Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Combination of Advanced Actuator Line/Disk Model and a High-Order Unstructured Finite Volume Solver for Helicopter Rotors

Version 1 : Received: 13 November 2023 / Approved: 14 November 2023 / Online: 14 November 2023 (15:15:25 CET)

How to cite: Yang, M.; Li, S.; Pei, W. Combination of Advanced Actuator Line/Disk Model and a High-Order Unstructured Finite Volume Solver for Helicopter Rotors. Preprints 2023, 2023110932. https://doi.org/10.20944/preprints202311.0932.v1 Yang, M.; Li, S.; Pei, W. Combination of Advanced Actuator Line/Disk Model and a High-Order Unstructured Finite Volume Solver for Helicopter Rotors. Preprints 2023, 2023110932. https://doi.org/10.20944/preprints202311.0932.v1

Abstract

In the field of computational fluid dynamics (CFD) for rotorcraft, two significant challenges are resolving the complex vortex structures in rotor wakes, and representing the moving rotor blades in the ambient airflow. This study addresses the first challenge by using a third-order unstructured finite volume solver, which, compared to its second-order counterpart, has substantially lower dissipation. Consequently, even relatively coarse meshes are capable of resolving small vortices. With this background flow field solver, the second challenge is addressed by modeling each rotor as an Actuator Disk Model (ADM), or describing individual rotor blades as actuator lines, designated as the Actuator Line Model (ALM). Both of these models are equipped with an improved correction for aerodynamic losses at blade tips, which is thoroughly presented in the methodology section. The numerical experiments section centers on analyzing errors linked to various sampling approaches. Additionally, the article discusses comparisons between vortex theory and ALM, specifically regarding calculations for fixed-wing aircraft. Furthermore, high-order precision and parallel efficiency are exemplified in scenarios encompassing rotors engaged in both hovering and forward flight rotors. The results in this paper demonstrate that the combination of the ALM/ADM with the improved tip loss correction and the third-order finite volume solver presents a new way of developing efficient tools for the aerodynamic analysis of helicopter rotors.

Keywords

actuator line model; actuator disk model; tip loss correction; high-order finite volume unstructured solver

Subject

Engineering, Aerospace Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.