Submitted:
21 November 2023
Posted:
23 November 2023
You are already at the latest version
Abstract
Keywords:
MSC: 46G25; 46N50
1. Introduction
2. Preliminaries results on symmetric polynomials and partition functions
2.1. Symmetric polynomials
2.2. Partition functions
2.3. Note about the Banach space
3. Supersymmetric polynomials and partition functions for mixed systems of bosons and fermions
4. Semiring structures on the set of variables
4.1. The ring
4.2. A tropical semiring structure
- 1
- The tropical operations are continuous in ;
- 2
-
The mappingsare continuous semiring homomorphisms from to the max tropical semiring and to the min tropical semiring respectively.
5. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macdonald, I. G. Symmetric Functions and Orthogonal Polynomials; AMS: University Lecture Serie 12, Providence, RI, 1997.
- Schmidt, H. J., Schnack, J. Symmetric polynomials in physics. In: Gazeau, J.-P., Kerner, R., Antoine, J.-P., Métens, S., Thibon., J.-Y. Inst. Phys. Conf. Ser. 2003, 173, IOP: Bristol, Philadelphia, 147–152.
- Schmidt, H.-J.; Schnack, J. Partition functions and symmetric polynomials. American Journal of Physics 2002, 70(1), 53–57. [CrossRef]
- Giraud, O.; Grabsch, A.; Texier, C. Correlations of occupation numbers in the canonical ensemble and application to a Bose-Einstein condensate in a one-dimensional harmonic trap. Phys. Rev. A 2018, 97, 053615. [CrossRef]
- Mullin, W. J.; Fernández, J. P. Bose–Einstein condensation, fluctuations, and recurrence relations in statistical mechanics. Am. J. Phys. 2002, 71, 661-669. [CrossRef]
- Pain, J.-C.; Gilleron, F.; Porcherot, Q. Generating functions for canonical systems of fermions. Phys. Rev. E 2011, 83, 067701. [CrossRef]
- Peña, J. J.; Ponce, A. R.; Morales, J. On the generalization of statistical thermodynamic functions by a Riccati differential equation. J. Phys.: Conf. Ser. 2016, 738, 012095. [CrossRef]
- Zhou, C.-C.; Dai, W.-S. A statistical mechanical approach to restricted integer partition functions. Journal of Statistical Mechanics: Theory and Experiment 2018, 2018, 5053111. [CrossRef]
- Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebra of symmetric holomorphic functions on ℓp. Bull. Lond. Math. Soc. 2003, 35, 55–64. [CrossRef]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 2012, 55, 125–142. [CrossRef]
- García, D., Maestre, M., Zalduendo, I. The spectra of algebras of group-symmetric functions. Proc. Edinb. Math. Soc. 2019, 62(3), 609–623. [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [CrossRef]
- Falcó, J.; García, D.; Jung, M.; Maestre, M. Group-invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [CrossRef]
- Chernega, I.; Zagorodnyuk, A. Supersymmetric Polynomials and a Ring of Multisets of a Banach Algebra. Axioms 2022, 11, 511. [CrossRef]
- Chopyuk, Y.; Vasylyshyn, T.; Zagorodnyuk, A. Rings of Multisets and Integer Multinumbers. Mathematics 2022, 10, 778. [CrossRef]
- Jawad, F.; Zagorodnyuk, A. Supersymmetric polynomials on the space of absolutely convergent series. Symmetry 2019, 11(9), 1111. [CrossRef]
- Olshanski, G.; Regev, A.; Vershik, A.; Ivanov, V. Frobenius-Schur Functions. In Studies in Memory of Issai Schur. Progress in Mathematics; Joseph, A., Melnikov, A., Rentschler, R., Eds.; Birkhauser: Boston, MA, USA, 2003; Volume 210, pp. 251–299.
- Sergeev, A.N. On rings of supersymmetric polynomials. J. Algebra 2019, 517, 336–364. [CrossRef]
- Stembridge, J.R. A characterization of supersymmetric polynomials. J. Algebra 1985, 95, 439–444. [CrossRef]
- Martsinkiv, M.; Vasylyshyn, S.; Vasylyshyn, T.; Zagorodnyuk. A. Lipschitz symmetric functions on Banach spaces with symmetric bases. Carpathian Math. Publ. 2021, 13, 727-733. [CrossRef]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999. [CrossRef]
- Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986.
- Golan, J. S. Semirings and their Applications; Springer Science and Business Media, 2013. [CrossRef]
- Speyer, D.E.; Sturmfels, B. Tropical mathematics. Math. Mag. 2009, 82, 163–173. [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [CrossRef]
- Balantekin, A.B. Partition functions in statistical mechanics, symmetric functions, and group representation. Physical Review E 2001, 64(6 II), 066105/1-066105/8.
- Landsberg, P. T. Thermodynamics with quantum statistical illustrations, Interscience Publishers, New York, London (1961).
- Nemirovskii, A.; Semenov, S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 1973, 21, 255–277. [CrossRef]
- Burtnyak, I.V.; Chopyuk, Yu.Yu.; Vasylyshyn, S.I.; Vasylyshyn T.V. Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions. Carpathian Math. Publ. 2023, 15, 411–419. [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Analytic structure on the spectrum of the algebra of symmetric analytic functions on L∞. RACSAM 2020, 114, 56. [CrossRef]
- Burtnyak, I.; Chernega, I.; Hladkyi, V.; Labachuk, O.; Novosad, Z. Application of symmetric analytic functions to spectra of linear operators. Carpathian Math. Publ. 2021, 13(3), 701–710. [CrossRef]
- Li, H.-D.; Li, S.-L.; Chen, Y.-J. Li, W.-D.; Dai, W.-S. Energy spectrum of interacting gas: cluster expansion method. Chem. Phys. 2022, 559, 111537. [CrossRef]
- Litvinov, G. L. Maslov dequantization, idempotent and tropical mathematics: A brief introduction. J. Math. Sci. 2007, 140, 426–444. [CrossRef]
- Lindenstrauss, J.; Tzafriri L. Classical Banach Spaces, vol. I, Sequence Spaces, Springer-Verlag, 1977.
- Bingham, N.H.; Ostaszewski, A.J. Normed versus topological groups: dichotomy andduality. Diss. Math. 2010, 472, 138. [CrossRef]
- Erler, T.; Schnabl, M. A simple analytic solution for tachyon condensation. Journal of High Energy Physics 2009, 10, 066. [CrossRef]
- Rosas, M. MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Combin. Theory Ser. A 2001, 96 326-–340. [CrossRef]
- Bandura, A.; Kravtsiv, V.; Vasylyshyn, T. Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of ℓp-Spaces. Axioms 2022, 11, 41. [CrossRef]
- Kravtsiv, V. Algebraic basis of the algebra of block-symmetric polynomials on ℓ1 ⊕ ℓ∞. Carpathian Math. Publ. 2019, 11, 89–95. [CrossRef]
- Kravtsiv, V.V. Analogues of the Newton formulas for the block-symmetric polynomials. Carpathian Math. Publ. 2020, 12, 17–22. [CrossRef]
- Kravtsiv, V. Zeros of block-symmetric polynomials on Banach spaces. Mat. Stud. 2020, 53, 2016–2011. [CrossRef]
- Kravtsiv, V.; Vitrykus, D. Generating elements of the algebra of block-symmetric polynomials on the product of Banach spaces Cs. AIP Conference Proceedings 2022, 2483, 030010. [CrossRef]
- Kravtsiv, V. The analogue of Newton’s formula for block-symmetric polynomials. Int. J. Math. Anal. 2016, 10, 323–327. [CrossRef]
- Diaz, R.; Pariguan, E. Quantum product of symmetric functions. Int. J. Math. Math. Sci. 2015, 476926 (2015). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).