Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Generalised Series Model for LES of Premixed and Non-Premixed Turbulent Combustion

Version 1 : Received: 8 November 2023 / Approved: 8 November 2023 / Online: 8 November 2023 (09:55:21 CET)

A peer-reviewed article of this Preprint also exists.

Zeng, W.; Wang, X.; Luo, K.H.; Vogiatzaki, K.; Navarro-Martinez, S. A Generalised Series Model for the LES of Premixed and Non-Premixed Turbulent Combustion. Energies 2024, 17, 252. Zeng, W.; Wang, X.; Luo, K.H.; Vogiatzaki, K.; Navarro-Martinez, S. A Generalised Series Model for the LES of Premixed and Non-Premixed Turbulent Combustion. Energies 2024, 17, 252.

Abstract

In this study, the generality and prediction accuracy of a generalised series model for large eddy simulation of premixed and non-premixed turbulent combustion is explored. The model is based on Taylor series expansion of the chemical source term in scalar space and implemented into OpenFOAM. The mathematical model does not depend on the combustion regimes, and has the correct limiting behaviour. The numerical error sources are outlined and analysed. The model is first applied to a piloted methane/air non-premixed jet flame (Sandia Flame D). The statistical (time-averaged and RMS) results agree well with experimental measurements, particularly with regard to the mixture fraction, velocity, temperature, and concentrations of major species CH4, CO2, H2O, and O2. The concentrations of intermediates CO and H2 are over-predicted, due to the limitations of the reduced reaction mechanism employed. Then, a Bunsen piloted flame is simulated. Most of the statistical properties of both reactive species and progress variable are well reproduced. The only major discrepancy evident is in the temperature, which is attributed to the experimental uncertainties of temperature fields in the pilot stream. These findings have demonstrated the model`s generality for both premixed and non-premixed combustion simulation, as well as the accuracy of prediction of reactive species distribution.

Keywords

Combustion modelling; Large Eddy Simulation; Non-premixed Combustion; Premixed Combustion

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.