Submitted:
05 December 2023
Posted:
06 December 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant material
2.2. Preparation of flower extracts
2.3. Honey samples and experimental conditions
2.4. Total Antioxidant Capacity
2.5. Total Phenolic Content (TPC)
2.6. Flavonoids Determination
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding

Data Availability Statement
Conflicts of Interest
References
- Wantusiak, P.M.; Piszcz, P.; Skwarek, M.; Głód, B.K. Właściwości antyoksydacyjne miodów wyznaczone metodami chromatograficznymi [Antioxidative properties of honeys determined using HPLC techniques]. Camera Separatoria 2011, 3, 297–317. [Google Scholar]
- D’Arcy, B.R. Antioxidants in Australian Floral Honeys. Idetification of health-enhancing nutrient componts. 2005. RIRDC Publication No05/040.
- Baltrušaityté, V.; Venskutonis, P.R. , Čeksteryté V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 2007, 101, 502–514. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standarization of antioxidant properties of honey by a combination of spectrophotometric/fluorometric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Fortuna, T. Antioxidant activity and phenolic composition of herbhoneys. Food Chem. 2009, 113, 568–574. [Google Scholar] [CrossRef]
- Vazquez, L.; Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods 2021, 10, 2616. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Al-Asiri, S.A.; Mahesar, A.L.; Ansari, M.J. Role of honey in modern medicine. Saudi J. Biol. Sci. 2017, 24, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z.B.; Alshehabat, M.A.; Hananeh, W.; Daradka, M.; Ali, J.H.; El-Najjar, E.K. Recent advances in topical wound healing products with special reference to honey: a review. Res. Opin. Anim. Vet. Sci. 2015, 5, 76–83. [Google Scholar]
- Jull, A.; Walker, N.; Deshpande, S. Honey as a topical treatment for wounds. Cochrane Database Syst. Rev. 0050. [Google Scholar]
- Blair, S.E.; Cokcetin, N.N.; Harry, E.J.; Carter, D.A. The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur. J. Clin. Microbiol. Infect Dis. 2009, 28, 1199–1208. [Google Scholar] [CrossRef]
- Cooper, R.A.; Halas, E.; Molan, P.C. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J. Burn Care Rehabil. 2002, 23, 366–370. [Google Scholar] [CrossRef]
- Cooper, R.A.; Molan, P.C.; Harding, K.G. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef]
- French, V.M.; Cooper, R.A.; Molan, P.C. The antibacterial activity of honey against coagulase-negative staphylococci. J. Antimicrob. Chemother. 2005, 56, 228–231. [Google Scholar] [CrossRef]
- Katrina, B.; Calvin, S. Antibacterial compounds of canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of b-lactam antibiotics. PLoS One 2014, 9, e106967. [Google Scholar] [CrossRef]
- Paul, I.M.; Beiler, J.; McMonagle, A.; Shaffer, M.L.; Duda, L.; Berlin, C.M. Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents. Arch. Pediatr. Adolesc. Med. 2007, 161, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.A.; Rozen, J.; Kristal, H.; Laks, Y.; Berkovitch, M.; Uziel, Y. Effect of honey on nocturnal cough and sleep quality: a double-blind, randomized, placebo-controlled study. Pediatrics 2012, 130, 465–471. [Google Scholar] [CrossRef]
- Shariatpanahi, Z.V.; Jamshidi, F.; Nasrollahzadeh, J.; Amiri, Z.; Teymourian, H. Effect of honey on diarrhea and fecal microbiotain in critically ill tube-fed patients: a single center randomized controlled study. Anesth. Pain Med. 2018, 8, e62889. [Google Scholar] [CrossRef]
- Andayani, R.P.; Nurhaeni, N.; Agustini, N. The effect of honey with ORS and a honey solution in ORS on reducing the frequency of diarrhea and length of stay for toddlers. Compr. Child Adolesc. Nurs. 2019, 42, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Nichițean, A.L.; Constantinescu-Aruxandei, D.; Oancea, F. Health promoting quality of the Romanian honey. Sci. Bull. Series F. Biotechnol. 2021, 25, 95–103. [Google Scholar]
- Majewski, J. Wybrane czynniki determinujące wydajność miodową rodzin pszczelich w Polsce [The selected factors determining honey yield of bee colonies in Poland]. Ann. Pol. Assoc. Agric. Aribus. Econ. 2015, 4, 154–159. [Google Scholar] [CrossRef]
- Cepero, A.; Ravoet, J.; Gómez-Moracho, T.; Bernal, J.L.; Del Nozal, M.J.; Bartolomé, C.; Maside, X.; Meana, A.; González-Porto, A.V.; De Graaf, D.C.; Martín-Hernández, R.; Higes, M. Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Res. Notes 2014, 7, 649. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.T.; Amichot, M.; Pauron, D.; Tchamitchian, S.; Brunet, J.-L.; Kretzschmar, A.; Maini, S.; Belzunces, L.P. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 2016, 127, 205–213. [Google Scholar] [CrossRef]
- Steinhauer, N.; Kulhanek, K.; Antúnez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.-P.; VanEngelsdorp, D. Drivers of colony losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, L.; Socha, R.; Różnowski, J.; Fortuna, T.; Nalepka, K. Physicochemicals properties and quality parameters of herbhoneys. Food Chem. 2009, 113, 538–542. [Google Scholar] [CrossRef]
- Lukasiewicz, M.; Kowalski, S.; Makarewicz, M. Antimicrobial an antioxidant activity of selected Polish herbhoneys. LWT—Food Sci. Technol. [CrossRef]
- Isidorov, V.A.; Bagan, R.; Bakier, S.; Swiecicka, I. Chemical composition and antimicrobial activity of Polish herbhoneys. Food Chem. 2015, 171, 84–88. [Google Scholar] [CrossRef]
- Majtan, J.; Bucekova, M.; Kafantaris, I.; Szweda, P.; Hammer, K.; Mossialos, D. Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci. Technol. 2021, Part B, 870–886. [Google Scholar] [CrossRef]
- Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2020, 25, 84. [Google Scholar] [CrossRef] [PubMed]
- Guldas, M.; Gurbuz, O.; Cakmak, I.; Yildiz, E.; Sen, H. Effects of honey enrichment with Spirulina platensis on phenolics, bioaccessibility, antioxidant capacity and fatty acids. LWT 2022, 153, 112461. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Miłek, M.; Sidor, E.; Puchalski, C.; Dżugan, M. Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties. Molecules 2022, 27, 4859. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Sowa, P.; Kwaśniewska, M.; Wesołowska, M.; Czernicka, M. Physicochemical Parameters and Antioxidant Activity of Bee Honey Enriched With Herbs. Plant Foods Hum. Nutr. 2017, 72, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sowa, S.; Tarapatskyy, M.; Puchalski, C.; Jarecki, W.; Dżugan, M. A novel honey-based product enriched with coumarin from Melilotus flowers. J. Food Meas. Charact. 2019, 13, 1748–1754. [Google Scholar] [CrossRef]
- Novák, A. , Alexa L., Kovács B., Czipa N. Comparative study of special honey products and herbhoneys. Acta Agraria Debreceniensis 2018, 74, 117–120. [Google Scholar] [CrossRef]
- Raeessi, M.A.; Aslani, J.; Raeessi, N.; Gharaie, H.; Zarchi, A.A.K.; Raeessi, F. Honey plus coffee versus systemic steroid in the treatment of persistent post-infectious cough: a randomised controlled trial. Prim. Care Respir. J. 2013, 22, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Raeessi, M.A.; Raeessi, N.; Panahi, Y.; Gharaie, H.; Davoudi, S.M.; Saadat, A.; Zarchi, A.A.K.; Raeessi, F.; Ahmadi, S.M.; Jalalian, H. “Coffee plus Honey” versus “topical steroid” in the treatment of Chemotherapy-induced Oral Mucositis: a randomised controlled trial. BMC Complement. Altern. Med. 2014, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.C.; Sinha, I.; Barr, I.G.; Zambon, M. Transmission of paediatric respiratory syncytial virus and influenza in the wake of the COVID-19 pandemic. Eurosurveillance 2021, 26, 2100186. [Google Scholar] [CrossRef] [PubMed]
- Silveira, D.; Prieto-Garcia, J.M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y.M.; Jamal, C.M.; Magalhães, P.O.; Pereira, E.O.; Tomczyk, M.; Heinrich, M. COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front. Pharmacol. 2020, 11, 1479. [Google Scholar] [CrossRef] [PubMed]
- Stambas, J.; Lu, C.; Tripp, R.A. Innate and adaptive immune responses in respiratory virus infection: Implications for the clinic. Expert Rev. Respir. Med. 2020, 14, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.d.O., Jr.; Di Gioia, F.; Rouphael, Y.; Ferreira, I.C.F.R.; Caleja, C.; Barros, L.; Petropoulos, S.A. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021, 26, 6940. [Google Scholar] [CrossRef] [PubMed]
- Chinou, J.; Knoess, W.; Calapai, G. Regulation of herbal medicinal products in the EU:an up-to-date scientific review. Phytochem Rev. 2014, 13, 539–545. [Google Scholar] [CrossRef]
- Cechinel Filho, V. (Ed.) . (2018). Natural products as source of molecules with therapeutic potential: Research & development, challenges and perspectives. Springer.
- Tarapatskyy, M.; Kapusta, I.; Gumienna, A.; Puchalski, C. Assessment of the Bioactive Compounds in White and Red Wines Enriched with a Primula veris L. Molecules 2019, 24, 4074. [Google Scholar] [CrossRef] [PubMed]
- Tarapatskyy, M.; Gumienna, A.; Sowa, P.; Kapusta, I.; Puchalski, C. Bioactive Phenolic Compounds from Primula veris L.: Influence of the Extraction Conditions and Purification. Molecules. [CrossRef]
- https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition. (accessed on 18 November 2023).
- Marques, L.L.M. , Ferreira, E.D.F.; de Paula, M.N.; Klein, T.; de Mello, J.C.P. Paullinia cupana: a multipurpose plant–a review. Rev. Bras. Farmacogn. [CrossRef]
- Egebjerg, M.M.; Olesen, P.T.; Eriksen, F.D.; Ravn-Haren, G.; Bredsdorff, L.; Pilegaard, K. Are wild and cultivated flowers served in restaurants or sold by local producers in Denmark safe for the consumer? Food Chem. Toxicol. 2018, 120, 129–142. [Google Scholar] [CrossRef]
- Jović, M.D.; Agatonovic-Kustrin, S.; Ristivojević, P.M.; Trifković, J.Đ.; Morton, D.W. Bioassay-Guided Assessment of Antioxidative, Anti-Inflammatory and Antimicrobial Activities of Extracts from Medicinal Plants via High-Performance Thin-Layer Chromatography. Molecules 2023, 28, 7346. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. 1999, 26, 26,1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Jańczak-Pieniążek, M.; Cichoński, J.; Michalik, P.; Chrzanowski, G. Effect of heavy metal stress on phenolic compounds accumulation in winter wheat plants. Molecules 2023, 28, 241. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming,W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Jan, N.; Andrabi, K.I.; John, R. Calendula officinalis-an important medicinal plant with potential biological properties. Proc. Indian Natn. Sci. Acad. 2017, 83, 769–787. [Google Scholar] [CrossRef]
- Pieroni, A.; Nedelcheva, A.; Hajdari, A.; Mustafa, B.; Scaltriti, B.; Cianfaglione, K.; Quave, C. Local knowledge on plants and domestic remedies in the mountain villages of Peshkopia (Eastern Albania). J. Mt. Sci. 1007. [Google Scholar]
- Rossi, A.; Dehm, F.; Kiesselbach, C.; Haunschild, J.; Sautebin, L.; Werz, O. The novel Sinupret® dry extract exhibits anti-inflammatory effectiveness in vivo. Fitoterapia 2012, 83, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Başbülbül, G.; Özmen, A.; Biyik, H.H.; Şen, Ö. Antimitotic and antibacterial effects of the Primula veris L. flower extracts. Caryologia 2008, 61, 88–91. [Google Scholar] [CrossRef]
- https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-primulaveris-l/primula-elatior-l-hill-radix_en. (accessed on 10 November 2023).
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Aebisher, D.; Cichonski, J.; Szpyrka, E.; Masjonis, S.; Chrzanowski, G. Essential oils of seven lamiaceae plants and their antioxidant capacity. Molecules 2021, 26, 3793. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Chitra, V.N. Enzyme-Assisted Extraction of Flavorings and Colorants from Plant Materials. Crit. Rev. Food Sci. Nutr. 2010, 50, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Boulebd, H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct. 2020, 1201, 127210. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Tech. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic content and antioxidant activity of di_erent types of polish honey—A short report. Polish J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Chromatographic fingerprint, antioxidant activity, and colour characteristic of polish goldenrod (Solidago virgaurea L.) honey and flower. Eur. Food Res. Technol. 1169. [Google Scholar] [CrossRef]
- Lachman, J.; Orsák, M.; Hejtmánková, A.; Kovářová, E. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Sci. Technol. [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Srećković, N.Z.; Mihailović, V.B.; Katanić, S.J.S. Physico-chemical, antioxidant and antimicrobial properties of three different types of honey from central Serbia. Kragujevac J. Sci. 2019, 41, 53–68. [Google Scholar] [CrossRef]
- Kacániová, M.; Vukovic, N.; Bobková, A.; Fikselová, M.; Rovná, K.; Haščík, P.; Čuboň, J.; Hleba, L.; Bobko, M. Antimicrobial and antiradical activity of Slovakian honeydew honey samples. J. Microbiol. Biotechnol. Food Sci. 2011, 1, 354–368. [Google Scholar]
- Kavanagh, S.; Gunnoo, J.; Marques, P.T.; Stout, J.C.; White, B. Physicochemical Properties and Phenolic Content of Honey from Different Floral Origins and from Rural versus Urban Landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef]
- Muñoz, J.A.M.; Alvarado-Ortíz, U.C.; Blanco, B.T.; Castañeda, C.B.; Ruiz, Q.J.; Alvarado, Y.Á. Determinación de Compuestos Fenólicos, Flavonoides Totales y Capacidad Antioxidante En Mieles Peruanas de Diferentes Fuentes Florales. Rev. Soc. Quím. Perú.
- Goslinski, M.; Nowak, D.; Kłebukowska, L. Antioxidant Properties and Antimicrobial Activity of Manuka Honey versus Polish Honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef] [PubMed]
- Wichtl, M. (Ed.) , Herbal Drugs and Phytopharmaceuticals, A Handbook of Practice on a Scientific Basis, CRCPress, Stuttgart, Germany, 3rd edition, 2004.
- Latypova, G.M.; Bychenkova, M.A.; Katayev, V.A.; Perfilova, V.N.; Tyurenkov, I.; Mokrousov, I.S.; Prokofiev, I.I.; Salikhov, S.M.; Iksanova, G.R. Composition and cardioprotective effects of Primula veris L. solid herbal extract in experimental chronic heart failure. Phytomedicine 2018, 54. [Google Scholar] [CrossRef] [PubMed]

![]() |
| Sample/Plant Species | Form of enrichment | Concentration | ||
|---|---|---|---|---|
| 1% | 2% | 4% | ||
| Rapeseed honey | No plant addition | 1.61 ± 0.93 u | ||
| Pulmonaria officinalis L. | Extract | 5.83 ± 2.74 stu | 11.43 ± 2.14 oprst | 19.64 ± 1.79 klmn |
| Dried flowers | 24.84 ± 1.59 jkl | 38.61 ± 5.26 gh | 67.10 ± 1.79 bc | |
| Malva sylvestris L. | Extract | 5.16 ± 0.16 tu | 8.29 ± 0.36 rstu | 15.28 ± 1.31 mnopr |
| Dried flowers | 9.64 ± 1.31 prstu | 17.09 ± 2.38 lmnop | 73.61 ± 3.64 b | |
| Primula veris L. | Extract | 13.89 ± 0.95 noprs | 18.17 ± 1.75 klmno | 41.43 ± 0.08 gh |
| Dried flowers | 25.79 ± 5.24 jk | 72.66 ± 4.96 b | 83.06 ± 0.99 a | |
| Tussilago farfara L. | Extract | 15.44 ± 0.04 mnopr | 29.60 ± 1.43 ij | 41.86 ± 2.34 fgh |
| Dried flowers | 23.13 ± 2.82 jklm | 44.32 ± 0.36 efg | 58.73 ± 5.15 cd | |
| Bellis perennis L. | Extract | 7.74 ± 2.98 rstu | 13.06 ± 1.39 noprs | 22.88 ± 2.40 jklm |
| Dried flowers | 14.90 ± 2.18 mnopr | 25.66 ± 4.03 jk | 42.14 ± 4.05 fgh | |
| Sambucus nigra L. | Extract | 20.28 ± 0.59 klmn | 35.30 ± 2.56 hi | 51.31 ± 3.21 de |
| Dried flowers | 21.27 ± 0.24 jklmn | 50.24 ± 0.87 ef | 66.27 ± 0.63 bc | |
| Multifloral honey | No plant addition | 3.76 ± 0.58 s | ||
| Pulmonaria officinalis L. | Extract | 14.11 ± 0.87 nopr | 20.48 ± 0.48 lmn | 34.23 ± 2.81 gh |
| Dried flowers | 28.84 ± 2.39 hij | 43.84 ±2.29 de | 80.32 ± 0.58 a | |
| Malva sylvestris L. | Extract | 8.87 ± 1.32 prs | 14.64 ± 1.81 nopr | 17.58 ± 0.35 lmn |
| Dried flowers | 14.58 ± 0.84 nopr | 28.39 ± 2.58 ijk | 35.97 ± 1.58 fg | |
| Primula veris L. | Extract | 8.35 ± 1.32 rs | 14.16 ± 0.29 nopr | 28.90 ± 0.58 hij |
| Dried flowers | 50.29 ± 2.81 c | 74.64 ± 1.11 a | 80.26 ± 3.16 a | |
| Tussilago farfara L. | Extract | 13.06 ± 0.74 opr | 23.23 ± 0.77 jkl | 49.81 ± 4.84 cd |
| Dried flowers | 14.71 ± 0.90 nopr | 22.35 ± 2.30 klm | 48.28 ± 4.76 cd | |
| Bellis perennis L. | Extract | 10.87 ± 1.00 opr | 9.35 ± 0.34 prs | 23.74 ± 0.32 jkl |
| Dried flowers | 16.29 ± 0.68 mno | 26.93 ± 0.93 ijk | 35.39 ± 1.97 fg | |
| Sambucus nigra L. | Extract | 14.90 ± 2.13 nop | 29.61 ± 2.32 ghij | 41.32 ± 1.58 ef |
| Dried flowers | 32.45 ± 1.61 ghi | 47.00 ± 3.00 cde | 63.42 ± 0.19 b | |
| Sample/Plant Species | Form of enrichment | Concentration | ||
|---|---|---|---|---|
| 1% | 2% | 4% | ||
| Rapeseed honey | No plant addition | 15.98 ± 0.31 s | ||
| Pulmonaria officinalis L. | Extract | 25.00 ± 1.82 pr | 43.29 ± 1.18 klm | 58.04 ± 4.78 hi |
| Dried flowers | 73.13 ± 3.20 ef | 99.51 ± 0.11 a | 99.85 ± 0.05 a | |
| Malva sylvestris L. | Extract | 21.35 ± 0.94 rs | 40.29 ± 0.15 lmn | 70.91 ± 0.69 fg |
| Dried flowers | 48.37 ± 2.71 jk | 69.58 ± 0.34 fg | 99.90 ± 0.00 a | |
| Primula veris L. | Extract | 38.21 ± 3.89 mno | 54.59 ± 3.81 ij | 92.06 ± 0.84 bc |
| Dried flowers | 84.86 ± 0.34 d | 99.90 ± 0.00 a | 100.00 ± 0.00 a | |
| Tussilago farfara L. | Extract | 31.51 ± 0.05 op | 55.32 ± 0.89 ij | 86.59 ± 4.44 cd |
| Dried flowers | 64.30 ± 4.34 gh | 98.18 ± 0.25 ab | 99.70 ± 0.11 a | |
| Bellis perennis L. | Extract | 20.81 ± 0.31 rs | 34.21 ± 0.94 no | 70.22 ± 1.46 fg |
| Dried flowers | 46.10 ± 2.42 kl | 70.76 ± 1.63 fg | 79.49 ± 1.48 de | |
| Sambucus nigra L. | Extract | 54.59 ± 3.01 ij | 70.96 ± 4.98 fg | 94.67 ± 2.17 ab |
| Dried flowers | 48.37 ± 2.71 gh | 69.58 ± 0.34 ab | 99.91 ± 0.00 a | |
| Multifloral honey | No plant addition | 13.49 ± 0.59 o | ||
| Pulmonaria officinalis L. | Extract | 30.73 ± 1.16 mn | 55.68 ± 1.64 gh | 90.08 ± 6.84 bcd |
| Dried flowers | 88.25 ± 0.00 cd | 99.61 ± 0.00 a | 99.85 ± 0.14 a | |
| Malva sylvestris L. | Extract | 28.52 ± 1.16 n | 44.91 ± 3.08 ijkl | 56.33 ± 2.31 gh |
| Dried flowers | 52.54 ± 2.21 ghi | 80.15 ± 1.86 de | 93.79 ± 1.54 abc | |
| Primula veris L. | Extract | 41.18 ± 3.23 kl | 58.62 ± 9.78 fg | 78.13 ± 3.66 e |
| Dried flowers | 97.41 ± 0.87 abc | 99.85 ± 0.05 a | 99.85 ± 0.05 a | |
| Tussilago farfara L. | Extract | 38.44 ± 2.71 lm | 59.63 ± 5.20 fg | 98.84 ± 0.19 ab |
| Dried flowers | 44.03 ± 0.58 ijk | 54.13 ± 2.61 ghi | 98.84 ± 0.38 ab | |
| Bellis perennis L. | Extract | 28.76 ± 0.43 n | 41.57 ± 4.29 jkl | 66.86 ± 1.06 f |
| Dried flowers | 50.77 ± 0.38 ghij | 66.28 ± 2.50 f | 83.38 ± 3.99 de | |
| Sambucus nigra L. | Extract | 48.41 ± 2.84 hijk | 66.52 ± 1.20 f | 98.12 ± 0.72 ab |
| Dried flowers | 79.38 ± 1.93 de | 98.89 ± 0.05 ab | 99.52 ± 0.10 a | |
| Sample/Plant Species | Form of enrichment | Concentration | ||
|---|---|---|---|---|
| 1% | 2% | 4% | ||
| Rapeseed honey | No plant addition | 2.24 ± 0.01 s | ||
| Pulmonaria officinalis L. | Extract | 4.72 ± 0.21 nop | 6.80 ± 0.24 jkl | 9.81 ± 0.32 fgh |
| Dried flowers | 8.22 ± 0.16 i | 9.84 ± 0.31 gh | 12.23 ± 0.61 cd | |
| Malva sylvestris L. | Extract | 3.55 ± 0.37 r | 5.12 ± 0.30 mno | 6.10 ± 0.15 klm |
| Dried flowers | 4.70 ± 0.44 nop | 7.81 ± 0.45 ij | 9.16 ± 0.44 hi | |
| Primula veris L. | Extract | 6.17 ± 0.43 klm | 8.76 ± 0.40 hi | 10.84 ± 0.32 efg |
| Dried flowers | 1.15 ± 0.45 de | 13.44 ± 0.63 ab | 13.65 ± 0.32 a | |
| Tussilago farfara L. | Extract | 5.83 ± 0.4 l mn | 6.40 ± 0.16 kl | 11.00 ± 0.20 ef |
| Dried flowers | 4.55 ± 0.26 opr | 8.78 ± 0.12 hi | 12.42 ± 0.63 bc | |
| Bellis perennisL. | Extract | 3.71 ± 0.34 pr | 5.23 ± 0.27 mno | 7.01 ± 0.33 jk |
| Dried flowers | 7.98 ± 0.22 ij | 9.51 ± 0.20 h | 11.44 ± 0.55 cde | |
| Sambucus nigra L. | Extract | 8.34 ± 0.20 i | 10.4 ± 0.52 efg | 12.18 ± 0.52 cd |
| Dried flowers | 8.83 ± 0.10 hi | 12.2 ± 0.60 bcd | 14.16 ± 0.41 a | |
| Multifloral honey | No plant addition | 3.56 ± 0.15 n | ||
| Pulmonaria officinalis L. | Extract | 3.76 ± 0.50 n | 6.52 ± 0.10 kl | 9.77 ± 0.58 gh |
| Dried flowers | 5.71 ± 0.18 lm | 12.63 ± 0.31 cd | 13.03 ± 0.54 cd | |
| Malva sylvestris L. | Extract | 5.32 ± 0.32 m | 8.54 ± 0.00 ij | 10.90 ± 0.33 efg |
| Dried flowers | 5.58 ± 0.34 m | 8.12 ± 0.40 j | 13.68 ± 0.15 ab | |
| Primula veris L. | Extract | 5.88 ± 0.11 lm | 9.50 ± 0.33 hi | 13.53 ± 0.20 abc |
| Dried flowers | 7.50 ± 0.39 jk | 12.01 ± 0.26 de | 14.21 ± 0.13 ab | |
| Tussilago farfara L. | Extract | 5.42 ± 0.62 m | 6.87 ± 0.77 kl | 10.00 ± 0.35 gh |
| Dried flowers | 8.37 ± 0.36 ij | 10.81 ± 0.42 fg | 13.33 ± 0.16 bc | |
| Bellis perennisL. | Extract | 3.69 ± 0.24 n | 6.58 ± 0.39 kl | 12.07 ± 0.13 de |
| Dried flowers | 6.10 ± 0.66 lm | 10.50 ± 0.21 fgh | 13.13 ± 0.34 bcd | |
| Sambucus nigra L. | Extract | 6.55 ± 0.32 kl | 10.44 ± 0.36 fgh | 13.40 ± 0.12 bc |
| Dried flowers | 11.30 ± 0.10 ef | 14.30 ± 0.13 a | 14.61 ± 0.26 a | |
| Sample/Plant Species | Form of enrichment | Concentration | ||
|---|---|---|---|---|
| 1% | 2% | 4% | ||
| Rapeseed honey | No plant addition | 8.42 ± 0.66 mn | ||
| Pulmonaria officinalis L. | Extract | 6.72 ± 0.21 no | 16.12 ± 0.90 j | 28.26 ± 0.63 e |
| Dried flowers | 16.24 ± 0.56 j | 33.31 ± 0.67 d | 61.00 ± 0.86 a | |
| Malva sylvestris L. | Extract | 5.85 ± 0.52 o | 10.64 ± 0.23 lm | 14.36 ± 0.68 jk |
| Dried flowers | 9.62 ± 0.33 lm | 18.37 ± 0.75 i | 24.04 ± 0.92 g | |
| Primula veris L. | Extract | 8.91 ± 0.14 m | 14.55 ± 0.92 jk | 24.71 ± 0.54 g |
| Dried flowers | 14.65 ± 0.83 jk | 26.51 ± 0.80 ef | 33.62 ± 0.72 d | |
| Tussilago farfara L. | Extract | 11.34 ± 0.66 lm | 24.82 ± 0.09 fg | 37.55 ± 0.99 c |
| Dried flowers | 9.36 ± 0.51 lm | 20.65 ± 0.63 h | 40.13 ± 0.88 b | |
| Bellis perennisL. | Extract | 10.30 ± 0.24 lm | 15.26 ± 0.32 jk | 23.18 ± 0.67 g |
| Dried flowers | 9.26 ± 0.21 m | 14.92 ± 0.36 jk | 23.94 ± 0.38 g | |
| Sambucus nigra L. | Extract | 13.64 ± 0.65 k | 24.60 ± 0.29 fg | 37.43 ± 0.43 c |
| Dried flowers | 27.92 ± 0.82 e | 33.82 ± 0.61 d | 39.36 ± 0.42 bc | |
| Multifloral honey | No plant addition | 4.33 ± 0.30 t | ||
| Pulmonaria officinalis L. | Extract | 9.03 ± 0.51 r | 21.12 ± 0.76 gh | 22.82 ± 0.77 fg |
| Dried flowers | 15.35 ± 0.60 lm | 29.87 ± 0.58 d | 40.87 ± 0.78 a | |
| Malva sylvestris L. | Extract | 4.32 ± 0.14 t | 9.10± 0.62 r | 16.86 ± 0.86 kl |
| Dried flowers | 9.27 ± 0.33 r | 11.45 ± 0.56 p | 35.53 ± 0.61 b | |
| Primula veris L. | Extract | 4.03 ± 0.45 t | 9.42 ± 0.31 r | 13.87 ± 0.47 mn |
| Dried flowers | 14.64 ± 0.56 mn | 18.80 ± 0.71 ij | 24.38 ± 0.52 f | |
| Tussilago farfara L. | Extract | 5.05 ± 0.53 st | 11.77 ± 0.34 op | 26.84 ± 0.67 e |
| Dried flowers | 13.05 ± 0.34 no | 20.65 ± 0.41 hi | 27.26 ± 0.43 e | |
| Bellis perennis L. | Extract | 6.32 ± 0.28 s | 9.20 ± 0.30 r | 22.44 ± 0.38 gh |
| Dried flowers | 12.51 ± 0.55 op | 20.67 ± 0.68 hi | 30.82 ± 0.65 d | |
| Sambucus nigra L. | Extract | 11.62 ± 0.68 op | 18.92 ± 0.66 ij | 36.90 ± 0.57 b |
| Dried flowers | 17.44 ± 0.42 jk | 32.90 ± 0.39 c | 40.01 ± 0.89 a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

