Preprint Review Version 2 Preserved in Portico This version is not peer-reviewed

Stat of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices

Version 1 : Received: 12 November 2023 / Approved: 14 November 2023 / Online: 14 November 2023 (16:52:23 CET)
Version 2 : Received: 21 December 2023 / Approved: 21 December 2023 / Online: 22 December 2023 (09:10:41 CET)

A peer-reviewed article of this Preprint also exists.

Pitzalis, R.F.; Park, D.; Caldwell, D.G.; Berselli, G.; Ortiz, J. State of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices. Machines 2024, 12, 21. Pitzalis, R.F.; Park, D.; Caldwell, D.G.; Berselli, G.; Ortiz, J. State of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices. Machines 2024, 12, 21.

Abstract

Manual handling tasks, both in daily activities and at work, require high dexterity and the ability to move objects of different shapes and sizes. However, musculoskeletal disorders that can arise due to aging, disabilities, overloading, or strenuous work can impact the natural capabilities of the hand with serious repercussions both in working and daily activities. To address this, researchers have been developing and proving the benefits of wrist exoskeleton., This paper, which is the part II of a study on wrist exoskeletons, presents and summarizes wearable wrist exoskeleton devices conceived for use in rehabilitation, assistance, and occupational fields. Exoskeletons considered within the study are those available either in a prototyping phase or on the market. They can support the human wrist by relieving pain or mitigating fatigue while allowing at least one movement. According to the requirements to be met, the majority have been designed active (80%) for higher force/torque transmission, and soft for better kinematic compliance, ergonomics, and safety (13 devices out of 24, more than 50%). Electric motors (11 devices out of 24, almost 50%) and cable transmission (9 devices out of 24, almost 40%) are the most common due to their simplicity, controllability, safety, power-to-weight ratio, and the possibility of remote actuation. As sensing technologies, position and force sensors are widely used in all devices (almost 90%). The control strategy depends mainly on the application domain: for rehabilitation, CPM (Control Passive Motion) is preferred (35% of the devices), while for assistance and occupational purposes AAN (Assistance-As-Needed) is more suitable (38% of the devices). What emerges from this analysis is that while rehabilitation and training are fields in which exoskeletons have been grown more easily and gained some user acceptance (almost 18 devices of which 4 are available on the market), relatively few devices have been designed for occupational aims (6 of which only 2 are available on the market) due to difficulties in meeting the acceptance and needs of users. In this perspective, as a result of the state-of-the-art analysis, the authors propose a conceptual idea of a portable soft wrist exoskeleton for occupational assistance.

Keywords

wrist exoskeletons; wearable devices; occupational sector; rehabilitation field; industrialization issues

Subject

Engineering, Mechanical Engineering

Comments (1)

Comment 1
Received: 22 December 2023
Commenter: Roberto Pitzalis
Commenter's Conflict of Interests: Author
Comment: All sections of the article habve een updated according to the new changes in the final version. New figures were used to solve copyright issues. Tables in appendix have been modified and updated by adding relevant information on clinical trials.
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.