Submitted:
07 December 2023
Posted:
08 December 2023
You are already at the latest version
Abstract
Keywords:
2. Preliminaries
- .
3. A Lemma
4. The Main Result
5. Conclusions
6. Acknowledgments
| 1 | Stępień, T. University of the National Education Commission, Kraków, Poland. E-mail: sfstepie@cyf-kr.edu.pl, lukasz.stepien@up.krakow.pl, URL: ltstepien.up.krakow.pl |
References
- Andrews, P.B. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Applied Logic Series; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 27. [Google Scholar]
- Armour-Garb, B. Consistent Inconsistency Theories. Inquiry 2007, 50, 639–654. [Google Scholar] [CrossRef]
- Bair, J.; Błaszczyk, P.; Ely, R.; Henry, V.; Kanovei, V.; Katz, K.U.; Katz, M.G.; Kutateladze, S.S.; McGaffey, T.; Schaps, D.M.; Sherry, D. ; Shnider, SIs Mathematical History Written by the Victors? Notes Am. Math. Soc. 2013, 60, 886–904. [Google Scholar]
- Barrio, E. and Pailos, F. and Szmuc, D. What is a Paraconsistent Logic. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Başoğlu, Y.R. , “What is the O-Corner Interpretation and Does It Save the Traditional Square of Opposition ? Felsefe Ark. –Arch. Philos. 2019, 51, 37–59. [Google Scholar]
- Batens, D. From Copernicus to Ptolemy: Inconsistency and Method. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 1–33. [Google Scholar]
- Batens, D. Tutorial on Inconsistency-Adaptive Logics. In New Directions in Paraconsistent Logic. Springer Proceedings in Mathematics & Statistics; Beziau, J.Y., Chakraborty, M., Dutta, S., Eds, *!!! REPLACE !!!*, Eds.; Volume 152. Springer: New Delhi, India. 2015. [Google Scholar]
- Becker Arenhart, J.R. The Price of True Contradictions About the World. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Switzerland, 2018; pp. 11–31. [Google Scholar]
- Beirlaen, M. , Straßer, C. & Meheus, J. An Inconsistency-Adaptive Deontic Logic for Normative Conflicts. J. Philos. Log. 2013, 42, 285–315. [Google Scholar]
- Ben-Ari, M. Mathematical Logic for Computer Science; Springer: London, UK, 2012. [Google Scholar]
- van Bendegem, J.P. Inconsistencies in the History of Mathematics. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 43–58. [Google Scholar]
- Bertossi, L.; Hunter, A.; Schaub, T. Introduction to Inconsistency Tolerance; In Inconsistency, Tolerance, Bertossi, L., Hunter, A., Schaub, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Besler, G. Philosophical and Mathematical Correspondence between Gottlob Frege and Bertrand Russell in the years 1902–1904. Some Uninvestigated Topics. Folia Philos. 2016, 35, 85–100. [Google Scholar]
- Besnard, P.; Schaub, T.; Tompits, H.; Woltran, S. Representing Paraconsistent Reasoning via Quanitfied Propositional Logic. In Inconsistency Tolerance; Bertossi, L., Hunter, A., Schaub, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Błaszczyk, P.; Fila, M. Cantor on Infinitesimals Historical and Modern Perspectives. Bull. Sec. Log. 2020, 49, 149–179. [Google Scholar] [CrossRef]
- Bolzano, B.; Wissenschaftslehre, B.d., II. Sulzbach 1837 (based on the edition: Leipzig 1929).
- Bozhich, E.S. On arithmetic with the notion of `attainable number. Math. USSR-Izv. 1987, 29, 477–510. [Google Scholar] [CrossRef]
- Brewka, G.; Thimm, M.; Ulbricht, M. Strong inconsistency. Artif. Intellig. 2019, 267, 78–117. [Google Scholar] [CrossRef]
- Brown, B. Approximate Truth. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 81–104. [Google Scholar]
- Bueno, O. Mathematical Change and Inconsistency. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 59–80. [Google Scholar]
- Carbone, A.; Semmes, S. Making Proofs without Modus Ponens: An Introduction to the Combinatorics and Complexity of Cut Elimination. Bull. (New Ser. ) Amer. Math. Soc. 1997, 34, 131–159. [Google Scholar] [CrossRef]
- Carnielli, W.; Coniglio, M.E.; Marcos, J. Logics of Formal Inconsistency. In Handbook of Philosophical Logic; Gabbay, D.M., Guenther, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Carnielli, W.; Rodrigues, A. On the Philosophy and Mathematics of the Logics of Formal Inconsistency. In New Directions in Paraconsistent Logic; Beziau, J.Y., Chakraborty, M., Dutta, S., Eds.; Springer Proceedings in Mathematics & Statistics; Springer: New Delhi, India, 2015; Volume 152. [Google Scholar]
- Carnielli, W. and Mariano, H.L. and Matulovic, M. “Reconciling First-Order Logic to Algebra. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Switzerland, 2018. [Google Scholar]
- Carnielli, W.; Malinowski, J. Contradictions, from Consistency to Inconsistency. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Chow, T.Y. The Consistency of Arithmetic. Math. Intell. 2019, 41, 22. [Google Scholar] [CrossRef]
- Coniglio Marcelo, E.; Toledo Guilherme, V. From Inconsistency to Incompatibility. Log. Log. Philos. 2023, 32, 181–216. [Google Scholar] [CrossRef]
- Curry, H. The inconsistency of certain formal logics. J. Symb. Log. 1942, 7, 115–117. [Google Scholar] [CrossRef]
- Da Costa, N.C.A. On the Theory of Inconsistent Formal Systems. Notre Dame J. Form. Log. 1974, XV, 497–510. [Google Scholar] [CrossRef]
- da Costa, N.; French, S. Inconsistency in Science: A Partial Perspective. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 105–118. [Google Scholar]
- da Costa, N.C.A. , Krause, D. Physics, inconsistency, and quasi-truth. Synthese 2014, 191, 3041–3055. [Google Scholar] [CrossRef]
- Criscuolo, G.; Giunchiglia, F.; Serafini, L. A Foundation for Metareasoning Part I: The Proof Theory. J. Log. Comput. 2002, 12, 167–208. [Google Scholar] [CrossRef]
- Czelakowski, J.; Dziobak, W. On Truth-Schemes for Intensional Logics. Rep. Math. Log. 2006, 41, 151–171. [Google Scholar]
- D’Ottaviano, I.; Loffredo, M.; Milton, C. Augustinis, Analytical tableaux for da Costa’s hierarchy of paraconsistent logics Cn, 1 ≤ n < ω. J. Appl. Non-Class. Log. 2005, 15, 69–103. [Google Scholar]
- van Dalen, D. Logic and Structure; Springer: London, UK, 2013. [Google Scholar]
- Dubois, D.; Prade, H. Being Consistent About Inconsistency: Toward the Rational Fusing of Inconsistent Propositional Logic Bases. In The Road to Universal Logic. Studies in Universal Logic; Koslow, A., Buchsbaum, A., Eds.; Birkhäuser: Cham, Switzerland, 2015. [Google Scholar]
- Eklund, M. Inconsistency and Replacement. Inquiry 2019, 62, 387–402. [Google Scholar] [CrossRef]
- Engesser, K.; Gabbay, D.; Lehmann, D. Nonmonotonicity and Holicity in Quantum Logic. In Handbook of Quantum Logic and Quantum Structures: Quantum Logic; Engesser, K., Gabbay, D.M., Lehmann, D., Eds, *!!! REPLACE !!!*, Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 587–623. [Google Scholar]
- Ershov, Y.L.; Palyutin, E.A. Mathematical Logic. Translated by Shokurov V. Mir Publishers, Moscow 1984.
- Estrada-González, L.E. and del Rosario Martínez-Ordaz, M.R. The Possibility and Fruitfulness of a Debate on the Principle of Non-contradiction. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Finger, M. Quantitative Logic Reasoning. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Freire, R.A. Interpretation and Truth in Set Theory. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Friend, M.; del Rosario Martínez-Ordaz, M.R. Keeping Globally Inconsistent Scientific Theories Locally Consistent. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Gabbay, D.; Hunter, A. Making inconsistency respectable: A logical framework for inconsistency in reasoning, part I—A position paper. In Fundamentals of Artificial Intelligence Research; Jorrand, P., Kelemen, J., Eds.; FAIR 1991. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; Volume 535. [Google Scholar]
- Ganov, V.A. Inconsistency of Nudel’man’s metatheory. Algebra Log. 1995, 34, 41–43. [Google Scholar] [CrossRef]
- Gaytán, D.; D'Ottaviano, I.M.L.; Morado, R. Provided You’re not Trivial: Adding Defaults and Paraconsistency to a Formal Model of Explanation. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Geuvers, H. Inconsistency of classical logic in type theory.
- Available online:. Available online: www.researchgate.net/publication/2414853_Inconsistency_of_Classical_Logic_in_Type_Theory (accessed on 2007).
- Goddard, L. The inconsistency of traditional logic. Australas. J. Philos. 1998, 76, 152–164. [Google Scholar] [CrossRef]
- Goddard, L. The inconsistency of Aristotelian logic? Australas. J. Philos. 2000, 78, 434–437. [Google Scholar] [CrossRef]
- Grant, J. Measuring Inconsistency in Generalized Propositional Logic. Log. Universalis 2020, 14, 331–356. [Google Scholar] [CrossRef]
- Grygiel, W. Towards the consistency of an inconsistent mind. Philos. Probl. Sci. 2010, 47, 70–88. [Google Scholar]
- Grzegorczyk, A. An Outline of Mathematical Logic: Fundamental Results and Notions Explained with All Details; Wojtasiewicz, O., Zawadowski, W., Synthese Library, Translater, D. Reidel Publishing Company: Dordrecht, Holland, Boston, MA, USA, Eds.; PWN: Warszawa, Poland, 1974; Volume 70. [Google Scholar]
- Herbrand, J. Recherches sur la Théorie de la Demonstration; Warszawa, Poland, 1930.
- Hertrich-Woleński, J. Contradiction and what then? Zagadnienia Nauk. 2015, 3, 217–228. (In Polish) [Google Scholar]
- Hohol, M. Mind: between inconsistency and non-triviality. Philos. Probl. Sci. 2010, 47, 89–108. [Google Scholar]
- Hunter, G. METALOGIC. An Introduction to the Metatheory of Standard First Order Logic, PALGRAVE MACMILLAN 1971.
- Jaśkowski, S. Rachunek zdaή dla systemόw dedukcyjnych sprzecznych. Stud. Soc. Sci. Torun. A 1948, 1, 57–77. [Google Scholar]
- Kahle, R. Gentzen’s Consistency Proof in Context. In Gentzen’s Centenary; Kahle, R., Rathjen, M., Eds.; The Quest for Consistency Springer International Publishing: Switzerland, 2015. [Google Scholar]
- Kifer, M.; Lozinskii, E.L. A logic for reasoning with inconsistency. J. Autom. Reason. 1992, 9, 179–215. [Google Scholar] [CrossRef]
- Kleene, S.C.; Rosser, J.B. The Inconsistency of Certain Formal Logics. Ann. Math. 1935, 36, 630–636. [Google Scholar] [CrossRef]
- Konikowska, B. A decompositional deduction system for a logic featuring inconsistency and uncertainty. J. Appl. Non-Class. Log. 2005, 15, 25–44. [Google Scholar] [CrossRef]
- Krajewski, S. On Gödel’s Theorem and Mechanism: Inconsistency or Unsoundness is Unavoidable in any Attempt to ‘Out-Gödel’ the Mechanist. Fundam. Informaticae 2007, 81, 1–9. [Google Scholar]
- Lassaigne, R.; de Rougemont, M. Logic and Complexity; Springer: London, UK, 2004. [Google Scholar]
- Malinowski, G. Inferential Paraconsistency. Log. Log. Philos. 2000, 8, 83–89. [Google Scholar] [CrossRef]
- Marcelino, S.; Caleiro, C.; Rivieccio, U. Plug and Play Negations. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Mangraviti, F.; Tedder, A. Consistent Theories in Inconsistent Logics. J. Philos. Log. 2023, 52, 1133–1148. [Google Scholar] [CrossRef]
- Marciszewski, W. Logic, Modern, History Of. In Dictionary of Logic as Applied in the Study of Language; Marciszewski, W., Ed.; Concepts/Methods/Theories; Nijhoff International Philosophy Series; Springer Science + Business Media: Dordrecht, The Netherlands, 1981; Volume 9, pp. 183–200. [Google Scholar]
- Marciszewski, W. Sentence Logic. In Dictionary of Logic as Applied in the Study of Language; Marciszewski, W., Ed.; Concepts/Methods/Theories; Nijhoff International Philosophy Series; Springer Science + Business Media: Dordrecht, The Netherlands, 1981; Volume 9, pp. 334–342. [Google Scholar]
- Martin, B.J.L. The Logical and Philosophical Foundations for the Possibility of True Contradictions. Ph.D. Thesis, University of London, London, UK, 2014. [Google Scholar]
- Martinez, M.V.; Molinaro, C.; Subrahmanian, V.S.; Amgoud, L. A General Framework for Reasoning on Inconsistency; Springer: New York, NY, USA; Heidelberg, Germany, Dordrecht, The Netherlands; London, UK, 2013. [Google Scholar]
- Meheus, J. How to Reason Sensibly yet Naturally from Inconsistencies. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 1–33. [Google Scholar]
- Miller, A.I. Inconsistent Reasoning toward Consistent Theories. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 35–42. [Google Scholar]
- Mirek, R. Relevant paraconsistent logic. Argument 2021, 11, 287–292. [Google Scholar]
- Mortensen, C. Aristotle’s Thesis in Consistent and Inconsistent Logics. Stud. Log. 1981, XLIII, 107–116. [Google Scholar] [CrossRef]
- Nelson, E. Elements. arXiv 2015, arXiv:1510.00369. [Google Scholar]
- Nersessian, N.J. Inconsistency, Generic Modeling, and Conceptual Change in Science. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 1–33. [Google Scholar]
- Nickles, T. From Copernicus to Ptolemy: Inconsistency and Method. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity, Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 1–33. [Google Scholar]
- Norton, J.D. A Paradox in Newtonian Gravitation Theory II. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 1–33. [Google Scholar]
- Paleo, B.W. Para-Disagreement Logics and Their Implementation Through Embedding in Coq and SMT. In Contradictions, from Consistency to Inconsistency; Carnielli, W., Malinowski, J., Eds.; Springer Nature: Chem, Switzerland, 2018. [Google Scholar]
- Patterson, D. Inconsistency Theories: The Significance of Semantic Ascent. Inquiry 2007, 50, 575–589. [Google Scholar] [CrossRef]
- Perzanowski, J. Parainconsistency, or Inconsistency Tamed, Investigated and Exploited. Log. Log. Philos. 2001, 9, 5–24. [Google Scholar] [CrossRef]
- Picollo, L. Truth in a Logic of Formal Inconsistency: How classical can it get? Log. J. IGPL 2023, 28, 771–806. [Google Scholar] [CrossRef]
- Pogorzelski, W.A. The Classical Propositional Calculus; PWN: Warszawa, Poland, 1975. [Google Scholar]
- Pogorzelski, W.A.; Wojtylak, P. Completeness Theory for Propositional Logics; Birkhäuser-Verlag AG: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2008. [Google Scholar]
- Post, E.L. Introduction to a General Theory of Elementary Propositions. Am. J. Math. 1921, 43, 163–185. [Google Scholar] [CrossRef]
- Priest, G. Inconsistency and the Empirical Sciences. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2, pp. 118–128. [Google Scholar]
- Priest, G. Wittgenstein’s remarks on Gödel’s theorem. In Wittgenstein’s Lasting Significance; Kölbel, M., Weiss, B., Eds.; Routledge Taylor & Francis Group: London, UK, New York, NY, USA, 2005. [Google Scholar]
- Raftery, J.G. Inconsistency lemmas in algebraic logic. Math. Log. Quaterly 2013, 59, 393–406. [Google Scholar] [CrossRef]
- Rasiowa, H. Introduction to Modern Mathematics, North-Holland Publishing Company Amsterdam; Wojtasiewicz, O., Translator, *!!! REPLACE !!!*, Eds.; PWN: Warszawa, Poland, 1973. [Google Scholar]
- Raspa, V. Łukasiewicz on the Principle of Contradiction. J. Philos. Res. 1999, 24, 57–112. [Google Scholar] [CrossRef]
- Rautenberg, W. A Concise Introduction to Mathematical Logic; Springer Science + Business Media, LLC 2010.
- Rozonoer, L.I. On identification of inconsistencies in formal theories I. Avtom. I Telemekhanika 1983, 6, 113–124. [Google Scholar]
- Rozonoer, L.I. On identification of inconsistencies in formal theories II. Avtom. I Telemekhanika 1983, 7, 97–104. [Google Scholar]
- Rudnicki, K. Humans do not reason from contradictory premises. Psychol. Asp. Paraconsistency 2020, submitted.
- Setzer, A. The Use of Trustworthy Principles in a Revised Hilbert’s Program. In Gentzen’s Centenary. The Quest for Consistency; Kahle, R., Rathjen, M., Eds.; Springer International Publishing: Chem, Switzerland 2015. [Google Scholar]
- Srivastava, S.M. A Course on Mathematical Logic; Springer Science + Business Media, LLC 2008.
- Stępień; TJ; Stępień; ŁT. On the Consistency of the Arithmetic System. J. Math. Syst. Sci. 2017, 7, 43–55. [Google Scholar]
- Stępień, T.J.; Stępień Ł, T. Theorem on Inconsistency of the Classical Logic. In Conference Proceedings, Paris, France, ; World Academy of Science, Engineering and Technology: 2017; Volume 19, Part XIII, p.1558. 21–22 September.
- Stępień, T.J.; Stępień, Ł.T. On the Inconsistency of Classical Propositional Calculus. J. Math. Syst. Sci. 2020, 10, 13–14. [Google Scholar]
- Stępień, T.J.; Stępień, Ł.T. On the Inconsistency of Classical Logic. a talk delivered at LXVI Cracow Logic Conference, 3–4 November.
- Surma, S.J. On a Sequence of Contradiction-Tolerating Logics. In Consciousness, Knowledge, and Truth; Poli, R., Ed.; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Tanaka, K.; Girard, P. Against Classical Paraconsistent Metatheory. Analysis 2023, 3, anac093. [Google Scholar] [CrossRef]
- Tarski, A. Über einige fundamentalle Begriffe der Metamathematik. Comptes Rendus Des Séances De La Société De Sci. Et Des Lett. De Vars. 1930, 23.
- Tuziak, R. Logic of Inconsistency. Some remarks on paraconsistent logic. Atut Oficyna Wydawnicza.
- Urchs, M. SCRAPING HEAVENS. On Inconsistencies in Sciences. Log. Log. Philos. 1999, 7, 151–165. [Google Scholar] [CrossRef]
- Vidal-Rosset, J. Paraconsistent, Tennant’s Logic is Inconsistent. Available online: www.vidal-rosset.net 2021 (accessed on 2022).
- Voevodsky, V. “What if current foundations of mathematics are inconsistent?” Lecture at the celebration of the 80s anniversary of the IAS. 25 September.
- Weber, E.; De Clercq, K. Why the Logic of Explanation is Inconsistency-adaptive”. In Inconsistency in Science; Meheus, J., Ed.; ORIGINS: Studies in the sources of scientific creativity; Springer Science + Business Media: Dordrecht, The Netherlands, 2002; Volume 2. [Google Scholar]
- Weber, Z. Paradoxes and Inconsistent Mathematics; Cambridge University Press: 2021.
- Weber, Z.; Badia, G.; Girard, P. What is an Inconsistent Truth Table? Australas. J. Philos. 2016, 94, 533–548. [Google Scholar] [CrossRef]
- Woleński, J. Metalogical Properties, Being Logical and Being Formal. Log. Log. Philos. 2002, 10, 211–221. [Google Scholar] [CrossRef]
- Woods, J. How Robust Can Inconsistency Get? IFCoLog J. Log. Its Appl. 2014, 1, 177–216. [Google Scholar]
- Wójcicki, R. Lectures on Propositional Calculi, Ossolineum–The Publishing House of the Polish Academy of Sciences, 1984.
- Wybraniec-Skardowska, U. On the Mutual Definability of the Notions of Entailment, Rejection, and Inconsistency. Axioms 2016, 5, 1–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
