Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Correlation Between Surface Integrity and Low Cycle Fatigue Life of Machined Inconel 718

Version 1 : Received: 6 December 2023 / Approved: 6 December 2023 / Online: 6 December 2023 (10:55:46 CET)

A peer-reviewed article of this Preprint also exists.

Cui, P.; Liu, Z.; Zhao, J.; Ren, X. Correlation between Surface Integrity and Low Cycle Fatigue Life of Machined Inconel 718. Metals 2024, 14, 178. Cui, P.; Liu, Z.; Zhao, J.; Ren, X. Correlation between Surface Integrity and Low Cycle Fatigue Life of Machined Inconel 718. Metals 2024, 14, 178.

Abstract

This work aims at improving surface integrity and LCF life of machined Inconel 718. The correlation between the LCF life of Inconel 718 and various states of machined surface integrity is explored. In this paper, the surface integrity of Inconel 718 specimens is enhanced by low plasticity burnishing (LPB). The LCF life with different surface integrity specimens is predicted by micro-macro finite element method (FEM). Firstly, the LCF specimens with different surface integrity are machined by turning (turned specimen), polishing (matrix specimen) and LPB process (LPBed specimen). Secondly, the LCF experiment is carried out to reveal the effect of surface integrity on LCF life. Finally, the LCF micro-macro FEM model is proposed to predict the LCF of machined Inconel 718 specimens. The representative volume element (RVE) model is established based on the measured surface integrity and microstructure of Inconel 718 specimens. The effect of surface integrity on LCF life is transformed to equivalent load. The micro-macro FEM model combined with Tanaka-Mura dislocation crack initiation theory and extended finite element method (XFEM) is applied to predict the LCF life the machined specimens. The study results show that the LCF life of LPBed specimens can be improved by 90.5% and 36.1% compared with that of turned specimens and polished matrix specimens, respectively. The errors between FEM prediction results and experimental results are 13.1%, 9.2% and 12.2%, respectively. The proposed micro-macro FEM model could be utilized to predict the LCF life of Inconel 718 with different surface integrity, and further to apply the LCF life prediction in industry.

Keywords

low plasticity burnishing; surface integrity; fatigue life; superalloy Inconel 718; finite element simulation

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.