Submitted:
29 November 2023
Posted:
29 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Proposal of algorithmic models for the selection of keyframes from natural flower videos with clustering techniques using Deep Convolutional Neural Network (DCNN) as a feature extractor.
- Proposal of Dimensionality Reduction (DR) methods for the selection of essential features to reduce the feature dimension.
- Proposal of an Indexing scheme for fast browsing and retrieval of flower videos.
- Creation of reasonably a large dataset of flower videos which shall be made available public for research purpose.
2. Proposed Work
2.1. Preprocessing
Extraction of Flower Region/Segmentation of Frames
2.2. Extraction of Features
2.3. Keyframe Selection
- Keyframe selection using Hierarchical clustering
- Keyframe selection using K-means clustering
- Keyframe selection using Gaussian Mixture Model
- Preprocessing - Segmentation
- Feature Extraction - DCNN
- Clustering and selection of final set of keyframes

2.3.1. Keyframe Selection with Hierarchical clustering using DCNN
| Algorithm 1: Hierarchical_keyframes_selection (Vi) |
| Input: Frames (Fn) of Video Vi |
| Output: K-centroids, keyframes (SKVi), Kfdb = keyframes database |
| for i=1 to n frames of Vi |
| extract DCNN features |
| if( min dist(Fi , Fi+1)) |
| C=Merge(Fi , Fi+1) |
| for end |
| If C= single cluster //single hierarchy |
| Split C into K number of hierarchies // to obtain K-clusters |
| Kfdb=Find K-centroids // frame nearest to centroid |
| If end |
| return(Kfdb) |
2.3.2. Keyframe Selection Using K-Means Clustering
| Algorithm 2: KMeans_keyframes_selection (Vi) |
| Input: Frames (Fn) of Video Vi , K - number of clusters and µ1, µ2, µ3, …, µK are the means of each initial clusters |
| Output: K-centroids, keyframes (SKVi), Kfdb = keyframes database |
| for i=1 to n frames of Vi |
| extract DCNN features |
| select µ1, µ2, µ3, …, µK are the means of each initial clusters |
| find Si number of nearest frames to µi |
| Recalculate µi |
| Until there is no change in µi |
| Return µ1, µ2, µ3, …, µK |
| for end |
| for i=1 to K //K number of clusters |
| Ki=find frame near to µi |
| Kfdb=Ki // keyframes |
| If end |
| return(Kfdb) |
2.3.3. Keyframe Selection Using Gaussian Mixture Model (GMM)
| Algorithm 3: GMM_keyframes_selection (Vi) |
| Input: Frames (Fn) of Video Vi , K - number of clusters |
| Output: K-centroids, keyframes (SKVi), Kfdb = keyframes database |
| for i=1 to n frames of Vi |
| extract DCNN features |
| estimate maximum likelihood expectation using GMM distribution |
| group the similar frames to from K number of clusters |
| for end |
| for i=1 to K //K number of clusters |
| Ki=find frame near to centroid of each cluster |
| Kfdb=Ki // keyframes |
| If end |
| return(Kfdb) |
2.4. Retrieval
2.4.1. Dimensionality Reduction (DR)
2.4.1.1. RelieF Algorithm
2.4.1.2. Bi-Normal Separation (BNS)
2.4.2. Indexing
2.4.2.1. KD-Tree Indexing
3. Experiments
3.1. Creation of Very Large Dataset
3.2. Experimentation on Keyframes Selection
3.2.1. Comparative Study between Conventional V/S Deep Learning Approaches for Keyframes Selection
3.3. Result Analysis of Retrieval of Flower Videos
- i.
-
With Dimensionality Reduction (DR) and with KD-tree indexing
- ReliefF feature selection algorithm and with indexing.
- Bi-normal separation feature selection metric and with indexing
- ii.
- Without dimensionality reduction and with KD-tree indexing
- iii.
- Data base search (without DR and without KD-tree indexing)
- i.
-
With dimensionality reduction and with KD-tree indexing
- ReliefF feature selection algorithm and with indexing.
- Bi-normal separation feature selection metric and with indexing
- ii.
- Without dimensionality reduction and with KD-tree indexing
- iii.
- Data base search (without DR and without KD-tree indexing)
3.3.1. Absolute Modality
3.3.1.1. with DR and with KD-Tree Indexing
| Table 3 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||
| Precision | Recall | F-Measure | ||||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |
| 30–70 | 72.87 | 66.42 | 61.2 | 56.23 | 51.6 | 13.25 | 23.86 | 32.56 | 39.35 | 44.64 | 21.96 | 34.06 | 41.06 | 44.65 | 46.13 | |
| 40–60 | 75.58 | 69.14 | 64.73 | 60.75 | 57.11 | 10.61 | 19.14 | 26.55 | 32.81 | 38.18 | 18.28 | 29.17 | 36.44 | 41.12 | 44.11 | |
| 50–50 | 77.39 | 71.75 | 67.5 | 64.07 | 60.69 | 8.82 | 16.22 | 22.63 | 28.32 | 33.18 | 15.6 | 25.8 | 32.85 | 37.94 | 41.36 | |
| 60–40 | 80.73 | 75.27 | 71.39 | 67.78 | 64.89 | 7.55 | 14.04 | 19.9 | 25 | 29.67 | 13.64 | 23.17 | 30.28 | 35.4 | 39.37 | |
| 70–30 | 82.73 | 77.59 | 73.65 | 70.2 | 67.26 | 6.68 | 12.47 | 17.68 | 22.36 | 26.61 | 12.22 | 21.06 | 27.78 | 32.9 | 36.88 | |
| 80–20 | 84.91 | 80.7 | 76.38 | 73.06 | 69.94 | 5.99 | 11.32 | 15.98 | 20.3 | 24.18 | 11.07 | 19.51 | 25.81 | 30.89 | 34.82 | |
| Table 3 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||
| Precision | Recall | F-Measure | ||||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |
| 30–70 | 75.74 | 70.15 | 64.86 | 59.39 | 54.56 | 14.65 | 26.88 | 36.69 | 43.98 | 49.81 | 24.01 | 37.66 | 45.28 | 48.81 | 50.33 | |
| 40–60 | 80.34 | 74.75 | 69.96 | 65.75 | 61.5 | 11.67 | 21.49 | 29.93 | 37.05 | 42.65 | 20 | 32.48 | 40.59 | 45.8 | 48.66 | |
| 50–50 | 82.53 | 77.34 | 73.19 | 69.3 | 65.8 | 9.67 | 17.95 | 25.29 | 31.68 | 37.27 | 17.03 | 28.42 | 36.47 | 42.07 | 45.98 | |
| 60–40 | 84.44 | 79.72 | 75.91 | 72.4 | 69.12 | 8.25 | 15.45 | 21.84 | 27.57 | 32.66 | 14.81 | 25.29 | 32.98 | 38.7 | 42.9 | |
| 70–30 | 85.1 | 81.09 | 77.57 | 74.33 | 71.49 | 7.09 | 13.38 | 19.08 | 24.21 | 28.93 | 12.92 | 22.5 | 29.84 | 35.46 | 39.89 | |
| 80–20 | 87.15 | 83.04 | 79.76 | 76.99 | 73.81 | 6.38 | 12.08 | 17.28 | 22.11 | 26.31 | 11.75 | 20.69 | 27.7 | 33.38 | 37.59 | |
| Table 3 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||
| Precision | Recall | F-Measure | ||||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |
| 30–70 | 82.4 | 76.83 | 71.26 | 65.71 | 60.52 | 14.86 | 27.35 | 37.43 | 45.37 | 51.59 | 24.6 | 39.04 | 47.33 | 51.7 | 53.63 | |
| 40–60 | 84.74 | 80.22 | 75.89 | 71.56 | 67.1 | 11.63 | 21.73 | 30.46 | 37.82 | 43.78 | 20.06 | 33.2 | 41.99 | 47.67 | 50.99 | |
| 50–50 | 85.73 | 81.73 | 77.68 | 74 | 70.44 | 9.53 | 17.99 | 25.43 | 31.92 | 37.62 | 16.87 | 28.69 | 37.06 | 42.99 | 47.17 | |
| 60–40 | 87.89 | 83.74 | 80.34 | 76.83 | 73.54 | 8.2 | 15.53 | 22.16 | 27.99 | 33.13 | 14.77 | 25.55 | 33.66 | 39.61 | 43.99 | |
| 70–30 | 91.26 | 87.32 | 84.11 | 81.04 | 77.6 | 7.26 | 13.85 | 19.9 | 25.43 | 30.19 | 13.27 | 23.38 | 31.27 | 37.44 | 41.93 | |
| 80–20 | 92.71 | 89.61 | 86.82 | 84.29 | 81.47 | 6.43 | 12.38 | 17.88 | 23.06 | 27.65 | 11.89 | 21.32 | 28.89 | 35.12 | 39.91 | |
| Table 4 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | |||||||||||||||
| Precision | Recall | F-Measure | |||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
| 30–70 | 74.07 | 67.15 | 61.77 | 57.13 | 52.77 | 13.52 | 24.17 | 32.98 | 40.1 | 45.83 | 22.4 | 34.5 | 41.57 | 45.48 | 47.31 |
| 40–60 | 75.77 | 70.11 | 65.3 | 61.23 | 57.66 | 10.63 | 19.45 | 26.9 | 33.27 | 38.78 | 18.32 | 29.64 | 36.89 | 41.63 | 44.72 |
| 50–50 | 77.11 | 72.28 | 68.14 | 64.44 | 61.18 | 8.77 | 16.37 | 23 | 28.75 | 33.76 | 15.51 | 26.04 | 33.35 | 38.42 | 41.97 |
| 60–40 | 80.13 | 75.63 | 72.16 | 68.78 | 65.53 | 7.51 | 14.13 | 20.17 | 25.53 | 30.17 | 13.57 | 23.32 | 30.69 | 36.1 | 39.96 |
| 70–30 | 82.13 | 77.51 | 74.28 | 71.19 | 68.4 | 6.63 | 12.48 | 17.89 | 22.77 | 27.22 | 12.13 | 21.08 | 28.11 | 33.49 | 37.68 |
| 80–20 | 85.14 | 80.51 | 77.09 | 73.94 | 71.19 | 5.98 | 11.27 | 16.15 | 20.58 | 24.68 | 11.07 | 19.44 | 26.1 | 31.33 | 35.55 |
| Table 4 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | |||||||||||||||
| Precision | Recall | F-Measure | |||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
| 30–70 | 78.35 | 72.7 | 66.98 | 61.47 | 56.37 | 15.31 | 28.13 | 38.22 | 45.97 | 51.92 | 25.06 | 39.34 | 47.07 | 50.84 | 52.27 |
| 40–60 | 81.95 | 77.28 | 72.63 | 67.9 | 63.64 | 12.05 | 22.49 | 31.37 | 38.59 | 44.54 | 20.62 | 33.9 | 42.44 | 47.58 | 50.65 |
| 50–50 | 84.27 | 79.4 | 75.78 | 71.9 | 68.18 | 10 | 18.68 | 26.49 | 33.2 | 38.96 | 17.58 | 29.5 | 38.1 | 43.97 | 47.94 |
| 60–40 | 85.79 | 81.51 | 78.34 | 75.01 | 71.95 | 8.431 | 15.93 | 22.81 | 28.92 | 34.37 | 15.13 | 26.05 | 34.35 | 40.46 | 45.01 |
| 70–30 | 87.34 | 83.25 | 80 | 77.57 | 74.51 | 7.34 | 13.9 | 19.94 | 25.61 | 30.51 | 13.38 | 23.34 | 31.11 | 37.38 | 41.95 |
| 80–20 | 88.69 | 85.22 | 82.12 | 79.53 | 76.98 | 6.58 | 12.53 | 18.04 | 23.2 | 27.9 | 12.12 | 21.43 | 28.85 | 34.9 | 39.69 |
| Table 4 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | |||||||||||||||
| Precision | Recall | F-Measure | |||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
| 30–70 | 83.54 | 78.43 | 73.81 | 68.76 | 63.45 | 24.93 | 39.93 | 49.14 | 54.26 | 56.36 | 24.93 | 39.93 | 49.14 | 54.26 | 56.36 |
| 40–60 | 86.4 | 82.11 | 78.04 | 74.29 | 70.18 | 11.85 | 22.25 | 31.37 | 39.31 | 45.89 | 20.44 | 34.02 | 43.27 | 49.58 | 53.46 |
| 50–50 | 87.73 | 83.69 | 80.01 | 76.48 | 73.16 | 9.763 | 18.43 | 26.19 | 33.08 | 39.14 | 17.27 | 29.42 | 38.21 | 44.55 | 49.1 |
| 60–40 | 89.6 | 85.75 | 82.62 | 79.23 | 76.28 | 8.343 | 15.84 | 22.73 | 28.86 | 34.44 | 15.03 | 26.1 | 34.6 | 40.88 | 45.73 |
| 70–30 | 92.22 | 89.31 | 86.17 | 83.32 | 80.44 | 7.32 | 14.08 | 20.28 | 26.05 | 31.24 | 13.4 | 23.81 | 31.92 | 38.43 | 43.44 |
| 80–20 | 93.29 | 91.07 | 88.86 | 86.37 | 83.99 | 6.46 | 12.48 | 18.2 | 23.48 | 28.45 | 11.95 | 21.52 | 29.45 | 35.83 | 41.12 |
3.3.1.2. Without Dimensionality Reduction and with KD-Tree Indexing
| Table 5 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results: Without DR – with Indexing | |||||||||||||||
| Precision | Recall | F-Measure | |||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
| 30–70 | 67.71 | 60.82 | 55.66 | 50.85 | 46.58 | 12.16 | 21.64 | 29.37 | 35.36 | 40.18 | 20.2 | 30.98 | 37.16 | 40.25 | 41.59 |
| 40–60 | 69.74 | 63.4 | 58.63 | 54.8 | 51.3 | 9.66 | 17.31 | 23.75 | 29.29 | 33.97 | 16.67 | 26.46 | 32.73 | 36.85 | 39.41 |
| 50–50 | 71.54 | 66.18 | 61.7 | 57.88 | 54.68 | 8.06 | 14.77 | 20.43 | 25.3 | 29.58 | 14.26 | 23.55 | 29.76 | 34.02 | 37.02 |
| 60–40 | 75.2 | 69.8 | 65.57 | 61.84 | 58.5 | 6.99 | 12.91 | 18.03 | 22.48 | 26.39 | 12.62 | 21.33 | 27.52 | 31.96 | 35.17 |
| 70–30 | 77.26 | 71.98 | 68.11 | 64.51 | 61.31 | 6.19 | 11.46 | 16.16 | 20.23 | 23.88 | 11.33 | 19.38 | 25.45 | 29.88 | 33.25 |
| 80–20 | 79.56 | 74.77 | 70.7 | 66.98 | 63.81 | 5.56 | 10.38 | 14.61 | 18.33 | 21.68 | 10.29 | 17.9 | 23.65 | 27.99 | 31.38 |
| Table 5 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results: Without DR – with Indexing | |||||||||||||||
| Precision | Recall | F-Measure | |||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
| 30–70 | 72.91 | 66.96 | 61.49 | 55.55 | 50.86 | 14.13 | 25.74 | 34.86 | 41.3 | 46.67 | 23.15 | 36.03 | 42.97 | 45.73 | 47 |
| 40–60 | 77.11 | 71.67 | 66.64 | 62 | 57.65 | 11.22 | 20.65 | 28.51 | 34.93 | 40.05 | 19.23 | 31.18 | 38.65 | 43.17 | 45.62 |
| 50–50 | 78.76 | 73.45 | 69.28 | 65.1 | 61.42 | 9.23 | 17.08 | 23.96 | 29.79 | 34.8 | 16.27 | 27.03 | 34.55 | 39.55 | 42.91 |
| 60–40 | 81.72 | 76.27 | 72.04 | 68.3 | 64.71 | 7.96 | 14.72 | 20.7 | 25.94 | 30.55 | 14.31 | 24.12 | 31.27 | 36.44 | 40.14 |
| 70–30 | 82.29 | 77.71 | 74.09 | 70.49 | 67.35 | 6.84 | 12.79 | 18.18 | 22.88 | 27.12 | 12.47 | 21.52 | 28.45 | 33.54 | 37.45 |
| 80–20 | 84.43 | 79.41 | 76.03 | 72.79 | 69.53 | 6.15 | 11.5 | 16.41 | 20.82 | 24.68 | 11.33 | 19.69 | 26.33 | 31.47 | 35.3 |
| Table 5 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results: Without DR – with Indexing | |||||||||||||||
| Precision | Recall | F-Measure | |||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
| 30–70 | 79.26 | 73.15 | 67.4 | 61.65 | 56.53 | 14.23 | 25.9 | 35.31 | 42.49 | 48.18 | 23.58 | 37.03 | 44.7 | 48.45 | 50.07 |
| 40–60 | 82.01 | 76.68 | 72.04 | 67.46 | 63.13 | 11.19 | 20.71 | 28.78 | 35.49 | 41.04 | 19.31 | 31.67 | 39.73 | 44.82 | 47.87 |
| 50–50 | 83.18 | 78.18 | 73.96 | 69.92 | 66.27 | 9.21 | 17.14 | 24.11 | 30.07 | 35.24 | 16.3 | 27.37 | 35.18 | 40.55 | 44.28 |
| 60–40 | 85.66 | 80.42 | 76.71 | 73.06 | 69.49 | 7.96 | 14.82 | 21 | 26.47 | 31.16 | 14.36 | 24.42 | 31.97 | 37.53 | 41.44 |
| 70–30 | 89.5 | 84.59 | 80.45 | 77.08 | 73.69 | 7.08 | 13.34 | 18.93 | 24.05 | 28.54 | 12.97 | 22.55 | 29.79 | 35.48 | 39.71 |
| 80–20 | 91.14 | 87.36 | 83.8 | 80.6 | 77.5 | 6.29 | 11.98 | 17.16 | 21.84 | 26.1 | 11.63 | 20.66 | 27.77 | 33.36 | 37.78 |
3.3.1.3. Data Base Search (without DR and without KD-Tree Indexing)
| Table 6 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||||
| Precision | Recall | F-Measure | ||||||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |||
| 30–70 | 67.72 | 60.86 | 55.71 | 50.89 | 46.62 | 12.2 | 21.7 | 29.41 | 35.41 | 40.23 | 20.2 | 31 | 37.2 | 40.29 | 41.63 | |||
| 40–60 | 69.74 | 63.44 | 58.67 | 54.82 | 51.34 | 9.66 | 17.3 | 23.77 | 29.31 | 34.01 | 16.67 | 26.5 | 32.76 | 36.88 | 39.44 | |||
| 50–50 | 71.54 | 66.18 | 61.7 | 57.88 | 54.68 | 8.06 | 14.8 | 20.43 | 25.3 | 29.58 | 14.26 | 23.6 | 29.76 | 34.02 | 37.02 | |||
| 60–40 | 75.22 | 69.82 | 65.65 | 61.9 | 58.56 | 6.99 | 12.9 | 18.06 | 22.52 | 26.44 | 12.63 | 21.3 | 27.57 | 32.01 | 35.23 | |||
| 70–30 | 75.22 | 69.82 | 65.65 | 61.9 | 58.56 | 6.19 | 11.5 | 16.17 | 20.24 | 23.89 | 11.33 | 19.4 | 25.46 | 29.89 | 33.27 | |||
| 80–20 | 79.56 | 74.77 | 70.7 | 67 | 63.82 | 5.56 | 10.4 | 14.61 | 18.34 | 21.69 | 10.29 | 17.9 | 23.65 | 28.00 | 31.38 | |||
| Table 6 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||||
| Precision | Recall | F-Measure | ||||||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |||
| 30–70 | 72.92 | 66.98 | 61.54 | 55.6 | 50.89 | 14.1 | 25.7 | 34.88 | 41.32 | 46.69 | 23.15 | 36 | 43 | 45.76 | 47.02 | |||
| 40–60 | 77.14 | 71.72 | 66.69 | 62.04 | 57.7 | 11.2 | 20.7 | 28.52 | 34.95 | 40.07 | 19.23 | 31.2 | 38.67 | 43.19 | 45.66 | |||
| 50–50 | 78.81 | 73.64 | 69.38 | 65.23 | 61.5 | 9.24 | 17.1 | 23.98 | 29.83 | 34.83 | 16.27 | 27.1 | 34.59 | 39.6 | 42.96 | |||
| 60–40 | 81.8 | 76.37 | 72.09 | 68.37 | 64.78 | 7.97 | 14.7 | 20.71 | 25.96 | 30.57 | 14.32 | 24.1 | 31.28 | 36.47 | 40.17 | |||
| 70–30 | 82.26 | 77.73 | 74.12 | 70.53 | 67.4 | 6.84 | 12.8 | 18.19 | 22.89 | 27.13 | 12.46 | 21.5 | 28.46 | 33.55 | 37.47 | |||
| 80–20 | 84.43 | 79.45 | 76.08 | 72.86 | 69.6 | 6.15 | 11.5 | 16.42 | 20.83 | 24.69 | 11.33 | 19.7 | 26.34 | 31.48 | 35.33 | |||
| Table 6 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||||
| Precision | Recall | F-Measure | ||||||||||||||||
| Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |||
| 30–70 | 79.47 | 73.23 | 67.44 | 61.71 | 56.59 | 14.3 | 25.9 | 35.32 | 42.52 | 48.22 | 23.63 | 37.1 | 44.72 | 48.49 | 50.12 | |||
| 40–60 | 82.01 | 76.68 | 72.03 | 67.46 | 63.12 | 11.2 | 20.7 | 28.77 | 35.49 | 41.04 | 19.3 | 31.7 | 39.73 | 44.82 | 47.87 | |||
| 50–50 | 83.17 | 78.24 | 74.05 | 70.01 | 66.35 | 9.21 | 17.2 | 24.14 | 30.11 | 35.29 | 16.3 | 27.4 | 35.23 | 40.61 | 44.34 | |||
| 60–40 | 85.71 | 80.51 | 76.77 | 73.14 | 69.57 | 7.97 | 14.8 | 21.01 | 26.51 | 31.2 | 14.36 | 24.4 | 31.99 | 37.59 | 41.5 | |||
| 70–30 | 89.5 | 84.58 | 80.46 | 77.14 | 73.75 | 7.08 | 13.3 | 18.93 | 24.07 | 28.57 | 12.97 | 22.5 | 29.79 | 35.51 | 39.74 | |||
| 80–20 | 91.17 | 87.37 | 83.9 | 80.62 | 77.61 | 6.29 | 12 | 17.18 | 21.85 | 26.14 | 11.63 | 20.7 | 27.8 | 33.36 | 37.84 | |||
3.3.2. Relative Modality
3.3.2.1. With DR and with KD-Tree Indexing
| Table 7 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 36.75 | 24.14 | 49.94 | 64.12 | 40.83 | 34.01 | 1.1 | 1.08 |
| 40–60 | 36.5 | 24.25 | 49.81 | 64.05 | 40.57 | 34.08 | 2.16 | 2.16 |
| 50–50 | 36.6 | 24.32 | 50.29 | 64.72 | 40.76 | 34.23 | 3.5 | 3.81 |
| 60–40 | 36.97 | 24.44 | 50.53 | 65.14 | 41.11 | 34.44 | 3.6 | 3.91 |
| 70–30 | 37.15 | 24.47 | 50.78 | 65.24 | 41.29 | 34.48 | 5.76 | 6.07 |
| 80–20 | 37.44 | 24.67 | 50.95 | 65.59 | 41.55 | 34.74 | 6.32 | 6.75 |
| Table 7 (b). Sony Cyber shot dataset - Top 5% and 10% retrieval result | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 44.13 | 27.81 | 59.99 | 74.61 | 49.26 | 39.53 | 1.48 | 1.46 |
| 40–60 | 44.61 | 28.21 | 60.73 | 74.95 | 49.83 | 39.98 | 1.47 | 1.57 |
| 50–50 | 44.73 | 28.24 | 60.5 | 75.19 | 49.8 | 40.04 | 5.79 | 6.06 |
| 60–40 | 44.74 | 28.38 | 60.5 | 75.05 | 49.82 | 40.16 | 6.14 | 6.49 |
| 70–30 | 44.66 | 28.42 | 60.33 | 75.14 | 49.71 | 40.22 | 8.03 | 10 |
| 80–20 | 44.43 | 28.3 | 59.63 | 74.54 | 49.28 | 39.99 | 8.04 | 8.66 |
| Table 7 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 46.62 | 29.17 | 63.48 | 76.02 | 51.78 | 40.79 | 2.29 | 4.9 |
| 40–60 | 46.9 | 29.47 | 63.23 | 76.19 | 51.79 | 41.06 | 4 | 2.01 |
| 50–50 | 46.33 | 29.28 | 62.49 | 75.65 | 51.09 | 40.73 | 3.61 | 3.74 |
| 60–40 | 46.62 | 29.23 | 62.62 | 76.19 | 51.29 | 40.75 | 3.21 | 6.81 |
| 70–30 | 46.71 | 29.48 | 63.14 | 76.36 | 51.51 | 41 | 3.05 | 3.27 |
| 80–20 | 47.68 | 29.96 | 63.84 | 77.34 | 52.37 | 41.64 | 3.49 | 3.83 |
| Table 8 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 42.28 | 27.4 | 57.55 | 72.73 | 47.01 | 38.59 | 1.8 | 1.77 |
| 40–60 | 41.99 | 27.52 | 57.69 | 72.73 | 46.82 | 38.68 | 1.99 | 2.08 |
| 50–50 | 41.59 | 27.25 | 57.57 | 72.52 | 46.48 | 38.35 | 2.33 | 2.47 |
| 60–40 | 42.34 | 27.63 | 58.25 | 73.63 | 47.23 | 38.92 | 2.33 | 2.47 |
| 70–30 | 42.42 | 27.75 | 58.4 | 73.99 | 47.31 | 39.1 | 2.25 | 2.48 |
| 80–20 | 43.03 | 27.98 | 59.07 | 74.41 | 47.96 | 39.41 | 2.49 | 2.79 |
| Table 8 (b). Sonycyber Shot dataset - Top 5% and 10% retrieval results | ||||||||
| Train – Test | Precision | Recall | F-Measure | Time | ||||
| in % | 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% |
| 30–70 | 45.57 | 28.66 | 62.34 | 76.93 | 51.03 | 40.75 | 1.75 | 1.74 |
| 40–60 | 46.11 | 29.08 | 63.23 | 77.36 | 51.68 | 41.23 | 1.79 | 1.87 |
| 50–50 | 46.42 | 29.22 | 63.25 | 77.9 | 51.86 | 41.44 | 2.45 | 2.59 |
| 60–40 | 46.52 | 29.39 | 63.48 | 77.87 | 52 | 41.61 | 3.56 | 3.81 |
| 70–30 | 46.63 | 29.46 | 63.63 | 78.11 | 52.12 | 41.72 | 3.73 | 3.97 |
| 80–20 | 46.69 | 29.42 | 63.4 | 77.89 | 52.03 | 41.62 | 3.87 | 4.19 |
| Table 8 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 49.09 | 30.59 | 66.81 | 79.49 | 54.54 | 42.75 | 1.33 | 1.31 |
| 40–60 | 49.62 | 30.9 | 66.86 | 79.72 | 54.83 | 43.04 | 1.41 | 1.51 |
| 50–50 | 49.11 | 30.79 | 66.18 | 79.34 | 54.17 | 42.81 | 1.99 | 2.14 |
| 60–40 | 49.15 | 30.72 | 65.92 | 79.62 | 54.06 | 42.77 | 2.14 | 2.36 |
| 70–30 | 49.36 | 31.01 | 66.53 | 79.92 | 54.39 | 43.08 | 2.55 | 2.78 |
| 80–20 | 50.45 | 31.49 | 67.33 | 80.91 | 55.36 | 43.72 | 2.94 | 3.27 |
3.3.2.2. Without DR and with KD-Tree Indexing
| Table 9 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 37 | 24.4 | 50.2 | 64.6 | 41.1 | 34.3 | 11.5 | 11.7 |
| 40–60 | 36.8 | 24.5 | 50.2 | 64.5 | 40.9 | 34.4 | 12.6 | 13.1 |
| 50–50 | 36.7 | 24.4 | 50.4 | 64.8 | 40.9 | 34.3 | 18.5 | 19.4 |
| 60–40 | 37.2 | 24.6 | 50.8 | 65.4 | 41.4 | 34.7 | 23.5 | 25.0 |
| 70–30 | 37.4 | 24.7 | 51.1 | 65.7 | 41.6 | 34.7 | 24.1 | 26.5 |
| 80–20 | 37.7 | 24.8 | 51.3 | 66.0 | 41.8 | 35.0 | 25.8 | 29.0 |
| Table 9 (b). Sony Cyber shot dataset - Top 5% and 10% retrieval result | ||||||||
| -Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 41.2 | 26.3 | 56.2 | 70.5 | 46.0 | 37.4 | 11.4 | 11.6 |
| 40–60 | 41.4 | 26.5 | 56.5 | 70.4 | 46.3 | 37.5 | 11.8 | 12.3 |
| 50–50 | 41.4 | 26.4 | 56.2 | 70.4 | 46.2 | 37.4 | 17.1 | 18.1 |
| 60–40 | 41.4 | 26.6 | 56.2 | 70.2 | 46.2 | 37.6 | 23.3 | 24.7 |
| 70–30 | 41.3 | 26.5 | 55.9 | 70.1 | 46.0 | 37.5 | 23.8 | 25.9 |
| 80–20 | 41.1 | 26.4 | 55.2 | 69.5 | 45.5 | 37.3 | 24.5 | 27.4 |
| Table 9 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 43.9 | 28 | 59.9 | 73.2 | 48.8 | 39.2 | 11.4 | 11.6 |
| 40–60 | 44.3 | 28.3 | 59.8 | 73.4 | 48.9 | 39.4 | 13 | 13.6 |
| 50–50 | 43.7 | 28 | 59.1 | 72.8 | 48.2 | 39 | 18.8 | 19.8 |
| 60–40 | 43.5 | 27.8 | 58.5 | 72.5 | 47.8 | 38.7 | 23.6 | 25.2 |
| 70–30 | 43.5 | 27.9 | 59 | 72.7 | 48 | 38.9 | 24 | 26.4 |
| 80–20 | 44.5 | 28.4 | 59.6 | 73.5 | 48.9 | 39.5 | 26.7 | 30.0 |
3.3.2.3. Data Base Search (without DR and without KD-Tree Indexing)
| Table 10 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 32.62 | 21.94 | 44.51 | 58.58 | 36.29 | 30.96 | 38.89 | 38.89 |
| 40–60 | 32.62 | 22.07 | 44.65 | 58.5 | 36.3 | 31.04 | 69.69 | 69.69 |
| 50–50 | 32.47 | 21.98 | 44.79 | 58.83 | 36.22 | 30.99 | 108.2 | 108.2 |
| 60–40 | 33.1 | 22.24 | 45.45 | 59.65 | 36.87 | 31.38 | 157.8 | 157.8 |
| 70–30 | 33.07 | 22.26 | 45.39 | 59.72 | 36.81 | 31.4 | 209.7 | 209.7 |
| 80–20 | 33.19 | 22.31 | 45.33 | 59.62 | 36.87 | 31.45 | 275.7 | 275.7 |
| Table 10 (b). Sony Cyber shot dataset - Top 5% and 10% retrieval result | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 36.1 | 23.59 | 49.27 | 63.55 | 40.31 | 33.54 | 40.4 | 40.4 |
| 40–60 | 36.5 | 23.83 | 50.02 | 63.82 | 40.84 | 33.82 | 70.98 | 70.98 |
| 50–50 | 36.6 | 23.76 | 49.81 | 63.74 | 40.81 | 33.72 | 109.9 | 109.9 |
| 60–40 | 36.36 | 23.76 | 49.52 | 63.37 | 40.56 | 33.68 | 157.8 | 157.8 |
| 70–30 | 35.91 | 23.63 | 48.86 | 62.95 | 40.02 | 33.47 | 203.6 | 203.6 |
| 80–20 | 35.9 | 23.58 | 48.61 | 62.62 | 39.89 | 33.35 | 251.2 | 251.2 |
| Table 10 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
| Train - Test in % | Precision | Recall | F-Measure | Time | ||||
| 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
| 30–70 | 39.78 | 25.82 | 54.15 | 67.38 | 44.12 | 36.1 | 42.11 | 42.11 |
| 40–60 | 39.97 | 25.93 | 53.8 | 67.13 | 44.06 | 36.13 | 76.94 | 76.94 |
| 50–50 | 39.62 | 25.71 | 53.34 | 66.6 | 43.61 | 35.78 | 121.1 | 121.1 |
| 60–40 | 39.48 | 25.45 | 53.04 | 66.52 | 43.39 | 35.49 | 174.9 | 174.9 |
| 70–30 | 39.45 | 25.59 | 53.43 | 66.75 | 43.5 | 35.67 | 233.9 | 233.9 |
| 80–20 | 40.35 | 26.02 | 54.09 | 67.54 | 44.28 | 36.2 | 312.3 | 312.3 |
3.3.4. Comparative Study between Retrieval Time of Flower Videos in Absolute Mode
3.3.4.1. Retrieval Time between Relieff DR with Indexing and without DR with Indexing
3.3.4.2. Retrieval Time between BNS DR with KD tree Indexing and without DR with Indexing
3.3.4.3. Retrieval Time between ReliefF DR with Indexing and Data Base Search
3.3.4.4. Retrieval Time between BNS DR with Indexing and Data Base Search
4. Comparative Study between Proposed and Traditional Retrieval Model
5. Conclusions



Conflicts of Interest
References
- G.G.Lakshmi P, S. Domnic, Shot based keyframe extraction for ecological video indexing and retrieval. Ecol. Inform. 2013, 23, 107–117. [CrossRef]
- K.S.Thakre, A.M.Rajurkar, R.R.Manthalkar, Video Partitioning and Secured Keyframe Extraction of MPEG Video, ICISP2015. Procedia Computer Science 2016, 78, 790–798. [CrossRef]
- D.S. Guru, Jyothi V. K and Y.H. Sharath Kumar, Cluster based approaches for key frame selection in natural flower videos, 17th International Conference on Intelligent Systems Design and Applications, ISDA 2017, Springer AISC, Volume 736, pp. 474–484.
- S.L.Zhai, B.Luo, J.Tang, C-Y. Zhang, Video abstraction based on relational graphs, Fourth International Conference on Image and Graphics IEEE 2007; pp. 827–832. [CrossRef]
- M.K.Geetha, S.Palanivel, V.Ramalingam, A novel block intensity comparison code for video classification and retrieval. Expert Syst. Appl. 2009, 36, 6415–6420. [CrossRef]
- C.V.Sheena, N.K. Narayanan, Key-frame extraction by analysis of histograms of video frames using statistical methods. Procedia Comput. Sci. 2015, 70, 36–40. [CrossRef]
- J-L. Lai, Y. Yi, Key frame extraction based on visual attention model. J. Vis. Commun. Image R. 2012, 23, 114–125. [CrossRef]
- M.Srinivas, M.M.M. Pai, R.M. Pai, An Improved Algorithm for Video Summarization-A Rank Based Approach. Procedia Comput. Sci. 2016, 89, 812–819. [CrossRef]
- H.Zhou, A.H. Sadka, M.R.Swash, J.Azizi, U.A. Sadiq, Feature extraction and clustering for dynamic video summarization. Neurocomputing 2010, 73, 1718–1729. [CrossRef]
- K.Muhammad, M.Sajjid, M.Y.lee, S.W.Baik, Efficient visual attention driven framework for keyframes extraction from hysteroscopy videos. Biomed. Signal Process. Control 2017, 33, 161–168. [CrossRef]
- H. Liu, H. Hao, Key frame extraction based on improved hierarchical clustering algorithm, 11th International Conference on FSKD. IEEE 2014; pp. 793–797. [CrossRef]
- W.Yongxiong, S.Shuxin, D.Xueming, A self-adaptive weighted affinity propagation clustering for key frames extraction on human action recognition. J. Vis. Commun. Image R. 2015, 33, 193–202. [CrossRef]
- N.Ejaz, T.B. Tariq, S.W.Baik, Adaptive key frame extraction for video summarization using an aggregation mechanism. J. Vis. Commun. Image R. 2012, 23, 1031–1040. 1. [CrossRef]
- C.Gianluigi, S.Raimondo, An innovative algorithm for key frame extraction in video summarization, Springer-Verlag. J Real-Time Image Proc. 2006, 69–88. [CrossRef]
- L.Ferreira, L.A.d.S.Cruz, P.Assuncao, A generic framework for optimal 2D/3D key-frame extraction driven by aggregated saliency maps. Signal Process. : Image Commun. 2015, 39, 98–110. [CrossRef]
- W.Barhoumi, E.Zagrouba, On-the-fly extraction of key frames for efficient video summarization. AASRI Procedia 2013, 4, 78–84. [CrossRef]
- M.Chatzigiorgaki, A.N.Skodras, Real time keyframe extraction towards video content identification. IEEE: 2009, ISSN: 978–1-4244–3298. [CrossRef]
- L. Honghua, Y.Xuan, P.Jihong, Key frame extraction based on multi-scale phase based local features, ICSP2008 proceedings. IEEE: 2008; pp. 1031–1034. [CrossRef]
- J.H.Su, Y-T.Hung, H-H.Yeh, V.S.Tseng, Effective content-based video retrieval using pattern-indexing and matching techniques. Expert Systems with Applications 2010, 37, pp.5068–5085. [CrossRef]
- D.Liu, T.Chen, Video retrieval based on object discovery. Comput. Vis. Image Underst. 2009, 113, 397–404. [CrossRef]
- Y.Zhu, X.Huang, Q.Huang, Q.Tian, Large-scale video copy retrieval with temporal-concentration SIFT. Neurocomputing 2016, 187, 83–91. [CrossRef]
- J.Han, X.Ji, X.Hu, J.Han, T.Liu, Clustering and retrieval of video shots based on natural stimulus fMRI. Neurocomputing 2014, 144, 128–237. [CrossRef]
- C-C.Yu, F-D.Jou, C-C.Lee, K-C.Fan, T.C.Chuang, Efficient multi-resolution histogram matching for fast image/video retrieval. Pattern Recognit. Lett. 2008, 29, 1858–1867. [CrossRef]
- B.Liang, W.Xiao, X.Liu, Design of video retrieval system using MPEG-7 descriptors. Procedia Eng. 2012, 29, 2578–2582. [CrossRef]
- S.Asha, Sreeraj.M, Content based video retrieval using SURF descriptor. IEEE Computer Society, 2013, 212–215. [CrossRef]
- L.Deng, L-Z.Jin, A video retrieval algorithm based on ensemble similarity. IEEE: 2010; pp. 638–642. [CrossRef]
- N.A.Lili, Hidden Markov Model for content based video retrieval. IEEE Computer Society: pp. 353–358. [CrossRef]
- G.S.Nagaraja, S.R.Murthy, T.S.Deepak, Content based video retrieval using support vector machine classification. IEEE: 2015; pp. 821–827. [CrossRef]
- K.Chatterjee, S-C.Chen, Hierarchical affinity hybrid tree: A multidimensional index structure to organize videos and support content based retrievals. IEEE IRI: 2008; pp. 435–440. [CrossRef]
- J.Zhao, Asymptotic convergence of dimension reduction based boosting in classification. J. Stat. Plan. Inference 2013, 143, 651–662. [CrossRef]
- H.Xie, J.Li, Q.Zhang, Y.Wang, Comparison among dimensionality reduction techniques based on random projection for cancer classification. Computational Biology and Chemistry 2016, 65, pp.165–172. [CrossRef]
- X.Wang, W.Liu, J.Li, X.Gao, A novel dimensionality reduction method with discriminative generalized eigen-decomposition. Neurocomputing 2016, 173, 163–171. [CrossRef]
- U.S.Pacharaney, P.S.Salankar, S.Mandalalpu, Dimensionality reduction for fast and accurate video search and retrieval in a large scale database; IEEE: 2013, ISSN.978–1-4799–0727–4. [CrossRef]
- H.Gan, A noise-robust semi-supervised dimensionality reduction method for face recognition. Optik 2018, 157, 858–865. [CrossRef]
- L-A.Gottlieb, A.Kontorovich, R.Krauthgamer, Adaptive metric dimensionality reduction. Theor. Comput. Sci. 2016, 620, 105–118. [CrossRef]
- C.Affonso, A.LD.Rossi, F.H.A.Vieira, A.C.P.D.L.F.D.Carvalho, Deep learning for biological image classification. Expert Syst. Appl. 2017, 85, 114–122. [CrossRef]
- X.Luo, R.Shen J.Hu, J.Deng, L.Hu, Q.Guan, A deep convolution neural network mode for vehicle recognition and face recognition. Procedia Comoputer Sci. 2017, 107, 715–720. [CrossRef]
- X.W.Gao, R.Hui, Z.Tian, Classification of CT brain images based on deep learning networks., Computer methods and programs in biomedicine 2017, 138, 49–56. [CrossRef] [PubMed]
- N.Najva, K.E.Bijoy, SIFT and Tensor based object detection and classification in videos using deep neural networks. Procedia Comput. Sci. 2016, 93, 351–358. [CrossRef]
- Z.Liang, S.Xia, Y.Zhou, Normalized discriminant analysis for dimensionality reduction. Neurocomputing 2013, 110, 153–159. [CrossRef]
- S.Wang, J.Lu, X.Gu, H.Du, J.Yang, Semi-supervised linear discriminant analysis for dimension reduction and classification. Pattern Recognit. 2016, 57, 179–189. [CrossRef]
- X.Chen, H.Yin, F.Jiang, L.Wang, Multi-view dimensionality reduction based on universum learning, Neurocomputing 2018, 275, 2279–2286. [CrossRef]
- F.S.Tsai, Dimensionality reduction for computer facial animation. Expert Syst. Appl. 2012, 39, 4965–4971. [CrossRef]
- B.Jiang, J.Yang, Z.Lv, K.Tian, Q.Meng, Y.Yan, Internet cross-media retrieval based on deep learning. J. Vis. Commun. Image R.2017, 48, 356–366. [CrossRef]
- Y. Hongpeng, J. Xuguo, Yi C and F. Bin, Scene Classification based on single-layer SAE and SVM. Expert Syst. Appl. 2015, 42, 3368–3380. [CrossRef]
- H. Weiming, X. Nainhua, Li X Zeng, M. Stephen, A survey on visual content based video indexing and retrieval. IEEE transaction on systems, MAN and Cybernetics-Part C, Applications and reviews 2011, 41, 797–819. [CrossRef]
- M. Das, R. Manmatha, E M Riseman, Indexing flower patent images using domain knowledge. IEEE Intelligent Systems 1999, 14, 24–33. [CrossRef]
- D.S. Guru, Y. H. Sharath, S. Manjunath, Texture Features and KNN in classification of Flower Images, IJCA special Issue on Recent Trends in Image Processing and Pattern Recognition, RTIPPR, 2010, 21–29.
- D.S. Guru, Y. H. Sharath, S. Manjunath, Texture Features in flower classification. Math. Comput. Model. 2011, 54, 1030–1036. [CrossRef]
- R. Nock and F. Nielsen, Statistical Region Merging, IEEE transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 1–7. [CrossRef]
- Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, Proceedings of 25th International conference on Neural Information Processing Systems: 1, 2012; pp. 1097–1105.
- Y. Guo, Y. Liu, A. Oerlemans, S.Lao, S. Wu, M.S.Lew, Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [CrossRef]
- Zafra, M. Penchenizkiy, S.Ventura, ReliefF-MI: An extension of ReliefF to multiple instance learning. Neurocomputing 2012, 75, 210–218. [CrossRef]
- Gianluigi and S. Raimondo, An innovative algorithm for key frame extraction in video summarization. J Real-Time Image Proc. 2006, 1, po.69–88. [CrossRef]
- R.O.Duda, P.E.Hart, D.G.Stork, Pattern classification, Second edition.
- D. K Vandana, D. Singh, P. Raj, M. Swathi, P. Gupta, kd-tree based fingerprint identification system, 2nd international conference on Anti-counterfeiting, Security and Identification, IEEE xplore, 2008, pp.5–10. [CrossRef]
- K. Kira, L. Rendell, A practical approach to feature selection, Machine Learning, proceedings of the ninth conference, 1992, 249–256. [CrossRef]
- G. Forman, An extensive empirical study of feature selection paradigm for text classification. J. Mach. Learn. Res. 2003, 3, 1289–1305.
- K. B. Nagasundara, D S Guru, S Manjunath, KD-tree based palmprint Indexing, ICCVR-2011, Bhubaneswar, India, pp.51–55.
- K B Nagasundara, Theses: Biometric Iindexing, 2012, Appendix-A, Kd-tree – A complete illustration with a example.pp. 146–152.
- Y H K Sharath, D S Guru, Sketch based Flower Retrieval: Kd-tree based approach, Elsevier Procedia Computer Science, vol. 46, ICICT 2015, 1577 – 1584.
- Manjunath S, 2012, Video Archival and Retrieval System (VARS), thesis.
- Gonzales R C, Woods R E and Eddins, 2008, Digital Image Processing, Third Edition.
- Emad Mabrouk, Ahmed Ayman, Yara Raslan, Abdel-Rahman Hedar, 2019, Immune system programming for medical image segmentation, Journal of Computational Science, Volume 31, February 2019, pp. 111–125. [CrossRef]
- S. A. Hojjatoleslami and J. Kittler. Region Growing: A New Approach. IEEE Trans. Image Process. 1998, 7, 1079–1084. [CrossRef] [PubMed]
- P A Vijaya, M Narasimha Murthy, D K Subramanian, Efficient bottom-up hybrid hierarchical clustering techniques for protein sequence classification. Pattern Recognit. 2006, 39, 2344–2355. [CrossRef]
- Turgay Celik, 2011, Bayesian change detection based on spatial sampling and Gaussian mixture model. Pattern Recognition Letters 2011, 32, 1635–1642. [CrossRef]
- Michael Reiter, Paolo Rota, Florian Kleber, Markus Diem, Stefanie Groeneveld-Krentz, Michael Dworzak, Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures. Pattern Recognit. 2016, 60, 1029–1040. [CrossRef]
- Jiliang Tang, Salem Alelyani and Huan Liu, 2014, Feature selection for classification: A Review, Data classification: Algorithms and Applications, Book chapter, pp.37–64.
- Jun Chin Ang, Andri Mirzal, Habibollah Haron and Haza Nuzly Abdull Hamed. ACM Transactions on Computational Biology and Bioinformatics 2016, 13, 971–989. [CrossRef] [PubMed]
- Ryan J. Urbanowicz, Randal S. Olson, Peter Schmitt, Melissa Meeker, Jason H. Moore. Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining. J. Biomed. Inform. 2018. [CrossRef]
- Guru D S, Sharath K Y H and Manjunath S, 2010, Texture FEtures and KNN in Classification of Flower Images, IJCA Special Issue on ‘Recent Trends in Image Processing and Pattern Recognition, pp.21–29.
- Na Zhao, Shi-Kai Sui, Ping Kuang, 2015, Research on image segmentation method based on weighted threshold algorithm, IEEE ISBN: 978–1-4673–8266–3, 307–310. [CrossRef]
- Stuart Golodetz, Irina Voiculescu, Stephen Cameron, Simpler editing of graph-based segmentation hierarchies using zipping algorithms. Pattern Recognit. 2017, 70, 44–59. [CrossRef]
- Xiaomin Yu, Weibin Liu, Weiwei Xing, Behavioral segmentation for human motion capture data based on graph cut method. J. Vis. Lang. Comput. 2017, 43, 50–59. [CrossRef]
- Jifeng Ning, Lei Zhang, David Zhang, Chengke Wu, Interactive image segmentation by maximal similarity based region merging. Pattern Recognit. 2010, 43, 445–456. [CrossRef]
- Fanjie Meng, Dalong Shan, Ruixia Shi, Yang Song, Baolong Guo, Weidong Cai, Merged region based image retrieval. J. Vis. Commun. Image Represent. 2018, 55, 572–585. [CrossRef]
- Shuchao Pang, Juan Jose del Coz, Zhezhou Yu, Oscar Luaces, Jorge Diez, 2017, Deep learning to frame objects for visual target tracking. Eng. Appl. Artif. Intell. 2017, 65, 406–420. [CrossRef]
- P. Punitha, D. S. Guru, 2008 Symbolic image indexing and retrieval by spatial similarity: An approach based on B-tree. Pattern Recognit. 2008, 41, 2068–2085. [CrossRef]
- Kimia Razaei-Kalantari, A M Eftekhari-Moghadam, 2010, Symbolic image indexing and retrieval by spatial similarity: A new approach based on multi-dimensional B+ tree, IEEE Xplore, ISBN:978–89–88678.
- Guru D S, Jyothi V K, Kumar Y H S. Features fusion for retrieval of flower videos. Springer Nature. Lecture Notes in Networks and Systems; 2019; Volume 43, pp. 221–233. [CrossRef]











| Dataset | Hierarchical | K-Means | GMM | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2kfs | 3kfs | 4kfs | 5kfs | 2kfs | 3kfs | 4kfs | 5kfs | 2kfs | 3kfs | 4kfs | 5kfs | |
| SGGP | 70.32 | 67.49 | 64.65 | 64.24 | 70.52 | 68.55 | 69.59 | 65.35 | 71.76 | 73.17 | 78.58 | 78.76 |
| Sonycyber Shot | 61.02 | 59.91 | 58.99 | 57.74 | 57.83 | 58.89 | 60.02 | 59.83 | 68.55 | 71.57 | 63.88 | 79.01 |
| Canon | 68.01 | 65.55 | 65.59 | 65.78 | 67.44 | 66.16 | 67.29 | 69.32 | 70.55 | 78.78 | 72.47 | 82.56 |
| Dataset | Conventional approaches | Proposed DCNN approaches | ||||
|---|---|---|---|---|---|---|
| Hierarchical [11] | K-Means [3] | GMM [3] | Hierarchical | K-Means | GMM | |
| SGGP | 54.36 | 55.00 | 55.50 | 64.24 | 65.35 | 78.76 |
| Sonycyber Shot | 52.10 | 50.77 | 64.73 | 57.74 | 59.83 | 79.01 |
| Canon | 54.72 | 53.18 | 55.66 | 65.78 | 69.32 | 82.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).