Submitted:
18 November 2023
Posted:
20 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Search Strategies
- -
- (Mosquito OR Mosquito-borne disease (MBD)) AND (MBD outbreaks OR MBD risk factors) AND (Middle East and North Africa (MENA));
- -
- Mosquito OR Mosquito-borne disease (MBD) OR MBD outbreaks OR MBD risk factors AND MENA;
- -
- Mosquito OR Mosquito-borne disease (MBD) AND MBD outbreaks OR MBD risk factors;
- -
- Mosquito AND MBD outbreaks OR MBD risk factors;
- -
- Mosquito-borne disease (MBD) AND MBD outbreaks OR MBD risk factors;
- -
- Mosquito-borne disease (MBD) AND MBD outbreaks AND MBD risk factors;
- -
- Mosquito OR Vector-borne disease (VBD) OR VBD outbreaks OR VBD risk factors AND MENA.
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Evaluation of the Quality of Reports on the Studies

2.5. Data Extraction
3. Results
3.1. Description of Studies
3.1.1. Search Flow Result
3.1.2. Study Characteristic
3.2. Population Factors
3.2.1. Age
3.2.2. Gender
3.2.3. Occupation
3.2.4. Socioeconomic Status
3.2.5. Demography
3.2.6. Blood Group
3.2.7. Skin Type
3.2.8. Number of households
3.3. Environmental Factors
3.3.1. Climate
3.3.2. Sanitation
3.3.3. Breeding Habitats
3.4. Disease Factors
3.4.1. Pathogen
3.4.2. Clinical Symptoms
3.4.3. Mosquito
4. Discussion
4.1. Impacts of Population Factors on MBD
4.2. Impact of Environmental Factors on MBD
4.3. Impact of Disease Factors on MBD
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vector-borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 2 March 2022).
- Omodior, O.; Luetke, M.C.; Nelson, E.J. Mosquito-borne infectious disease, risk-perceptions, and personal protective behavior among U.S. international travelers. Prev. Med. Rep. 2018, 12, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Dahmana, H.; Mediannikov, O. (2020). Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically. Pathogens 2020, 9, 310. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease (CDC) control and Prevention. Global Health - CDC’s Regional Offices around the World. Available online: https://www.cdc.gov/globalhealth/countries/regional/default.htm (accessed on 01 January 2023).
- Humphrey, J.M.; Cleton, N.B.; Reusken, C.B.E.M.; Glesby, M.J.; Koopmas, M.P.G.; Abu-Raddad, L.J. Dengue in the Middle East and North Africa: A systematic review. PLOS Neglected Tropical Diseases 2016, 10, e0005194. [Google Scholar] [CrossRef] [PubMed]
- Nebbak, A.; Almeras, L.; Parola, P.; Bitam, I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. Insects 2022, 13, 962. [Google Scholar] [CrossRef] [PubMed]
- Altassan, K.K.; Morin, C.; Shocket, M.S.; Ebi, K.; Hess, J. Dengue fever in Saudi Arabic: A review of environmental and population factors impacting emergence and spread. Travel Medicine and Infectious Disease 2019, 30, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Braack, L.; Paulo Gouveia de Almeida, A.; Cornel, A.J.; Swanepoel, R.; de Jager, C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites Vectors 2018, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Aryaprema, V.S.; Steck, M.R.; Peper, S.T.; Xue, R.; Qualls, W.A. A systematic review of published literature on mosquito control action thresholds across the world. PLoS Negl Trop Dis. 2023, 17, e0011173. [Google Scholar] [CrossRef] [PubMed]
- Joanna Briggs Institute. Critical Appraisal Tools. 10 May. Available online: https://jbi.global/critical-appraisal-tools (accessed on 10 May 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Al-Nefaie, H.; Alsultan, A.; Abusaris, R. Temporal and spatial patterns of dengue geographical distribution in Jeddah, Saudi Arabia. Journal of Infection and Public Health 2022, 15, 1025–1035. [Google Scholar] [CrossRef]
- Al-Quhaiti, M.A.A.; Abdul-Ghani, R.; Mahdy, M.A.K.; Assada, M.A. Malaria among under-five children in rural communities of Al-Mahweet governorate. Yemen. Malaria Journal 2022, 21, 344. [Google Scholar] [CrossRef]
- Eldigail, M.H.; Abubaker, H.A.; Khalid, F.A.; Abdallah, T.M.; Adam, I.A.; Adam, G.K.; Babiker, R.A.; Ahmed, M.E.; Haroun, E.M.; Aradaib, I.E. Recent transmission of dengue virus and associated risk factors among residents of Kassala state, eastern Sudan. BMC Public Health 2020, 20, 530. [Google Scholar] [CrossRef]
- Pouriayevali, M.H.; Rezaei, F.; Jalali, T.; Baniasadi, V.; Fazlalipour, M.; Mostafavi, E.; Khakifirouz, S.; Mohammadi, T.; Fereydooni, Z.; Tavakoli, M.; et al. Imported cases of chikungunya virus in Iran. BMC Infectious Diseases 2019, 19, 1004. [Google Scholar] [CrossRef]
- Elaagip, A.; Alsedig, K.; Altahir, O.; Ageep, T.; Ahmed, A.; Siam, H.A.; Samy, A.M.; Mohamed, W.; Khalid, F.; Gumaa, S.; et al. Seroprevalence and associated risk factors of Dengue fever in Kassala state, eastern Sudan. PLoS Neglected Tropical Diseases 2020, 14, e0008918. [Google Scholar] [CrossRef] [PubMed]
- Kadir, M.A.; Ismail, A.K.; Tahir, S.S. Epidemiology of malaria in Al-Tameem Province, Iraq, 1991-2000. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2003, 9, 1042–1047. [Google Scholar] [CrossRef]
- Soghaier, M.A.; Mahmood, S.F.; Pasha, O.; Azam, S.I.; Karsani, M.M.; Elmangory, M.M.; Elmagboul, B.A.; Okoued, S.I.; Shareef, S.M.; Khogali, H.S.; et al. Factors associated with dengue fever IgG seroprevalence in South Kordofan State, Sudan, in 2012: Reporting prevalence ratios. Journal of Infection and Public Health 2014, 7, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Bamaga, O.A.; Mahdy, M.A.; Mahmud, R.; Lim, Y. Al. Malaria in Hadhramout, a southeast province of Yemen: prevalence, risk factors, knowledge, attitude and practices (KAPs). Parasites & Vectors 2014, 7, 351. [Google Scholar] [CrossRef] [PubMed]
- Hassanain, A.M.; Noureldien, W.; Karsany, M.S.; Saeed, E.S.; Aradaib, I.E.; Adam, I. Rift Valley Fever among febrile patients at New Halfa Hospital, eastern Sudan. Virology Journal 2010, 7, 97. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Kheir, M.M.; Elhardello, O.A.; Almahi, W.A.; Ali, N.I.; Elbashir, M.I.; Ishag, A. Cortisol and uncomplicated Plasmodium falciparum malaria in an area of unstable malaria transmission in eastern Sudan. Asian Pacific journal of tropical medicine 2011, 4, 146–147. [Google Scholar] [CrossRef] [PubMed]
- Riabi, S.; Gaaloul, I.; Mastouri, M.; Hassine, M.; Aouni, M. An outbreak of West Nile virus infection in the region of Monastir, Tunisia, 2003. Pathogens and Global Health 2014, 108, 148–157. [Google Scholar] [CrossRef]
- Saeed, I.E.; Ahmed, E.S. Determinants of malaria mortality among displaced people in Khartoum state, Sudan. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawas 2003, 9, 593–599. [Google Scholar] [CrossRef]
- Elghazali, G.; Adam, I.; Hamad, A.; El-Bashir, M.I. Plasmodium falciparum infection during pregnancy in an unstable transmission area in eastern Sudan. Eastern Mediterranean Health Journal = La Revue de Sante de La Mediterranee Orientale = Al-Majallah al-Sihhiyah Li-Sharq al-Mutawassit 2003, 9, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, M.; Salehi-Vaziri, M.; Pouriayevali, M.; Baniasadi, V.; Salmanzadeh, S.; Kharat, M.; Fazlalipour, M. Seroprevalence of West Nile virus in Khuzestan province, southwestern Iran, 2016-2017. Journal of Vector Borne Diseases 2019, 56, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Kholedi, A.A.N.; Balubaid, O.; Milaat, W.; Kabbash, I.A.; Ibrahim, A. Factors associated with the spread of dengue fever in Jeddah Governorate, Saudi Arabia. Eastern Mediterranean Health Journal = La Revue de Sante de La Mediterranee Orientale = Al-Majallah al-Sihhiyah Li-Sharq al-Mutawassit 2012, 18, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Vasmehjani, A.A.; Rezaei, F.; Farahmand, M.; Mokhtari-Azad, T.; Yaghoobi-Ershadi, M.R.; Keshavarz, M.; Baseri, H.R.; Zaim, M.; Iranpour, M.; Turki, H.; et al. Epidemiological evidence of mosquito-borne viruses among persons and vectors in Iran: A study from North to South. Virologica Sinica 2022, 37, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Ziyaeyan, M.; Behzadi, M.A.; Leyva-Grado, V.H.; Azizi, K.; Pouladfar, G.; Dorzaban, H.; Ziyaeyan, A.; Salek, S.; Jaber Hashemi, A.; Jamalidoust, M. Widespread circulation of West Nile virus, but not Zika virus, in southern Iran. PLoS Neglected Tropical Diseases 2018, 12, e0007022. [Google Scholar] [CrossRef] [PubMed]
- Al Azraqi, T.A.; El Mekki, A.A.; Mahfouz, A.A. Rift Valley fever among children and adolescents in southwestern Saudi Arabia. Journal of Infection and Public Health 2013, 6, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Elmardi, K.A.; Adam, I.; Malik, E.M.; Kafy, H.T.; Abdin, M.S.; Kleinschmidt, I.; Kremers, S. Impact of malaria control interventions on malaria infection and anemia in areas with irrigated schemes: a cross-sectional population-based study in Sudan. BMC Infectious Diseases 2021, 21, 1248. [Google Scholar] [CrossRef] [PubMed]
- Eldigail, M.H.; Adam, G.K.; Babiker, R.A.; Khalid, F.; Adam, I.A.; Omer, O.H.; Ahmed, M.E.; Birair, S.L.; Haroun, E.M.; Abuaisha, H.; et al. Prevalence of dengue fever virus antibodies and associated risk factors among residents of El-Gadarif state, Sudan. BMC Public Health 2018, 18, 921. [Google Scholar] [CrossRef] [PubMed]
- Mahdi Abdel Hamid, M.; Elamin, A.F.; Albsheer, M.M.A.; Abdalla, A.A.A.; Mahgoub, N.S.; Mustafa, S.O.; Muneer, M.S.; Amin, M. Multiplicity of infection and genetic diversity of Plasmodium falciparum isolates from patients with uncomplicated and severe malaria in Gezira State, Sudan. Parasites & Vectors 2016, 9, 362. [Google Scholar] [CrossRef]
- Seidahmed, O.M.E.; Hassan, S.A.; Soghaier, M.A.; Siam, H.A.M.; Ahmed, F.T.A.; Elkarsany, M.M.; Sulaiman, S.M. Spatial and temporal patterns of dengue transmission along a Red Sea coastline: a longitudinal entomological and serological survey in Port Sudan city. PLoS Neglected Tropical Diseases 2012, 6, e1821. [Google Scholar] [CrossRef]
- Soghaier, M.A.; Himatt, S.; Osman, K.E.; Okoued, S.I.; Seidahmed, O.E.; Beatty, M.E.; Elmusharaf, K.; Khogali, J.; Shingrai, N.H.; Elmangory, M.M. Cross-sectional community-based study of the socio-demographic factors associated with the prevalence of dengue in the eastern part of Sudan in 2011. BMC Public Health 2015, 15, 558. [Google Scholar] [CrossRef]
- Alkhaldy, I.; Barnett, R. Explaining Neighbourhood Variations in the Incidence of Dengue Fever in Jeddah City, Saudi Arabia. International Journal of Environmental Research and Public Health 2021, 18, 13220. [Google Scholar] [CrossRef]
- Soghaier, M.A.; Abdelgadir, D.M.; Abdelkhalig, S.M.; Kafi, H.; Zarroug, I.M.A.; Sall, A.A.; Eldegai, M.H.; Elageb, R.M.; Osman, M.M.; Khogali, H. Evidence of pre-existing active Zika virus circulation in Sudan prior to 2012. BMC Research Notes 2018, 11, 906. [Google Scholar] [CrossRef]
- Tezcan-Ulger, S.; Kurnaz, N.; Ulger, M.; Aslan, G.; Emekdas, G. Serological evidence of Rift Valley fever virus among humans in Mersin province of Turkey. Journal of Vector Borne Diseases 2019, 56, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Adam, I.; Babiker, S.; Mohmmed, A.A.; Salih, M.M.; Prins, M.H.; Zaki, Z.M. ABO blood group system and placental malaria in an area of unstable malaria transmission in eastern Sudan. Malaria Journal 2007, 6, 110. [Google Scholar] [CrossRef] [PubMed]
- Noureldin, E.; Shaffer, L. Role of climatic factors in the incidence of dengue in Port Sudan City, Sudan. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2019, 25, 852–860. [Google Scholar] [CrossRef]
- Soleimani-Ahmadi, M.; Vatandoost, H.; Hanafi-Bojd, A.A.; Zare, M.; Safari, R.; Mojahedi, A.; Poorahmad-Garbandi, F. Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran. Asian Pacific Journal of Tropical Medicine 2013, 6, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Elkhalifa, A.M.E.; Abdul-Ghani, R.; Tamomh, A.G.; Eltaher, N.E.; Ali, N.Y.; Ali, M.M.; Bazie, E.A.; KhirAlla, A.; DfaAlla, F.A.; Alhasan, O.A.M. Hematological indices and abnormalities among patients with uncomplicated falciparum malaria in Kosti city of the White Nile state, Sudan: a comparative study. BMC Infectious Diseases 2021, 21, 507. [Google Scholar] [CrossRef]
- Elmardi, K.A.; Noor, A.M.; Githinji, S.; Abdelgadir, T.M.; Malik, E.M.; Snow, R.W. Self-reported fever, treatment actions, and malaria infection prevalence in the northern states of Sudan. Malaria Journal 2011, 10, 128. [Google Scholar] [CrossRef]
| No. of article | Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| #1. Adam et al., 2007 [38] | Cross-sectional | Y | Y | Y | Y | U | U | Y | Y | NA | NA | 75% |
| #2. Al Azraqi et al., 2013 [29] | Prevalence | Y | Y | Y | Y | Y | Y | Y | Y | U | NA | 88.9% |
| #3. Alkhaldy and Barnett, 2021 [35] | Prevalence | Y | Y | U | Y | Y | Y | U | Y | Y | NA | 77.8% |
| #4.Al-Nefaie et al., 2022 [12] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #5. Al-Quhaiti et al., 2022 [13] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #6. Bamaga et al., 2014 [19] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #7. Elaagip et al., 2020 [16] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #8. Eldigail et al., 2018 [31] | Cross-sectional | Y | Y | Y | Y | Y | Y | Y | Y | NA | NA | 100% |
| #9. Eldigail et al., 2020 [14] | Cross-sectional | U | Y | Y | Y | Y | Y | Y | Y | NA | NA | 87.5% |
| #10. Elghazali et al., 2003 [24] | Case-control | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 100% |
| #11. Elkhalifa et al., 2021 [41] | Cross-sectional | Y | Y | Y | Y | U | U | Y | Y | NA | NA | 75% |
| #12. Elmardi et al., 2011 [42] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #13. Elmardi et al., 2021 [30] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #14. Hassanain et al., 2010 [20] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #15. Ibrahim et al., 2011 [21] | Cross-sectional | U | Y | Y | Y | U | Y | Y | Y | NA | NA | 75% |
| #16. Kadir et al., 2003 [17] | Cross-sectional | Y | Y | Y | Y | N | N | Y | Y | NA | NA | 75% |
| #17. Kalantari et al., 2019 [25] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #18. Kholedi et al., 2012 [26] | Case-control | Y | Y | Y | Y | Y | Y | U | Y | Y | Y | 90% |
| #19. Mahdi et al., 2016 [32] | Cross-sectional | U | Y | Y | Y | Y | U | Y | Y | NA | NA | 75% |
| #20. Noureldin and Shaffer, 2019 [39] | Ecological study | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | 100% |
| #21. Pouriayevali et al., 2019 [15] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #22. Riabi et al., 2014 [22] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #23. Saeed and Ahmed, 2003 [23] | Cross-sectional | U | Y | Y | Y | U | Y | Y | Y | NA | NA | 75% |
| #24. Seidahmed et al., 2012 [33] | Cross-sectional | Y | Y | Y | Y | Y | Y | Y | Y | NA | NA | 100% |
| #25. Soghaier et al., 2014 [18] | Cross-sectional | Y | Y | Y | Y | U | Y | Y | Y | NA | NA | 87.5% |
| #26. Soghaier et al., 2015 [34] | Cross-sectional | Y | Y | Y | Y | Y | Y | Y | Y | NA | NA | 100% |
| #27. Soghaier et al., 2018 [36] | Cross-sectional | Y | Y | Y | Y | Y | Y | Y | Y | NA | NA | 100% |
| #28. Soleimani-Ahmadi et al., 2013 [40] | Cross-sectional | U | Y | Y | Y | Y | U | Y | Y | NA | NA | 75% |
| #29. Tezcan-Ulger et al., 2019 [37] | Prevalence | Y | Y | Y | Y | Y | Y | Y | Y | Y | NA | 100% |
| #30. Vasmehjani et al., 2022 [27] | Case-control | Y | Y | Y | Y | Y | U | Y | Y | Y | Y | 90% |
| #31. Ziyaeyan et al., 2018 [28] | Prevalence | Y | Y | U | Y | Y | Y | Y | Y | Y | NA | 88.9% |
| JBI, Joanna Briggs Institute; Y, Yes; N, No; U, Unclear; NA, Not applicable. For the cross-sectional study: Q1: Were the criteria for inclusion in the sample clearly defined? Q2: Were the study participants and settings described in detail? Q3: Was exposure measured in a valid and reliable way? Q4: Were objective, standard criteria used for the measurement of the condition? Q5: Were the confounding factors identified? Q6: Were the strategies to deal with the confounding factors stated? Q7: Were the outcomes measured in a valid and reliable manner? Q8: Was appropriate statistical analysis used? For case-control study: Q1: Were the groups comparable other than the presence of diseases in cases or the absence of disease in controls? Q2: Were the cases and controls matched appropriately? Q3: Were the same criteria used for identification of cases and controls? Q4: Was exposure measured in a standard, valid, and reliable manner? Q5: Was the exposure measured in the same way for both cases and controls? Q6: Were the confounding factors identified? Q7: Were the strategies to deal with the confounding factors stated? Q8: Were outcomes assessed in a standard, valid, and reliable manner for cases and controls? Q9: Was the exposure period of interest sufficiently long to be meaningful? Q10: Was the appropriate statistical analysis used? For the prevalence study: Q1: Was the sample frame appropriate to address the target population? Q2: Were the study participants appropriately sampled? Q3: Was the sample size adequate? Q4: Were the study participants and settings described in detail? Q5: Was data analysis conducted with sufficient coverage of the identified sample? Q6: Were the valid methods used to identify the condition? Q7: Was the condition measured in a standard, reliable manner for all participants? Q8: Was there appropriate statistical analysis? Q9: Was the response rate adequate and, if not, was the low response rate managed appropriately? | ||||||||||||
| Author | Design | Country | Duration | Population | Samples | Disease | Factor | Sub-factor | Results | Measure of Association |
|---|---|---|---|---|---|---|---|---|---|---|
| Adam et al. 2007 | Cross-sectional | Sudan | 4 months | N/A | 293 F | Malaria | Population | 94 +ve, 199 –ve | Blood group A vs. non Blood group A | OR=0.77, p>0.05 |
| Blood group B vs. non Blood group B | OR=0.67, p>0.05 | |||||||||
| Blood group AB vs. non Blood group AB | OR=0.68, p>0.05 | |||||||||
| Blood group O vs. non Blood group O | OR=1.45, p>0.05 | |||||||||
| Al Azraqi et al. 2013 | Prevalence | Saudi Arabia | N/A | N/A | 389 | Rift Valley Fever | Population | Demography | Sex: 256 M (3.1%) vs 133 F (8.6%) | χ2=3.98, P=0.048 |
| Environment | Livestock | history of contact with aborted animals, yes = 21 | OR=13.36, P<0.005 | |||||||
| history of transporting aborted animals, yes = 12 | OR=18.86, P<0.005 | |||||||||
| Alkhaldy & Barnett 2021 | Prevalence | Saudi Arabia | 4 years | 3.4 Millions | N/A | Dengue | Population | Socioeconomic status | majority of dengue fever cases appeared in neighborhoods of low socioeconomic status | p=0.771 |
| high densities of population | r=0.59, p<.001 | |||||||||
| large non-Saudi migrant populations | r=0.50, p<.001 | |||||||||
| Al-Nefaie et al.2022 | Cross-sectional | Saudi Arabia | 1 year | 4.6 millions | 1098 | Dengue | Population | Demography | Age (yrs): < 15 (susp=98, conf=23) vs. 15–24 (susp=47, conf=57) vs. 25-44 (susp=294, conf=255) vs. 45-65 (susp=189, conf=67) vs. 65+ (susp=40, conf=6) | χ2=75.05, p<.001 |
| Gender: M (susp=498, conf=348) vs. F (susp=182, conf=70) | χ2=14.7, p<.001 | |||||||||
| Occupation: not worker (susp=265, conf=114) vs. health worker (susp=23, conf=5) vs. non-health worker (susp=392, conf=299) | χ2=23.04, p<.001 | |||||||||
| Address: North (susp=115, conf=72) vs. east (susp=84, conf=146) vs. middle (susp=174, conf=114) vs. south (susp=79, conf=41) | χ2=43.97, p<.001 | |||||||||
| Nationality | Nationality: Saudi (susp=235, conf=160) vs. non-Sauai (susp=445, conf=285) | χ2=1.55, p=0.213 | ||||||||
| Environment | Air condition: susp=6, conf=1 | χ2=1.69, p=0.184 | ||||||||
| Cement pool: susp=3, conf=0 | χ2=1.85, p=0.237 | |||||||||
| Sanitation: | Water container: susp=444, conf=3 | χ2=20.91, p<.001 | ||||||||
| Infiltrationsc: susp=2, conf=0 | χ2=1.23, p=0.383 | |||||||||
| Sewaged: susp=1, conf=0 | χ2=0.615, p=0.615 | |||||||||
| Street: susp=1, conf=0 | χ2=0.615, p=0.619 | |||||||||
| Water Surfaces: suspected = 0, confirmed = 3 | χ2=4.89, p=0.055 | |||||||||
| Vases: suspected = 0, confirmed = 1 | χ2=1.63, p=0.388 | |||||||||
| Water cooler: suspected = 3, confirmed = 0 | χ2=1.85, p=0.237 | |||||||||
| Open tanks: suspected = 0, confirmed = 1 | χ2=1.63, p=0.318 | |||||||||
| Water company: suspected = 1, confirmed = 0 | χ2=0.615, p=0.615 | |||||||||
| Stream water: suspected = 1, confirmed = 0 | χ2=1.63, p=0.318 | |||||||||
| Al-Quhaiti et al.2022 | Cross-sectional | Yemen | 1 year | 597 | 400 | Malaria | Population | Demography | Age (≥ 3=250 (36) vs. <3=150 (3) | OR=8.2, p<.001 |
| Gender: M=217 (24) vs. F=183 (15) | OR=1.4, p=0.33 | |||||||||
| Socioeconomic status | Household: ≥ 6=254 (30), <6= 146(9) | OR=2.0, p=0.067 | ||||||||
| Father's educational status: Literate=252(22) vs. Illiterate=148(17) | OR=1.4, p=0.370 | |||||||||
| Mother’s educational status: Literate=67(4) vs. Illiterate=333(35) | OR=1.9, p=0.253 | |||||||||
| Father employment status: Employed=21(2) vs. Unemployed=377(36) | OR=1.0, p=1.000 | |||||||||
| MBD outbreak | Morbidity | Symptoms (fever): yes = 71(11), no = 329(28) | OR=2.0, p=0.072 | |||||||
| Symptoms (sweating): yes = 28(5), no = 382(34) | OR=2.2, p=0.134 | |||||||||
| Symptoms (chills): yes = 7(1), no = 393(38) | OR=1.5, p=0.505 | |||||||||
| Symptoms (vomiting): yes = 45(2), no = 355(37) | OR=0.4, p=0.205 | |||||||||
| Symptoms (jaundice): yes = 4(1), no = 396(38) | OR=3.1, p=0.301 | |||||||||
| Environment | Risk factors | Sleeping under a mosquito net the previous night of the survey (No): yes=182(3) vs. no=218(36) | OR=11.8, p<.001 | |||||||
| Sleeping under a mosquito net the previous night of the survey (Yes): yes=64(16) vs. no=336(23) | OR=4.5. p<.001 | |||||||||
| IRS during the last year (No): yes=240(13) vs. no=160(26) | OR=3.4, p<.001 | |||||||||
| Residence in proximity to water collections (Yes): yes=298(32) vs. no=102(7) | OR=1.6, p=0.255 | |||||||||
| Residence in proximity to garbage collections (Yes): yes=187(19) vs. no=213(20) | OR 1.1, p=0.795 | |||||||||
| Screening windows (No): yes=55(1) vs. no=345(38) | OR=6.7, p=0.064 | |||||||||
| Bamaga et al. 2014 | Cross-sectional | Yemen | 11 months | N/A | 735 | Malaria | Population | Demography | District (Hajer district) | p=0.001 |
| Village (Kunina village) | p=0.001 | |||||||||
| Symptoms (fever): Yes = 66, No = 75 | p<0.05 | |||||||||
| Symptoms (shivering): Yes = 38, No = 100 | p<0.05 | |||||||||
| Symptoms 9headache): Yes = 21, No = 117 | p<0.05 | |||||||||
| Symptoms (Jaundice): Yes = 14, No = 124 | p<0.05 | |||||||||
| Symptoms (Hemoglobin level): Normal = 13 vs. Low anemia = 92 vs. Moderate anemia = 33 | p<0.05 | |||||||||
| Age (years): 10-15 (25/142) vs. >15 (79/393) | OR=0.85, p>0.05 | |||||||||
| Age (years): 5-9 (30/152) vs. >15 (79/393) | OR=0.98, p>0.05 | |||||||||
| Age (years): <5 (4/48) vs. >15 (79/393) | OR=0.36, p>0.05 | |||||||||
| Gender: F (52/312) (ref) vs. M (86/423) | OR=1.04, p>0.05 | |||||||||
| Education level household’s head: Secondary school and above (1/34) (Ref) |
OR=1 | |||||||||
| Primary school: 83/356 | OR=10.1, p<.0.05 | |||||||||
| Not educated: 54/345 | OR=6,12, p>0.05 | |||||||||
| Occupation of household’s head: Government employees (4/76) |
OR=1.0 | |||||||||
| Not working (28/180) | OR=3.31, p<0.05 | |||||||||
| Farmer (96/453) | OR=4.84, p<0.05 | |||||||||
| Fishermen (10/26) | OR=11.3, p<0.05 | |||||||||
| Family size: >5 (ref) (49/290) vs. ≤5 (89/445) | OR=1.23, p>0.05 | |||||||||
| House wall: mud (ref) (26/221) vs. non cement bricks (112/554) | OR=2.1, p<0.05 | |||||||||
| Material of house floor: cement (ref) (19/120) vs. mud (119/615) | OR=1.27, p>0.05 | |||||||||
| Availability of toilet: yes (ref) (42/285 vs. no (96/451) | OR=1.6, p<0.05 | |||||||||
| Distance to the nearest water collection (m): >200 (ref) (44/295) vs. ≤200 (146/440) | OR=1.6, p<0.05 | |||||||||
| Availability of electricity: yes (Ref) (66/379) vs. no (72/356) | OR=1.04, p>0.05 | |||||||||
| Availability of fridge: yes (ref) (44/295) vs. no (94/440) | OR=1.6, p<0.05 | |||||||||
| Availability of TV: yes (ref) (44/295) vs. no (94/440) | OR=1.6, p<0.05 | |||||||||
| Availability of radio: yes (ref) (70/385) vs. no (68/350) | OR=1.02, p>0.05 | |||||||||
| Elaagip et al. 2020 | Cross-sectional | Sudan | 2 years | 401.477 | 409 | Dengue | Population | Demography | Age: 20–39 years | OR=4.2, p=0.700 |
| Age: 40-60 years | OR=2.09, p=0.380 | |||||||||
| Age: >60 years | OR=6.31, p=0.040 | |||||||||
| Gender: F vs M | OR=0.73, p=0.430 | |||||||||
| Socioeconomic status | Socioeconomic level: Medium | OR=11.39, p=0.050 | ||||||||
| Socioeconomic level: Low | OR=10.49, p=0.220 | |||||||||
| No. of individuals living in the house: 6-10 | OR=0.96, p=0.930 | |||||||||
| No. of individuals living in the house: >10 | OR=0.14, p=0.060 | |||||||||
| No. of children under 5 years living in the house: 1-3 child | OR=0.87, p=0.740 | |||||||||
| Environment | Geographical varieties: Staying in Kassala state | OR=1.31, p=0.670 | ||||||||
| Live in a house | Roof-constructed materials of the house: Iron sheets | OR=0.85, p=0.870 | ||||||||
| Roof-constructed materials of the house: Iron sheets: Grass | OR=0.78, p=0.880 | |||||||||
| Wall-constructed materials of the house: Bricks with mud | OR=0.74, p=0.650 | |||||||||
| Wall-constructed materials of the house: Cement blocks | OR=0.53, p=0.460 | |||||||||
| Floor-constructed materials of the house: Cement screed | OR=1.02, p=0.980 | |||||||||
| Floor-constructed materials of the house: Mud/Sand | OR=1.0, p=0.999 | |||||||||
| Breeding habitats: Management of water containers | OR=1.52, p=0.330 | |||||||||
| Sanitation: | Type of toilet used in the house | OR=0.47, p=0.170 | ||||||||
| Type of bathroom used in the house | OR=3.52, p=0.010 | |||||||||
| Solid waste disposal method: Bin-trash | OR=0.23, p=0.250 | |||||||||
| Solid waste disposal method: Heap | OR=1.1, p=0.950 | |||||||||
| Type of kitchen | OR=1.7, p=0.360 | |||||||||
| Trees at the house | OR=0.66, p=0.260 | |||||||||
| Air-cooling system: Water-based air conditioner |
OR=6.9, p=0.010 | |||||||||
| Screen in the windows | OR=0.25, p=0.190 | |||||||||
| Using bed net | OR=1.84, p=0.120 | |||||||||
| Traveling to Red Sea state during last 3 months | OR=1.44, p=0.590 | |||||||||
| Disease | Incidence and prevalence: Yellow fever vaccination | OR=1.96, p=0.180 | ||||||||
| Incidence and prevalence: Having febrile illness during the last 3 months | OR=1.03, p=0.960 | |||||||||
| Any household had dengue before | OR=28.73, p<.001 | |||||||||
| Transmission of dengue (do not know) |
OR=1.36, p=0.59 | |||||||||
| Eldigail et al. 2018 | Cross-sectional | Sudan | 10 months | 1.4 millions | 701 | Dengue | Environment | Geographical: | Locality: Gadaref (70/21) vs. Center Gagarif (70/37) vs. Butana (70/19) vs. Elfau (70/37) vs. Al Rahad (70/41) vs. Bassunda (70/46) vs. West Galabat (70/34) vs. East Galabat (70/39) vs. Ouravshah (70/16) vs. Elfashage (71/44) | p=0.001 |
| Breeding | Presence of Clean water container: yes (670/322) vs. no (31/12) | p=0.308 | ||||||||
| Population | Demography | Age: young (176/91) vs. old (525/243) | p=0.123 | |||||||
| Gender: M (419/207) vs. F (282/127) | p=0.145 | |||||||||
| Socioeconomic status | Income: low (489/245) vs. medium (153/59) vs. high (59/30) | P=0.039 | ||||||||
| Education: informal study (55/29) vs. illiterate (186/90) vs. primary (154/75) vs. secondary (199/95) vs. university (107/45) | p=0.732 | |||||||||
| disease awareness: yes (56/26) vs. no (645/308) | p=0.849 | |||||||||
| work: yes (356/168) vs. no (345/166) | p=0.806 | |||||||||
| Behaviors | sleeping outdoors: yes (377/196) vs. no (324/138) (Ref) | OR=3.75, p=0.013 | ||||||||
| mosquito nets use: yes (301/133) vs. no (400/201) (Ref) | p=0.112 | |||||||||
| mosquito control practice: yes (388/208) vs. no (313/126) (Ref) | OR=2.73, p=0.001 | |||||||||
| contact with an ill person: yes vs. no | p=0.01 | |||||||||
| Eldigail et al. 2020 | Cross-sectional | Sudan | 10 months | 1,400,000 | 600 | Dengue | Population | Demography | Age: young (209/18) vs. old (392/62) (Ref) | OR=3.24, p=0.001 |
| Socioeconomic status | Income: low (44) vs. medium (146) vs. high (115) | 2=3.75, p=0.027 | ||||||||
| mosquito control | OR=4.18, p=0.004 | |||||||||
| locality | OR=2.94, p=0.044 | |||||||||
| disease awareness: no (645) vs. yes (56) | p=0.06 | |||||||||
| mosquito net use: no (313) vs. yes (388) | p=0.013 | |||||||||
| Elghazali et al. 2003 | case-control | Sudan | 1 year | 1.841 | 175 | Malaria | Population | pregnant cases (86) vs. non-pregnant controls (89) (Ref) | OR= 3.56, p=0.014 | |
| Primagravidae vs. Multigravidae (Ref) | OR=1.56, p>0.05 | |||||||||
| Demography | Age (years): mean: 24.5±6.2 vs. 26.7±6.2 | p=0.215 | ||||||||
| Clinical | Birth weight (kg): mean: 2.72±0.26 vs. 2.95±0.05 | p<0.001 | ||||||||
| Hemoglobin at enrolment (g/dL): mean: 9.35±0.80 vs. 9.32±1.10 | p=0.80 | |||||||||
| Hemoglobin at term (g/dL): mean: 9.10±1.30 vs. 9.50±0.60 | p=0.069 | |||||||||
| Elkhalifa et al. 2021 | Cross-sectional | Sudan | 7 months | N/A | 392 | Malaria | Pathogen | Clinical (192 +ve, 200 -ve) | Hemoglobin (g/dL): Median: 11.6 vs. 14.0 | p<0.001 |
| RBC count (x 1012/L): Median: 4.5 vs. 4.7 | p=0.001 | |||||||||
| MCV (fL): Median: 86.0 vs. 87.0 | p=0.452 | |||||||||
| MCH (pg): Median: 28.5 vs. 29.0 | p<.001 | |||||||||
| MCHC (g/dL): Median: 31.5 vs. 32.5 | p=0.037 | |||||||||
| RDW (%):Median: 15.6 vs. 13.0 | p<.001 | |||||||||
| Total WBC count (x 109/L): Median: 7.0 vs. 6.5 | p=0.275 | |||||||||
| Neutrophil count (%):Median: 37.0 vs. 38.0 | p=0.001 | |||||||||
| Lymphocyte count (%):Median: 24.0 vs. 26.0 | p=0.004 | |||||||||
| Monocyte count (%):Median: 5.0 vs. 5.0 | p=0.021 | |||||||||
| Platelet count (x 109/L): Median: 140.0 vs. 230.0 | p<0.001 | |||||||||
| Anemia | OR=3.6, p<0.001 | |||||||||
| Low MCV (<80fL) | OR=2.6, p = 0.005 | |||||||||
| low MCH (<27pg) | OR=4.4, p<0.001 | |||||||||
| low MCHC (<32g/dL) | OR=2.6, p=0.008 | |||||||||
| High RDW (>14.5%) | OR=11.2, p<0.001 | |||||||||
| Thrombocytopenia | OR=49.8, p<0.001 | |||||||||
| Leucopenia | OR=0.9, p=0.754 | |||||||||
| Neutropenia | OR=2.3, p=0.001 | |||||||||
| Lymphoneia | OR=1.7, p=0.340 | |||||||||
| Elmardi et al. 2011 | Cross-sectional | Sudan | 2 months | N/A | 26,471 | Malaria | fever in the last two weeks vs. no history of fever | aOR=6.2, p<.001 | ||
| fever on the day of the survey vs. no history of fever | aOR=3.4, p<.001 | |||||||||
| Elmardi et al. 2021 | Cross-sectional | Sudan | 1 month | N/A | 4.478 | Malaria | population | Gender: M (3.7%) vs. F (2.6%) | p=0.035 | |
| Location: rural (1.8%) vs. urban (8.1%) | p=0.003 | |||||||||
| IRS coverage | aOR=0.98, p=0.007 | |||||||||
| utilization of long-lasting insecticidal nets (LLINs) at a community level | aOR=1.20, p<.001 | |||||||||
| utilization of artemisinin-based combination therapies (ACTs)/per 10% utilization | aOR=0.97, p=0.413 | |||||||||
| utilization of malaria diagnosis via rapid diagnostic tests/10% utilization | aOR=0.86, p=0.004 | |||||||||
| Hassanain et al. 2010 | Cross-sectional | Sudan | 3 months | N/A | 290 | Rift Valley fever | Population | Demography | Gender: M vs F | OR=2.8, p=0.040 |
| Job | OR=1.9, p=0.190 | |||||||||
| Residency | OR=1.9, p=0.100 | |||||||||
| Education | OR=2.1, p=0.100 | |||||||||
| Ibrahim et al. 2011 | case-control | Sudan | 3 months | 100 | case (50) vs. control (50) | Malaria | Population | Demography | Age (years): Mean: 18.08 vs. 15.60 | p=0.62 |
| Weight (Kg): mean: 45.05 vs. 47.40 | p=0.570 | |||||||||
| Clinical | Hemoglobin (g/dL): mean: 11.90 vs. 13.10 | p=0.020 | ||||||||
| Urea (mg/dL): mean: 27.80 vs. 27.50 | p=0.880 | |||||||||
| Creatinine (mg/dL): mean: 0.95 vs. 0.89 |
p=0.400 | |||||||||
| Total Cortisol (mg/dL): mean: 602.2 vs. 449.2 | p=0.120 | |||||||||
| Kadir et al. 2003 | Cross-sectional | Iraq | 10 years | N/A | 261,763 | Malaria | Population | Demography | Gender (M=165,721 vs. F=96,042) | OR=1.07, p=0.137 |
| Age group (21-30 vs. <1-10) | OR=8.34, p<.001 | |||||||||
| Age group (21-30 vs. 11-20) | OR=1.3, p<.001 | |||||||||
| Age group (21-30 vs. 31-40) | OR=1.28, p<.001 | |||||||||
| Age group (21-30 vs. 41+) | OR=4.9, p<.001 | |||||||||
| Kalantari et al. 2019 | Cross-sectional | Iran | 1 year | N/A | 408 | West Nile Virus | Population | Demography | Gender: M (261) vs. F (147) | p=0.600 |
| Age (years): <19 vs. 20-29 vs. 30-39 vs. 40-49 vs. 50+ | p=0.001 | |||||||||
| occupation | p=0.749 | |||||||||
| educational level | p=0.001 | |||||||||
| geographical distribution | p=0.446 | |||||||||
| Kholedi et al. 2012 | case-control | Saudi Arabia | 1 year | 3 millions | 650 | Dengue | Population | Demography | Gender: M (case=84 control=161) vs. F (case=45, control=79) | χ2=0.146, p=0.703 |
| Age (years): (case/control) <10 (18/59) vs. 10-19 (23/47) vs. 20-29 (26/56) vs. 30-39 (28/35) vs. 40-49 (21/20) vs. 50+ (13/23) | χ2=12.342, p=0.03 | |||||||||
| Nationality: (case/control) Saudi (67/153) vs. non-Saudi (62/87) | χ2=4.863, p=0.027 | |||||||||
| working (case/control): inside (70/144) vs. outside (24/31) vs. not working (35/65) | χ2=0.146, p=0.705 | |||||||||
| Mosquito | Type: case vs. control | Presence of indoor Aedes aegypti: adult (32 vs. 37) | χ2=4.863, p=0.027 | |||||||
| Presence of indoor Aedes aegypti: larvae (43 vs. 39) | χ2=14.167, p=0.001 | |||||||||
| Environment | Breeding (case vs control) | Possible indoor breeding sites: Stagnant water in the bathroom basin (4 vs. 10) | p=0.422 | |||||||
| Possible indoor breeding sites: Uncovered water containers in the bathroom (13 vs. 18) | χ2=0.781, p=0.244 | |||||||||
| Possible indoor breeding sites: Uncovered water containers in the kitchen (4 vs. 9) | P=0.509 | |||||||||
| Possible indoor breeding sites: Stagnant water in a water cooler (10 vs. 19) | χ2=0.004, p=0.951 | |||||||||
| Possible indoor breeding sites: Stagnant water at the base of the refrigerator (3 vs. 6) | p=0.610 | |||||||||
| Possible indoor breeding sites: Stagnant water in the indoor drainage holes (14 vs. 7) | χ2=9.830, p=0.002 | |||||||||
| Possible outdoor breeding sites: Uncovered water containers on the balcony (7 vs. 4) | p=0.040 | |||||||||
| Possible outdoor breeding sites: Private garden (21 vs. 47) | χ2=0.423, p=0.516 | |||||||||
| Possible outdoor breeding sites: Neglected private pool (4 vs. 13) | χ2=0.911, p=0.340 | |||||||||
| land use (case vs. control) | Nearby buildings under construction: 88 vs. 123 | χ2=8.222, p=0.004 | ||||||||
| Nearby brick manufacturers: 17 vs. 18 | χ2=3.428, p=0.064 | |||||||||
| Presence of underground water seepage: 7 vs. 9 | χ2=0.656, p=0.418 | |||||||||
| Nearby public garden: 25 vs. 40 | χ2=0.623, p=0.430 | |||||||||
| Nearby public water tap: 22 vs. 30 | χ2=1.664, p=0.147 | |||||||||
| Nearby public water cooler: 11 vs. 16 | χ2=0.496, p=0.481 | |||||||||
| Nearby solid garbage: 9 vs. 18 | χ2=0.011, p=0.917 | |||||||||
| Old used tyres: 7 vs. 12 | χ2=0.060, p=0.807 | |||||||||
| Empty cans: 14 vs. 19 | χ2=1.076, p=0.300 | |||||||||
| Mahdi et al. 2016 | Cross-sectional | Sudan | 1 month | N/A | 140 | Malaria | Pathogen | Species | Plasmodiu alciparumum: MSP1 gene (severe malaria vs. uncomplicated malaria) |
OR=0.48, p=0.096 |
| Plasmodiu alciparumum: MSP2 gene (severe malaria vs. uncomplicated malaria) |
OR=0.119, p=0.008 | |||||||||
| Population | Demography | Gender (M vs. F, severe malaria vs. uncomplicated malaria) | OR=0.5, p=0.052 | |||||||
| Noureldin & Shaffer 2019 | Ecological | Sudan | 6 years | N/A | N/A | Dengue | Climate | Rainfull | 2011-2013 – 6 months prior to the dengue fever reporting month | p<0.05 |
| 2008-2011 - 6 months prior to the dengue fever reporting month | p=0.0433 | |||||||||
| 2008-2011 - 5 months prior to the dengue fever reporting month | p=0.0298 | |||||||||
| Humidity | 2008-2010, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time | p=0.0025 | ||||||||
| 2011-2013, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time | p=0.0003 | |||||||||
| 2008-2010, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time | p=0.0037 | |||||||||
| 2011-2013, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time | p=0.0038 | |||||||||
| < 56% vs. ≥ 56% at 3, 4 and 5 months | 2=222.32, p<.001 | |||||||||
| Temperature | Min. temperature was significantly correlated with dengue at the 1-month lag times, 2008–2010 | p=0.0.0427 | ||||||||
| Min. temperature was significantly correlated with dengue at the 2-month lag times, 2008–2011 | p=0.0012 | |||||||||
| Min. temperature was significantly correlated with dengue at the 3-month lag times, 2008–2012 | p=0.0024 | |||||||||
| Min. temperature was significantly correlated with dengue at the 4-month lag times, 2008–2013 | p=0.0215 | |||||||||
| Pouriayevali et al. 2019 | Cross-sectional | Iran | 14 months | N/A | 159 | Chikungunya | Population | Demography | Gender: F (57) vs. M (62) | p=0.584 |
| Age (years) | p=0.001 | |||||||||
| History: Aboard traveling history (21) | p<.001 | |||||||||
| History: Travel duration | p=0.218 | |||||||||
| Country with travel history: Afghanistan (2) | p=0.230 | |||||||||
| Country with travel history: Malaysia (1) | p=0.426 | |||||||||
| Country with travel history: Pakistan (18) | p=0.001 | |||||||||
| City of residence: Sarbaz (50) | p=0.010 | |||||||||
| Season of Symptom onset: Spring (34) vs. Summer (48) vs. Fall (17) vs. winter (7) | p=0.042 | |||||||||
| Mosquito bite: yes (30) | p=0.096 | |||||||||
| Clinical signs: chill (1) | p<0.001 | |||||||||
| Clinical signs: headache (34) | p=0.020 | |||||||||
| Laboratory findings: Leukopenia (9) | p=0.191 | |||||||||
| Riabi et al. 2014 | Cross-sectional | Tunisia | 3 months | N/A | 113 | West Nile Virus | Population | Demography | Gender: M (27) vs. F (15) | p=0.010 |
| age (years): <55 (20) vs. ≥55 (20) | p=0.100 | |||||||||
| Disease | Morbidity | Meningitis | p=0.001 | |||||||
| Population | demography\SEVERITY | Age (years): Patients with meningoencephalitis are older than those with meningitis | p =0.001 | |||||||
| demography\SEVERITY | mortality\age (years): The age of 55 years or older was the factor most strongly associated with death | p<0.005 | ||||||||
| Saeed & Ahmed 2003 | Cross-sectional | Sudan | 14 months | N/A | 856 | Malaria | Population | Demography | Gender (Male vs. Female) | aOR=2.02, p<0.05 |
| Age (years) group (21-40 vs. 41+) | aOR=1.71, p>0.05 | |||||||||
| Age (years) group (<21 vs. 41+) | aOR=1.37, p>0.05 | |||||||||
| Language (local dialectic -Dinka only- vs. Arabic) | aOR=1.78, p>0.05 | |||||||||
| Language (local dialectic + Arabic vs. Arabic) | aOR=3.38, p>0.05 | |||||||||
| Education (basic vs. illiterate) | aOR = 2.01, p<0.05 | |||||||||
| Education (secondary or higher vs. illiterate) | aOR = 3.24, p<0.05 | |||||||||
| Socioeconomic status | Housing conditions (acceptable vs. poor) | aOR=0.77, p>0.05 | ||||||||
| Food expenditure: no income vs.≤ 50% of income | aOR=2.04, p>0.05 | |||||||||
| Food expenditure: All income vs. ≤50% of income | aOR=0.84, p>0.05 | |||||||||
| nationality | Tribe (Nuba vs. Western tribe) | aOR=1.33, p>0.05 | ||||||||
| Tribe (Southern vs. Western tribe) | aOR=1.30, p>0.05 | |||||||||
| Tribe (Dinka vs. Western tribe) | aOR=0.90, p>0.05 | |||||||||
| Knowledge (poor vs. good) | aOR=1.85, p<0.05 | |||||||||
| Attitude and practices (poor vs. good) | aOR=0.76, p>0.05 | |||||||||
| treatment-seeking behavior (poor vs. good) | aOR=1.44, p>0.05 | |||||||||
| Keeping water (no vs. yes) | aOR=1.19, p>0.05 | |||||||||
| Environment | potential breeding habitat: Water source (well vs. cart) | aOR=2.25, p>0.05 | ||||||||
| Seidahmed et al. 2012 | Cross-sectional | Sudan | 1 year | 450 | 2825 | Dengue | Population | Demography | Age group | χ2 = 5.05 , p = 0.030 |
| gender | χ2 = 0.168, p = 0.400 | |||||||||
| Socioeconomic status | upper class (15/265) | p=0.0031 | ||||||||
| Middle class (12/263) | p=0.0036 | |||||||||
| Lower class (14/263) | p=0.0036 | |||||||||
| Mosquito | Density | pupae/person index: +ve correlation between P/P index and IgM seroprevalence | r = 0.71, p = 0.015 | |||||||
| Climate | Temperature | minimum temp: +ve correlation between the minimum temperature and seropositivity rates | r = 0.67, p = 0.03 | |||||||
| maximum temp: -ve correlation between the minimum temperature and P/P index was significant | r = −0.83, p = 0.027 | |||||||||
| Soghaier et al. 2014 | Cross-sectional | Sudan | 1 year | 1.4 millions | 600 | Dengue | Population | Demography | Age (years): <35 (141) (ref) vs. 35-39 (139) vs. 40-44 (167) vs. ≥45 (153) | PR=1.4, p=0.020 |
| Gender: M (294) (ref) vs. F (306) (Male) | PR=0.7, p=0.030 | |||||||||
| Residence: Lagawa (250) (ref) vs. Alsunut (161) vs. Jangaru (120) vs. Shingil (69) | PR=1.4, p=0.040 | |||||||||
| Travel history: Travel to Red Sea State (vs no): Red Sea State (79) | PR=1.4, p=0.040 | |||||||||
| Environment | Breeding | Indoor water storage (544) | PR=2.9, p<.001 | |||||||
| Indoor mosquito breeding (vs. no): yes (54) | PR=0.2, p=0.003 | |||||||||
| Population | Socioeconomic status | No use of mosquito nets (vs yes): Use of mosquito nets (545) | PR=0.2, p=0.003 | |||||||
| Interrupted use of mosquito nets (vs. every day) | PR=0.5, p=0.002 | |||||||||
| Use of mosquito nets at night (vs day and night) | PR=2.5, p=0.030 | |||||||||
| Indoor insecticidal spraying (vs. no): Regular use of indoor insecticidal spraying (55) | PR=1.8, p<.001 | |||||||||
| Soghaier et al. 2015 | Cross-sectional | Sudan | 1 year | N/A | 530 | Dengue | Population | Demography | Age (years): ≤35 (28/281) vs. >35 (18/206) | OR=1,17, p=0.690 |
| Gender: M (29/288) vs. F (17/199) | OR=1.55, p=0.240 | |||||||||
| Permanent residence in Kassala: outside (1/12) vs. inside (45/472) | OR=1.31, p=0.810 | |||||||||
| Socioeconomic status | Never heard about dengue: no (27/197) vs. yes (19/289) | OR=2.84, p=0.014 | ||||||||
| Education level: No formal education (16/144) vs. Formal education (30/344) | OR=0.84, p=0.670 | |||||||||
| Household density: >3 (24/178) vs. ≤3 (22/311) | OR=2.08, p=0.034 | |||||||||
| Population | Socioeconomic status | Use bed net: No (23/241) vs. yes (23/242) | OR=1.08, p=0.820 | |||||||
| Soghaier et al. 2018 | Cross-sectional | Sudan | 1 year | N/A | 1775 | Zika | Environment | Geographical | locality zone 2 | OR=1.2, p=0.310 |
| locality zone 3 | OR=1.3, p=0.360 | |||||||||
| locality zone 4 | OR=1.4, p=0.190 | |||||||||
| Urban/rural residence | Urban: zone1 525(85), zone2 601(92), zone3 108(60), zone4 235(83) vs. rural: zone1 102(15), zone2 55(8), zone3 73(40), zone4 49(17) | OR=1.4, p=0.090 | ||||||||
| Population | Demography | Age (years): 15-39 (907/51) vs. <15 (172/10) | OR=2.1, p=0.010 | |||||||
| Age (years): 40-65 (656/53) vs. <15 (172/10) | OR=2.1, p=0.010 | |||||||||
| Age (years): >65 (65/14) vs. <15 (172/10) | OR=2.2, p=0.070 | |||||||||
| Gender: M (826/47) vs. F (949/53) | OR=1.3, p=0.060 | |||||||||
| Soleimani-Ahmadi et al. 2015 | Cross-sectional | Iran | 9 months | 112.423 | 2,973 | Malaria | Environment | Breeding habitat | water temperature | r=0.17, p<0.010 |
| Sulphate ions in water | r=0.23, P<0.040 | |||||||||
| Chloride ions in water | r=0.19, P<0.020 | |||||||||
| alkalinity of water | r=0.16, P<0.010 | |||||||||
| conductivity of water | r=0.29, P<0.030 | |||||||||
| Permanence (permanent vs. temporary): mean density: 31.12±2.07 vs. 19.78±1.93 | p<0.001 | |||||||||
| Water current (still flowing vs. still): mean density: 20.05±2.67 vs. 30.22±1.92 | p=0.001 | |||||||||
| Intensity of light (full sunlight, partial sunlight, shaded): mean density: 31.13±1.92, 18.21±1.96, 12.85±2.70 | p=0.041 | |||||||||
| Turbidity (turbid vs. clear): mean density: 19.28±1.20 vs. 30.48±1.93 | p=0.002 | |||||||||
| Substrate type (Mud, Sand, & Gravel): mean density: 21.39±2.05 vs. 33.12±2.40, 18.85±2.13 | p=0.504 | |||||||||
| Origin of habitat (River edge: natural vs. man-made): mean density: 20.52±2.32 vs. 30.10±1.95 | p=0.045 | |||||||||
| Tezcan-Ulger et al. 2019 | Cross-sectional | Turkey | 7 months | N/A | 977 | Rift Valley Fever | Environment | Geographical | Urban vs Rural | p=0.933 |
| positivity between rural in different regions | p=0.141 | |||||||||
| positivity between urban in different regions | p=0.029 | |||||||||
| Population | Demography | gender from the urban area | p=0.581 | |||||||
| gender from the rural area | p=0.321 | |||||||||
| Vasmehjani et al. 2022 | case-control | Iran | 10 months | N/A | 1,257 | West Nile virus | population | Demography | Age (years): 25-34 vs. 1-24 | OR=1.35, p=0.220 |
| Age (years): 35-44 vs. 1-24 | OR=1.45, p=0.152 | |||||||||
| Age (years): 45-54 vs. 1-24 | OR=1.82, p=0.040 | |||||||||
| Age (years): >=55 vs. 1-24 | OR=3.52, p<.001 | |||||||||
| Gender: M vs. F | OR=0.732, p=0.530 | |||||||||
| Dengue virus | population | Demography | Age (years): 25-34 vs. 1-24 | OR=0.63, p=0.300 | ||||||
| Age (years): 35-44 vs. 1-24 | OR=1.15, p=0.730 | |||||||||
| Age (years): 45-54 vs. 1-24 | OR=0.65, p=0.400 | |||||||||
| Age (years): >=55 vs. 1-24 | OR= 2.19, p=0.070 | |||||||||
| Gender (Male vs. Female) | OR=1.17, p=0.310 | |||||||||
| Chikungunya virus | population | Demography | Age (years): 25-34 vs. 1-24 | OR=1.35, p=0.320 | ||||||
| Age (years): 35-44 vs. 1-24 | OR=1.35, p=0.330 | |||||||||
| Age (years): 45-54 vs. 1-24 | OR=1.35, p=0.340 | |||||||||
| Age (years) >=55 vs. 1-24 | OR=1.35, p=0.350 | |||||||||
| Gender: M vs. F | OR=1.35, p=0.360 | |||||||||
| Ziyaeyan et al. 2018 | Prevalence | Iran | 10 months | 1.7 millions | 494 | West Nile Fever / Zika | Population | Demography | Age (years): 26-45 (39) vs. 0-25 (22) | OR=1.3, p=0.416 |
| Age (years): >45 (41) vs. 0-25 (22) | OR=4.1, p<.001 | |||||||||
| Gender: M (35) vs. F (67) | OR=2.0, p=0.005 | |||||||||
| Environment | Geographical | Jask (23) vs. Bandar Khamir (17) | OR=1.5, p=0.252 | |||||||
| Bandar Abbas (30) vs. Bandar Khamir (17) | OR=2.0, p=0.040 | |||||||||
| Bashagard (32) vs. Bandar Khamir (17) | OR=2.2, p=0.020 | |||||||||
| Population | Demography | Skin Type: III/IV (77) vs. I/II (10) | OR=2.9, p=0.003 | |||||||
| Skin Type: V/VI (15) vs. I/II (10) | OR=3.8, p=0.003 | |||||||||
| Occupation | Mostly indoor (Child/student/Housewife): 67 | OR=1.0 | ||||||||
| Usually indoor (Office employee/ Freelancer): 20 | OR=1.7, p=0.085 | |||||||||
| Mostly outdoor (Fisherman/Sailor/ Worker/Retiree): 15 | OR=3.7, p<.001 | |||||||||
| Environment | Geographical | Urban (43) (ref) vs. rural (59) | OR=1.5, p=0.056 | |||||||
| M, male; F, Female; N/A, Not available; OR, Odds Ratio; aOR, adjusted OR; r, correlation coefficient; Susp=suspected; Conf, confirmed; Yrs, Years; Ref: Reference; PR, Prevalence ratio | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
