Submitted:
30 November 2023
Posted:
01 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Raised temperatures with 1-MCP application
3. Raised temperatures in ULO and DCA storage
| Room Size [t] | Cultivars | Control | High Temperature | Energy savings [%] | Ref. |
|---|---|---|---|---|---|
| 210 | Gala | 1.4 ° ULO | 4.0 °C ULO + 1-MCP | 35 | [24] |
| 210 | Gala | 1.3 ° ULO | 3.7 °C ULO + 1-MCP | 35 | [25] |
| 640 | Gala | 0.7 ° CA | 2.0 °C CA + 1-MCP | 20 | [28] |
| 100 | Elstar | 1.5 °C ULO | 4.0 °C ULO + 1-MCP | 25 | [25] |
| 250 | Jonagold | 1.5 °C ULO | 4.0 °C ULO + 1-MCP | 26 | [45] |
| 11 | Jonagold, Pinova, Golden Delicious |
1.0 °C CA/DCA | 5.0 °C ULO + 1-MCP | 63 | [27] |
| 11 | Jonagold, Pinova, Topaz, Golden Delicious | 1.0 °C CA/DCA | 4.0 °C ULO + 1-MCP | 26 | [45] |
| 11 | Jonagold, Pinova | 1.0 °C ULO/DCA | 4.0 °C ULO + 1-MCP | 51 | [45] |
| 11 | Jonagold, Pinova, Golden Delicious |
1 °C ULO | 3 °C ULO/DCA | 12 | [45] |
| 11 | Pinova | 1 °C ULO | 3 °C ULO | 15-50 | [45] |
| - | Royal Gala, Pink Lady | 3 °C | DCA 5 °C | 35% cool-down 15% storage |
[40] |
| 11 | Red Prince | 1 °C DCA | DCA + variable Temp. | 35% | [46] |
| 11 | Red Prince, Jonagold, Pinova | 1 ° C DCA | DCA + variable Temp. | 20% | [32] |
| Beneficial effect | References |
|---|---|
| Higher firmness, higher TSS, higher TA | [22,24,25,27,32,34,46,51,54] |
| Lower mass loss | [24,25,27,46] |
| Higher scores in sensory consumer panels (texture, taste, buying preference) | [24,25,27] |
| Reduced chilling injuries, flesh breakdown, core breakdown, water core, cavities, and mealiness |
[22,33,40,46,48,49,50,51,54] |
| Reduced rot incidences | [27,28,45,56] |
| Increased abundance of volatile organic compounds | [30] |
3. Advanced monitoring and data analytics
5. Conclusions
Author Contributions
Acknowledgments
References
- Streif:, J.; Kittemann, D.; Neuwald, D.A.; McCormick, R.; Xuan, H. Pre- and Post-Harvest Management of Fruit Quality, Ripening and Senescence. Acta Horticulturae 2010, 877, 55–68. [Google Scholar] [CrossRef]
- Leisso, R.S.; Buchanan, D.A.; Lee, J.; Mattheis, J.P.; Sater, C.; Hanrahan, I.; Watkins, C.B.; Gapper, N.; Johnston, J.W.; Schaffer, R.J.; et al. Chilling-Related Cell Damage of Apple (Malus × Domestica Borkh.) Fruit Cortical Tissue Impacts Antioxidant, Lipid and Phenolic Metabolism. Physiol Plantarum 2015, 153, 204–220. [Google Scholar] [CrossRef]
- Prange, R.K.; Wright, A.H. A Review of Storage Temperature Recommendations for Apples and Pears. Foods 2023, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Gross, K.C.; Wang, C.Y.; Saltveit, M.E. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks. Agriculture Handbook 66. U.S. Department of Agriculture, Agricultural Research Service 2016. Washington, DC.. [Google Scholar]
- DeEll, J.R. Chapter 14.1 - Pome Fruits: Apple Quality and Storage. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.I., Beaudry, R., Eds.; Academic Press, 2020; pp. 293–298. ISBN 978-0-12-804599-2. [Google Scholar]
- Blanke, M.M. Life Cycle Assessment (LCA) and Food Miles - An Energy Balance for Fruit Imports versus Home-Grown Apples. Acta Hortic. 2008, 59–64. [Google Scholar] [CrossRef]
- Lewczuk, K.; Kłodawski, M.; Gepner, P. Energy Consumption in a Distributional Warehouse: A Practical Case Study for Different Warehouse Technologies. Energies 2021, 14, 2709. [Google Scholar] [CrossRef]
- East, A.R.; Smale, N.J.; Trujillo, F.J. Potential for Energy Cost Savings by Utilising Alternative Temperature Control Strategies for Controlled Atmosphere Stored Apples. International Journal of Refrigeration 2013, 36, 1109–1117. [Google Scholar] [CrossRef]
- Boschiero, M.; Zanotelli, D.; Ciarapica, F.E.; Fadanelli, L.; Tagliavini, M. Greenhouse Gas Emissions and Energy Consumption during the Post-Harvest Life of Apples as Affected by Storage Type, Packaging and Transport. Journal of Cleaner Production 2019, 220, 45–56. [Google Scholar] [CrossRef]
- du Plessis, M.J.; van Eeden, J.; Goedhals-Gerber, L.L. The Carbon Footprint of Fruit Storage: A Case Study of the Energy and Emission Intensity of Cold Stores. Sustainability 2022, 14, 7530. [Google Scholar] [CrossRef]
- Geyer, M.; Praeger, U. Lagerung Gartenbaulicher Produkte; KTBL-Schrift; 2012; Volume 493, ISBN 978-3-941583-62-7. [Google Scholar]
- Evans, J.; J-M, H.; Reinholdt, L.; Fikiin, K.; Zilio, C.; Houška, M.; Bond, C.; Schreurs, M.; van Sambeek, T.W.M. Cold Store Energy Usage and Optimization. 23rd International Congress of Refrigeration (ICR) 2011. Prague, Czech Republic. [Google Scholar]
- Ambaw, A.; Bessemans, N.; Gruyters, W.; Gwanpua, S.G.; Schenk, A.; De Roeck, A.; Delele, M.A.; Verboven, P.; Nicolai, B.M. Analysis of the Spatiotemporal Temperature Fluctuations inside an Apple Cool Store in Response to Energy Use Concerns. International Journal of Refrigeration 2016, 66, 156–168. [Google Scholar] [CrossRef]
- Radulescu, C.V., Gole, I., Troaca, V.A. and Gombos, C.C. Rising Energy Prices: The Impact on Inflation, Economic Activity and the Results of the Fight Against Global Warming. 8th BASIQ International Conference on New Trends in Sustainable Business and Consumption, Graz, Austria, 25-27 May 2022; R. Pamfilie, V. Dinu, C. Vasiliu, Ed.; Bucharest: ASE; pp. 58–65. [Google Scholar] [CrossRef]
- Blanke, M.; Burdick, B. Food (Miles) for Thought - Energy Balance for Locally-Grown versus Imported Apple Fruit (3 Pp). Env Sci Poll Res Int 2005, 12, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Sellwig, M.; Neuwald, D.A.; Büchele, F. Äpfel Mit Weniger Energie Lagern: Einsparpotentiale Ausloten Und Kosten Senken. POMA 2022, 8, 13–16. [Google Scholar]
- Küçüktopcu, E.; Cemek, B.; Simsek, H. Application of Spatial Analysis to Determine the Effect of Insulation Thickness on Energy Efficiency and Cost Savings for Cold Storage. Processes 2022, 10, 2393. [Google Scholar] [CrossRef]
- Praeger, U.; Jedermann, R.; Sellwig, M.; Neuwald, D.A.; Truppel, I.; Scaar, H.; Hartgenbusch, N.; Geyer, M. Influence of Room Layout on Airflow Distribution in an Industrial Fruit Store. International Journal of Refrigeration 2021. [Google Scholar] [CrossRef]
- Berry, T.M.; Fadiji, T.S.; Defraeye, T.; Opara, U.L. The Role of Horticultural Carton Vent Hole Design on Cooling Efficiency and Compression Strength: A Multi-Parameter Approach. Postharvest Biology and Technology 2017, 124, 62–74. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, G.-B.; Fawole, O.A.; Verboven, P.; Zhang, X.-R.; Wu, D.; Opara, U.L.; Nicolai, B.; Chen, K. Postharvest Precooling of Fruit and Vegetables: A Review. Trends in Food Science & Technology 2020, 100, 278–291. [Google Scholar] [CrossRef]
- Watkins, C.B. The Use of 1-Methylcyclopropene (1-MCP) on Fruits and Vegetables. Biotechnology Advances 2006, 24, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Both, V.; Brackmann, A.; Thewes, F.R.; Weber, A.; Schultz, E.E.; Ludwig, V. The Influence of Temperature and 1-MCP on Quality Attributes of ‘Galaxy’ Apples Stored in Controlled Atmosphere and Dynamic Controlled Atmosphere. Food Packaging and Shelf Life 2018, 16, 168–177. [Google Scholar] [CrossRef]
- Blankenship, S. Ethylene Effects and the Benefits of 1-MCP. Perishables Handling Quarterly 2001, 2–4. [Google Scholar]
- McCormick, R.; Neuwald, D.A.; Streif, J. A Case Study: Potential Energy Savings Using 1-MCP with “Gala” Apples in Commercial CA Storage. Acta Horticulturae 2010, 877, 323–326. [Google Scholar] [CrossRef]
- McCormick, R.; Neuwald, D.A.; Streif, J. Commercial Apple CA Storage Temperature Regimes with 1-MCP (SmartFreshTM): Benefits and Risks. Acta Horticulturae 2012, 263–270. [Google Scholar] [CrossRef]
- Saquet, A.A.; Streif, J. Respiration Rate and Ethylene Metabolism of ‘Jonagold’ Apple and ‘Conference’ Pear under Regular Air and Controlled Atmosphere. Bragantia 2017, 76, 335–344. [Google Scholar] [CrossRef]
- Kittemann, D.; McCormick, R.; Neuwald, D.A. Effect of High Temperature and 1-MCP Application or Dynamic Controlled Atmosphere on Energy Savings during Apple Storage. European Journal of Horticultural Science 2015, 80, 33–38. [Google Scholar] [CrossRef]
- Wood, R.M.; Argenta, L.C.; Büchele, F.; De Lima, E.W.; Nesi, C.N.; Neuwald, D.A. Effect of 1-MCP and Storage Temperature on ‘Gala’ Apple Grown in Southern Brazil and Stored under Commercial Conditions. Acta Hortic. 2023, 79–86. [Google Scholar] [CrossRef]
- Tomala, K.; Małachowska, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The Effects of 1-Methylcyclopropene Treatment on the Fruit Quality of ‘Idared’ Apples during Storage and Transportation. Agriculture 2020, 10, 490. [Google Scholar] [CrossRef]
- Büchele, F.; Khera, K.; Wagner, R.; Thewes, F.R.; Neuwald, D.A. Interaction between Dynamic Controlled Atmosphere (DCA-CD), 1-Methylcyclopropene and Elevated Temperatures in the Long-Term Storage of Organic ‘Santana’ Apples. Postharvest Biology and Technology 2023, 204, 112471. [Google Scholar] [CrossRef]
- Büchele, F.; Thewes, F.R.; Khera, K.; Voegele, R.T.; Neuwald, D.A. Impacts of Dynamic Controlled Atmosphere and Temperature on Physiological Disorder Incidences, Fruit Quality and the Volatile Profile of “Braeburn” Apples. Scientia Horticulturae 2023, 317, 112072. [Google Scholar] [CrossRef]
- Büchele, F.; Khera, K.; Thewes, F.R.; Kittemann, D.; Neuwald, D.A. Dynamic Control of Atmosphere and Temperature Based on Fruit CO2 Production: Practical Application in Apple Storage and Effects on Metabolism, Quality, and Volatile Profiles. Food Bioprocess Technol 2023. [Google Scholar] [CrossRef]
- Thewes, F.R.; Anese, R.O.; Thewes, F.R.; Ludwig, V.; Klein, B.; Wagner, R.; Nora, F.R.; Rombaldi, C.V.; Brackmann, A. Dynamic Controlled Atmosphere (DCA) and 1-MCP: Impact on Volatile Esters Synthesis and Overall Quality of ‘Galaxy’ Apples. Food Packaging and Shelf Life 2020, 26, 100563. [Google Scholar] [CrossRef]
- Schmidt, S.F.P.; Schultz, E.E.; Ludwig, V.; Berghetti, M.R.P.; Thewes, F.R.; Anese, R. de O.; Both, V.; Brackmann, A. Volatile Compounds and Overall Quality of ‘Braeburn’ Apples after Long-Term Storage: Interaction of Innovative Storage Technologies and 1-MCP Treatment. Scientia Horticulturae 2020, 262, 109039. [Google Scholar] [CrossRef]
- Toivonen, P.; Lu, L. Studies on Elevated Temperature, Short-Term Storage of ‘Sunrise’ Summer Apples Using 1-MCP to Maintain Quality. The Journal of Horticultural Science and Biotechnology 2005, 80, 439–466. [Google Scholar] [CrossRef]
- Argenta, L.C.; Fan, X.F.; Mattheis, J.P. Factors Affecting Efficacy of 1-MCP to Maintain Quality of Apples Fruit after Storage. Acta Hortic. 2005, 1249–1256. [Google Scholar] [CrossRef]
- Larrigaudière, C.; Ubach, D.; Chiriboga, M.A.; Cascia, G.; Soria, Y.; Recasens, I. Biochemical Changes in 1-MCP Treated Skin Tissue during Cold Storage and Their Relationship with Physiological Disorders. Acta Hortic. 2008, 119–123. [Google Scholar] [CrossRef]
- Koushesh Saba, M.; Watkins, C.B. Flesh Browning Development of ‘Empire’ Apple during a Shelf Life Period after 1-Methylcyclopropene (1-MCP) Treatment and Controlled Atmosphere Storage. Scientia Horticulturae 2020, 261, 108938. [Google Scholar] [CrossRef]
- Wright, A.H.; Delong, J.M.; Arul, J.; Prange, R.K. The Trend toward Lower Oxygen Levels during Apple (Malus × Domestica Borkh) Storage - A Review. Journal of Horticultural Science and Biotechnology 2015, 90, 1–13. [Google Scholar] [CrossRef]
- Prange, R.K.; Wright, A.H.; DeLong, J.M.; Zanella, A. History, Current Situation and Future Prospects for Dynamic Controlled Atmosphere (DCA) Storage of Fruits and Vegetables, Using Chlorophyll Fluorescence. Acta Horticulturae 2013, 1012, 905–916. [Google Scholar] [CrossRef]
- Thewes, F.R.; Wood, R.M.; Both, V.; Keshri, N.; Geyer, M.; Pansera-Espíndola, B.; Hagemann, M.H.; Brackmann, A.; Wünsche, J.N.; Neuwald, D.A. Dynamic Controlled Atmosphere: A Review of Methods for Monitoring Fruit Responses to Low Oxygen. Comunicata Scientiae 2021, 12, e3782. [Google Scholar] [CrossRef]
- Keshri, N.; Truppel, I.; Herppich, W.B.; Geyer, M.; Weltzien, C.; Mahajan, P.V. Development of Sensor System for Real-Time Measurement of Respiration Rate of Fresh Produce. Computers and Electronics in Agriculture 2019, 157, 322–328. [Google Scholar] [CrossRef]
- Boeckx, J.; Hertog, M.; Geeraerd, A.; Nicolaï, B. Regulation of the Fermentative Metabolism in Apple Fruit Exposed to Low-Oxygen Stress Reveals a High Flexibility. Postharvest Biology and Technology 2019, 149, 118–128. [Google Scholar] [CrossRef]
- Boeckx, J.; Pols, S.; Hertog, M.L.A.T.M.; Nicolaï, B.M. Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. Frontiers in Plant Science 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Neuwald, D.; Sellwig, M.; Wünsche, J.; Kittemann, D. New Apple Storage Technologies Can Reduce Energy Usage and Improve Storage Life. ecofruit 2016, Stuttgart, Germany, 184–187. [Google Scholar]
- Neuwald, D.A.; Thewes, F.R.; Wirth, R.; Büchele, F.; Klein, N.; Brackmann, A. Dynamic Controlled Atmosphere (DCA) - A Chance for Sustainable Organic Fruit Storage. ecofruit 2020, Stuttgart, Germany, 241–245. [Google Scholar]
- Weber, A.; Thewes, F.R.; Sellwig, M.; Brackmann, A.; Wünsche, J.N.; Kittemann, D.; Neuwald, D.A. Dynamic Controlled Atmosphere: Impact of Elevated Storage Temperature on Anaerobic Metabolism and Quality of ‘Nicoter’ Apples. Food Chemistry 2019, 298, 125017. [Google Scholar] [CrossRef]
- Weber, A.; Neuwald, D.A.; Kittemann, D.; Thewes, F.R.; Both, V.; Brackmann, A. Influence of Respiratory Quotient Dynamic Controlled Atmosphere (DCA – RQ) and Ethanol Application on Softening of Braeburn Apples. Food Chemistry 2020, 303, 125346. [Google Scholar] [CrossRef]
- de Oliveira Anese, R.; Brackmann, A.; Wendt, L.M.; Thewes, F.R.; Schultz, E.E.; Ludwig, V.; Berghetti, M.R.P. Interaction of 1-Methylcyclopropene, Temperature and Dynamic Controlled Atmosphere by Respiratory Quotient on ‘Galaxy’ Apples Storage. Food Packaging and Shelf Life 2019, 20, 100246. [Google Scholar] [CrossRef]
- Ludwig, V.; Thewes, F.R.; Wendt, L.M.; Berghetti, M.R.P.; Schultz, E.E.; Schmidt, S.F.P.; Brackmann, A. Extremely Low-Oxygen Storage: Aerobic, Anaerobic Metabolism and Overall Quality of Apples at Two Temperatures. Bragantia 2020, 79, 458–471. [Google Scholar] [CrossRef]
- Wendt, L.M.; Ludwig, V.; Rossato, F.P.; Berghetti, M.R.P.; Schultz, E.E.; Thewes, F.R.; Soldateli, F.J.; Brackmann, A.; Both, V. Combined Effects of Storage Temperature Variation and Dynamic Controlled Atmosphere after Long-Term Storage of ‘Maxi Gala’ Apples. Food Packaging and Shelf Life 2022, 31, 100770. [Google Scholar] [CrossRef]
- Thewes, F.R.; Brackmann, A.; Neuwald, D.A. Dynamic Controlled Atmosphere Method and Apparatus 2022. Pending US Patent Application. Pub. No.: US 2022/0282883 A1.
- Anese, R. de O.; Brackmann, A.; Thewes, F.R.; Schultz, E.E.; De Gasperin, A.R. Mass Loss by Low Relative Humidity Increases Gas Diffusion Rates in Apple Flesh and Allows the Use of High CO2 Partial Pressures during Ultralow O2 Storage. Scientia Horticulturae 2016, 198, 414–423. [Google Scholar] [CrossRef]
- Köpcke, D. 1-Methylcyclopropene (1-MCP) and Dynamic Controlled Atmosphere (DCA) Applications under Elevated Storage Temperatures: Effects on Fruit Quality of ‘Elstar’, ‘Jonagold’ and ‘Gloster’ Apple (Malus Domestica Borkh.). European Journal of Horticultural Science 2015, 80, 25–32. [Google Scholar] [CrossRef]
- Satekge, T.K.; Magwaza, L.S. Postharvest Application of 1-Methylcyclopropene (1-MCP) on Climacteric Fruits: Factors Affecting Efficacy. International Journal of Fruit Science 2022, 22, 595–607. [Google Scholar] [CrossRef]
- Neuwald, D.A.; Kittemann, D. The Incidence of Neofabraea Spp. in ‘Pinova’ Apples Can Be Reduced at Elevated Storage Temperatures. Acta Horticulturae 2016, 1144, 231–236. [Google Scholar] [CrossRef]
- Geyer, M.; Praeger, U.; Truppel, I.; Scaar, H.; Neuwald, D.A.; Jedermann, R.; Gottschalk, K. Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins. Sensors 2018, 18, 576. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Mahajan, P.; Praeger, U.; Geyer, M.; Sturm, B.; Linke, M. Small Peltier Element to Detect Real-Time Heat Flux between Apple and Environment during Postharvest Storage. Computers and Electronics in Agriculture 2023, 213. [Google Scholar] [CrossRef]
- Jedermann, R.; Singh, K.; Lang, W.; Mahajan, P. Digital Twin Concepts for Linking Live Sensor Data with Real-Time Models. Journal of Sensors and Sensor Systems 2023, 12, 111–121. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
