positive DBPCFC to unbaked egg (1444mg of egg white protein) |
BE vs. EWP | 2y | 2000 mg egg white protein | SU to 7,444 mg white egg protein: BE-R= 11,1% OIT-R: 43,15% OIT-A 17,9% |
AE: % participants: BE-R: 2,8% OIT-R: 3,9% OIT-A: 12,6% Severe AE: only in OIT groups |
| Palosuo et al. (2021) 49 | Open-label randomized trial | n= 50 (6-17y) OIT: 32 Control: 18 |
Positive DBPCFC to heated egg white | EWP | 8 months | 1g egg-white protein | Desensitization to 1g of egg white protein: OIT: 44% Control: 4,8% |
AE: 82% participants during build-up phase No severe reactions |
| reference | design | sample | participants characteristic |
Form of allergen |
duration | Maintenance dose | Efficacy | safety |
| Varshney et al. (2011) 56 | Double-blind placebo RCT | n=25 (1-16 y) OIT= 16 Placebo= 9 |
Clinical history of reaction to peanut (<60 min after ingestion) | Peanut flour | 1y | 4000 mg PP ~ 15-16 peanuts | Desensitization to 5g PP: OFC: 100%, placebo: 0% |
AE/dose: 1,2% in OIT participants during build-up phase Epinephrine: no |
| Anagnostou et al. (2014) 57 | Crossover 2- phase- RCT (STOP II) |
n= 85 (7-16y) OIT: 46 Control: 39 2.phase: Control -> OIT |
Immediate reaction after peanut ingestion, positive DBPCFC | Peanut flour | 6 months | 800mg PP | Desensitization to 1400mg PP: First phase: OIT: 62%, control: 0% (p<0,001) Second phase: Control after OIT: 54% |
AE per OIT dose: 6,3%- mild reaction Adrenaline: 0,01% dose |
| Vickery et al. (2017) 58 | Double- blind placebo RCT | n= 37 (9-36 months) Low dose (LD): 20 High dose (HD): 17 |
Positive OFC to 4g PP | Peanut-flour | 22-36 months | PP: LD: 300 mg HD: 3000 mg |
SU to 5g PP: 29/37 (78%) LD: 85%; HD: 71%, p=0,43 Control: 4% |
AE: % participants: LD: 90%, HD 100% |
| Bird et al. (2017) 60 | Double-blind placebo RCT Phase 2(ARC001) |
n= 55 (4-26y) AR101: 29Placebo: 26 |
Positive DBPCFC to 143 mg PP | AR101-comercial product | 20-34 weeks | 300mg PP | Desensitization to 300mg PP AR101: 79% placebo: 19% (p<0,001) Desensitization to 600mg PP: AR101: 62% placebo: 0% (p<0,001) |
AE: % participants during treatment: AR101: 93%, placebo: 46%. No severe AE |
| Vickery et al (2018) 61 | Double-blind placebo-RCT Phase 3(PALISADE) | n= 496 (4-17y) AR101: 372 Placebo: 124 |
Positive DBPCFC to 100 mg PP (1/3 peanut) | AR101-comercial product | 1y | 300mg PP | Desensitization to 600mg PP: AR101: 67,2%, placebo: 4% (p<0,001) |
AE: % participants: AR101: 98,7%, placebo: 95,2% Severe AR: AR101: 4,3%, placebo: 0,8% |
| Chintrajah et al. (2019) 35 | Double-blind placebo-RCT 2 phase study Peanut-0: no peanut after OIT Peanut-300: 300mg PP daily after OIT Placebo: received placebo (POISED study) |
n= 120 (7-55y) Peanut -0: 60 Peanut- 300: 35placebo: 25 |
Positive DBPCFC to 500 mg PP | Peanut flour | 3y | 4mg od PP | Negative DBPCFC to 4g PP at week 104 (desensitization) and 117 (SU): Peanut-0: 85%, 35% Peanut-300: 83%. 54% Placebo: 4%, 4% SU to 4 g PP at week 156: Peanut-0: 13 Peanut-300- 37% |
AE: % participants through 1st to 3rd years: Peanut-0: 95%-2% Peanut-300: 91%-20% Placebo: 64%-5% |
| reference | design | sample | participants characteristic | Form of allergen | duration | Maintenance dose | Efficacy | safety |
| Vickery et al. (2020) 62 | Open-label follow-on study of previous study61 (ARC004) PTAH= formerly AR101 |
n=358 (4-17y) PTAH: 256 A) PTAH: daily dosing: 300mg daily B) PTAH: non- daily dosing 300mg (e.g. biweekly) C) PTAH-naive: 102 |
PTAH: negative DBPCFC to 300mg PP PTAH naïve: placebo arm from PALISADE |
PTAH (Palforzia commercial product) | 1-2y | 300mg of PTAH | Desensitization to 2g PP Daily dosing> non-daily dosing |
AE: almost all PTAH participants Daily dosing< non-daily dosing |
| Jones et al (2022) 59 | Double-blind placebo RCT(IMPACT trial) | n= 146 (12-48 months) OIT: 96 Placebo=50 |
Positive DBPCFC to 500mg PP | Peanut flour | 160 weeks | 2000mg PP | Desensitization to 5g PP OIT: 71%, placebo: 2% (p<0,0001) SU to 5g PP: OIT: 21%, placebo: 2% (p=0,0021) |
AE: % participants: OIT: 98%, placebo: 80% Epinephrine: OIT 22%, placebo 0% |
| Fernandez-Rivas et al (2022) 63 | Open label follow-on study of previous study62 | n= 130 (4-17y)A: 104 (1,5y) B: 26 (2y) |
negative DBPCFC to 300mg PP | PTAH (Palforzia- commercial product) | 1,5-2y | 300mg of PTAH | DBPCFC to 2g PP: A: 48,1%; B: 80,8% |
AE: decreased throughout the intervention period in both groups |
| Author (year) | Type of study | Allergen | Participants | Duration | Efficacy | Safety |
| Kim et al. (2011) 74 | Double-blind placebo-RCT | peanut | n=18 (1-11 y) Peanut SLIT n=11 Placebo n=7 |
12 months (6 months build-up and 6 months MD) |
Median SCD peanut SLIT vs placebo p=0.011 | Transient oropharyngeal itching most common AE 0.26% antihistamine treatment 0.02% doses required albuterol for mild wheezing |
| Fleischer et al. (2013) 79 | Multicenter placebo- RCT | peanut | n=40 (12-40, median age 15 y) Placebo group n=20 Intervention group n=20 |
The first phase 44 weeks (68 weeks data) |
Week 44: RR intervention group vs placebo p<0.001 median SCD week 44 vs baseline in intervention group p<0.01 Week 68: median SCD week 68 vs 48 p=0.05, week 68 vs baseline p=0.009 Week 44 Crossover: median SCD p=0.02 |
Week 44: transient oropharyngeal itching most common AE 1.1% of total doses required treatment. Crossover High Dose subjects: 2.9% doses required treatment 1 subject had anaphylaxis |
| Burks et al. (2015) 80 | Long-term follow-up RCT | peanut | n=40 (12-40 y) | From week 68 to 164 | 4/37 (10.8%) of SLIT participants fully desensitized to 10 g of peanut powder and SU | 98% of the doses were tolerated without AE no severe symptoms no epinephrine |
| Kim et.al (2019) 76 | Open-label extension RCT | peanut | n=48 (1-11 y) 2-mg peanut SLIT MD |
5 years | 67% SCD ≥ 750 mg on DBPCFCs. median SCD 1750 mg 25% (12/48) 5000-mg DBPCFC; 10/12 SU after 2 to 4 weeks |
AE 4.78%; transient oropharyngeal itching most common Antihistamine use 0.21% No epinephrine |
| Kim et al. (2023) 78 | Open-label, prospective RCT | peanut | n=54 (1-11 y) 4 mg peanut SLIT MD |
48 weeks | Mean SCD (0-48 month) p<0.000136% SCD of 5000 mg 70.2% SCD ≥ 800 mg |
Dosing AE 4% of doses |
| Enrique et al. (2005) 70 | Double-blind placebo- RCT | standardized hazelnut extract | n=23 (19-53 y) Active group n=12 Placebo group n=11 |
12 weeks | Median SCD hazelnut SLIT p=0.02 50% active group reached highest dose (20 g) |
AE Mild; Systemic reactions 0.2% |
| Keet et al. (2012) 72 | Open- label exploratory RCT | milk | n=30 ( 6-17 y) | 60 weeks | 1/10 SLIT/SLIT group, 6/10 SLIT/OITB group, 8/10 SLIT/OITA group – SCD DBPCFC 8-g (p=0.002, SLIT vs OIT) End of study: p=0.09 SLIT vs OIT |
Symptoms 29% of SLIT doses and 23% of OIT doses. no significant differences in the rate of total AE SLIT and OIT p=0.73, 0.70, and 0.50, respectively Multisystem symptoms OIT vs SLIT p < 0.001 |
| Garrido-Fernández et al. (2014) 71 | Double-blind placebo- RCT | peach extract | n=31 (18-65 y) Treatment group: placebo=2:1 |
6 months | Median SCD p=0.002 3-fold improvement in tolerance in active group p=0.065 |
No data. All subjects that started treatment also have finished it |
| Author (year) | Type of study | Allergen | Participants | Duration | Efficacy | Safety |
| Kinaciyan et.al (2018) 69 | Double-blind, placebo- explorative RCT |
Apple protein | n=60 (aged 18-65 y) 1:1:1=placebo: rMal d 1: rBet v 1 |
16 weeks | rMal d 1 vs placebo and rBet v 1 (p=0.001 and p=0.038) SLIT rMal d 1 enhanced IgG4/IgE ratios (p=0.012). |
Mainly local AE to both formulations |
| Author (year) | Type of study | Allergen | Participants | Duration | Efficacy | Safety |
| Dupont et al. (2010) 93 | Double- blind placebo- RCT | Milk | n=19 (3 months-15 y) n=10 active group n=9 placebo group |
3 months | PP population CTD (0-90 day) p=0.18 | AE mild |
| Spergel et al. (2020) 94SMILEE | pilot double- blind placebo- RCT (+ open-label extension study) | Milk | n=20 (Age: 4-11 y) n=15 active group, n=5 placebo group |
11 months+ 11 months open label | VM500 group mean eos/hpf 50.1 ± 43.97 vs the placebo group 48.20 ± 56.98 eos/hpf VM500 group lower mean eos/hpf count p= 0.038 Open label phase: 47% response mean values of fewer than 15 eos/hpf |
Improvement in endoscopy scores in treatment group AE mild |
| Sampson et al. (2017) 82VIPES | multicenter double-blind placebo- RCT + 2-year, open-label extension study |
peanut | n= 221 (6-55 y)randomization 1:1:1:1 Open Label Extension Study, n=171 |
12 months+ 2-year, open-label extension study |
RR month 12 VP250-μg vs placebo p = 0.01; %responders only significant for the VP250 p =0.04 RR in children VP250 vs placebo p =0.008; Open-label Extension study: RR at months 12 and 24 in the overall population 59.7% (89/149) and 64.5% (80/124) |
AEs largely local skin reactions |
| Jones et al. (2017) 87CoFAR6 | Multicenter Double-blind placebo- RCT | peanut | n=74 (4–25 y), median age 8,2 n=25 placebo nVP100=24 or nVP250=25 |
52 weeks | Treatment success: VP100 vs PLB p = 0.005;VP250 vs PLB p=0.003; VP100 vs VP250, p=0.48 -medium change SCD: Among 3 groups p=0.003; Placebo vs VP100 p=0.014; Placebo vs VP250 p=0.003; VP100 vs VP25 p=0.41 -success better in younger participants (6-11 y) p=0.006 |
AEs largely mild Non–patch-site AE: 0.2% of placebo and VP100 doses and 0.1% of VP250 doses |
| Scurlock et al. (2021) 88 Follow-up CoFAR | Open-label RCT | peanut | n=74 (4-25 y) | 130 weeks | Desensitization: 5% PLB-VP250, 20.8% VP100-VP250, 36% VP250 median SCD change from baseline of 11.5 mg, 141.5 mg, and 400 mg, respectively. post hoc analysis of change in SCD week 52-130: overall p=0.29, within treatment groups PLB-VP250 p=0.32; VP100-VP250 p=0.32; VP250 p=0.10. |
most dosing AE mild |
| Fleischer et al. (2019) 89PEPITES | multicenter Double-blind placebo- RCT | peanut | n=356 (4-11 y) n=238 peanut protein 250 μg; n=118 placebo |
12 months | The percentage difference in responders VP250-μg vs placebo p<0.001 The lower bound of the 95% CI of the difference 12.4% crossed the prespecified lower limit of 15% |
AE mostly mild 4 of 238 participants (1.7%) in the active group discontinued treatment due to AEs. |
| Author (year) | Type of study | Allergen | Participants | Duration | Efficacy | Safety |
| Fleischer et al. (2020) 90PEOPLE | Open-label follow-up RCT | peanut | n=198 ( 4-11) | 5 years (4-5 y still in progress) |
141 (71%) subjects DBPCFC at month 36At month 36: 51.8% subjects ED>1000 mg, At month 12: 40.4%; 75.9% increased ED compared with baseline; 13.5% tolerated DBPCFC of 5444 mg. Median CRD from 144 to 944 mg; SU 14 of 18 subjects |
AEs mild or moderate |
| Pongracic et al. (2022) 95REALISE | multicenter Double-blind placebo- RCT + ongoing open-label active treatment |
peanut | n=393, (4-11 y) 3:1= VP250: placebo for 6 months; 72.3% participants with history of peanut anaphylaxis |
3 years (6 months double blind placebo control) | REALISE was without a DBPCFC and therefore had no efficacy assessment. | 82.7% mild AE; 36.9% moderate AE1.3% severe AE overall |
| Greenhawt et al. (2023) 91EPITOPE | multicenter Double-blind placebo- RCT | peanut | n=362 (1-3 y), the median age: 2.5 y intervention: placebo 244:118 ED<300 mg |
12 months |
Intervention group 67.0% vs. placebo group 33.5%, p<0.001) the mean change in CRD intervention vs placebo group 3.13 (p<0.001) ED intervention vs placebo group 2.96 (p<0.001) |
AE mostly mild Serious AE 8.6% intervention group2.5% placebo group;anaphylaxis 7.8% and 3.4%; Serious treatment-related AE 0.4% intervention group, no placebo group. Treatment-related anaphylaxis 1.6% intervention group, none placebo group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
