Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Superelsatic SMA Honeycomb Damper for Seismic Protection of Bridges

Version 1 : Received: 9 November 2023 / Approved: 9 November 2023 / Online: 9 November 2023 (11:25:22 CET)

A peer-reviewed article of this Preprint also exists.

Cao, S.; Hu, F.; Zhang, G. Superelastic Shape Memory Alloy Honeycomb Damper. Appl. Sci. 2023, 13, 13154. Cao, S.; Hu, F.; Zhang, G. Superelastic Shape Memory Alloy Honeycomb Damper. Appl. Sci. 2023, 13, 13154.

Abstract

Despite the fact that SMA restrainers exhibit a superelastic strain capacity of 7%, this capacity appears inadequate for isolated bridges due to the typically greater than 20cm relative dis-placements between girders during intense seismic events. In order to perform such a stroke, a SMA restrainer of greater than 3 metres in length might be required. In order to reduce the length of restrainers, a novel honeycomb damper constructed from superelastic shape memory alloy (SMA) is proposed. The proposed device, denoted as the superelastic SMA honeycomb damper (SHD), is comprised of steel plates to prevent the SMA plane from collapsing and superelastic SMA honeycomb to provide self-centering capability. By incorporating the large strain capacity of SMA and the geometrically nonlinear deformation of honeycomb structures, SHD has been developed to satisfy the requirements of bridge restrainers with large strokes. It is capable of functioning as a restrainer and energy dissipation device when subjected to dynamic tension and compression loads. The SHD was initially investigated from a theoretical perspective. Following this, a mul-ti-cell SHD specimen was manufactured. The specimen underwent axial tensile and compressive experiments in order to examine the mechanical properties of SHDs. Finally, experimental results were investigated through numerical simulation analyses of the SHDs using a three-dimensional high-fidelity finite element model. Additionally, a method for enhancing SHD was proposed. The findings indicate that SHD is capable of exhibiting superior self-centering capability and sta-ble hysteretic responses when subjected to earthquakes.

Keywords

Superelstic SMA; honeycomb damper; geometrical nonlinear property; long-stroke; thickness of walls

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.