Submitted:
08 November 2023
Posted:
08 November 2023
You are already at the latest version
Abstract
Keywords:
I. Introduction
II. General Approaches
A. Optical Filter Bank
B. Multi-wavelength Laser Sources
C. Dual Optical Frequency Combs
D. Frequency Shifting/Scanning
III. Microcomb For Photonic Channelization
IV. Outlooks of monolithic integration
A. Hybrid Integration
B. Heterogeneous Integration
C. Fully Monolithic Integration
D. Integration of Photonic RF channelizers
V. Conclusions
Statement on Conflict of Interest
References
- G. W. Anderson, D. C. G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, ‘Advanced channelization for RF, microwave, and millimeterwave applications’, Proc. IEEE, vol. 79, no. 3, pp. 355–388, Mar. 1991. [CrossRef]
- J. Capmany and D. Novak, ‘Microwave photonics combines two worlds’, Nature Photon, vol. 1, no. 6, pp. 319–330, Jun. 2007. [CrossRef]
- J. Yao, ‘Microwave Photonics’, J. Lightwave Technol., vol. 27, no. 3, pp. 314–335, Feb. 2009. [CrossRef]
- S. Pan and J. Yao, ‘Photonics-Based Broadband Microwave Measurement’, J. Lightwave Technol., vol. 35, no. 16, pp. 3498–3513, Aug. 2017. [CrossRef]
- R. A. Minasian, ‘Ultra-Wideband and Adaptive Photonic Signal Processing of Microwave Signals’, IEEE J. Quantum Electron., vol. 52, no. 1, pp. 1–13, Jan. 2016. [CrossRef]
- X. Zou, B. X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, ‘Photonics for microwave measurements: Photonics for microwave measurements’, Laser & Photonics Reviews, vol. 10, no. 5, pp. 711–734, Sep. 2016. [CrossRef]
- K. Xu et al., ‘Microwave photonics: radio-over-fiber links, systems, and applications [Invited]’, Photon. Res., vol. 2, no. 4, p. B54, Aug. 2014. [CrossRef]
- H. A. Wheeler, ‘Image Suppression in Superheterodyne Receivers’, Proc. IRE, vol. 23, no. 6, pp. 569–575, Jun. 1935. [CrossRef]
- R. E. Brooks and J. Z. Wilcox, ‘SAW RF Spectrum Analyzer/Channelizer Using a Focusing, Phased Array Transducer’, in IEEE 1985 Ultrasonics Symposium, San Francisco, CA, USA: IEEE, 1985, pp. 91–95. [CrossRef]
- S. T. Winnall, A. C. S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, ‘A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system’, IEEE Trans. Microwave Theory Techn., vol. 54, no. 2, pp. 868–872, Feb. 2006. [CrossRef]
- C.-S. Bres et al., ‘Parametric Photonic Channelized RF Receiver’, IEEE Photon. Technol. Lett., vol. 23, no. 6, pp. 344–346, Mar. 2011. [CrossRef]
- Z. Li, H. Z. Li, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, ‘A reconfigurable photonic microwave channelized receiver based on an optical comb’, in 2011 International Topical Meeting on Microwave Photonics jointly held with the 2011 Asia-Pacific Microwave Photonics Conference, Singapore, Singapore: IEEE, Oct. 2011, pp. 296–299. [CrossRef]
- Xiaojun Xie, et al., ‘Broadband Photonic RF Channelization Based on Coherent Optical Frequency Combs and I/Q Demodulators’, IEEE Photonics J., vol. 4, no. 4, pp. 1196–1202, Aug. 2012. [CrossRef]
- L. Zhao et al., ‘Deep-learning-assisted linearization for the broadband photonic scanning channelized receiver’, Opt. Lett., vol. 47, no. 22, p. 6021, Nov. 2022. [CrossRef]
- X. Xue, Y. X. Xue, Y. Zhang, B. Chen, and Y. Zhang, ‘Microwave Photonic Channelizer With Large Instantaneous Bandwidth Based on AOFS’, IEEE Photonics J., vol. 13, no. 5, pp. 1–7, Oct. 2021. [CrossRef]
- H. Chen et al., ‘Photonics-Assisted Serial Channelized Radio-Frequency Measurement System With Nyquist-Bandwidth Detection’, IEEE Photonics J., vol. 6, no. 6, pp. 1–7, Dec. 2014. [CrossRef]
- S. A. Diddams et al., ‘Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb’, Phys. Rev. Lett., vol. 84, no. 22, pp. 5102–5105, May 2000. [CrossRef]
- C. Chen, C. He, D. Zhu, R. Guo, F. Zhang, and S. Pan, ‘Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator’, Opt. Lett., vol. 38, no. 16, p. 3137, Aug. 2013. [CrossRef]
- S. T. Cundiff and A. M. Weiner, ‘Optical arbitrary waveform generation’, Nature Photon, vol. 4, no. 11, pp. 760–766, Nov. 2010. [CrossRef]
- T. M. Fortier et al., ‘Generation of ultrastable microwaves via optical frequency division’, Nature Photon, vol. 5, no. 7, pp. 425–429, Jul. 2011. [CrossRef]
- R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, ‘Optical Frequency Synthesizer for Precision Spectroscopy’, Phys. Rev. Lett., vol. 85, no. 11, pp. 2264–2267, Sep. 2000. [CrossRef]
- V. Torres-Company and A. M. Weiner, ‘Optical frequency comb technology for ultra-broadband radio-frequency photonics: Optical frequency comb technology for RF photonics’, Laser & Photonics Reviews, vol. 8, no. 3, pp. 368–393, May 2014. [CrossRef]
- V. R. Supradeepa et al., ‘Comb-based radiofrequency photonic filters with rapid tunability and high selectivity’, Nature Photon, vol. 6, no. 3, pp. 186–194, Mar. 2012. [CrossRef]
- D. J. Jones et al., ‘Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis’, Science, vol. 288, no. 5466, pp. 635–639, Apr. 2000. [CrossRef]
- T. Ideguchi, A. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, ‘Adaptive real-time dual-comb spectroscopy’, Nat Commun, vol. 5, no. 1, p. 3375, Feb. 2014. [CrossRef]
- D. Hillerkuss et al., ‘26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing’, Nature Photon, vol. 5, no. 6, pp. 364–371, Jun. 2011. [CrossRef]
- B. Bernhardt et al., ‘Cavity-enhanced dual-comb spectroscopy’, Nature Photon, vol. 4, no. 1, pp. 55–57, Jan. 2010. [CrossRef]
- A. Pasquazi, et al., ‘Micro-combs: A novel generation of optical sources’, Physics Reports, vol. 729, pp. 1–81, Jan. 2018. [CrossRef]
- P. Del’Haye, A. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, ‘Optical frequency comb generation from a monolithic microresonator’, Nature, vol. 450, no. 7173, pp. 1214–1217, Dec. 2007. [CrossRef]
- D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, ‘New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics’, Nature Photon, vol. 7, no. 8, pp. 597–607, Aug. 2013. [CrossRef]
- A.L. Gaeta, M. Lipson, and T. J. Kippenberg, ‘Photonic-chip-based frequency combs’, Nature Photon, vol. 13, no. 3, pp. 158–169, Mar. 2019. [CrossRef]
- M. Kues et al., ‘Quantum optical microcombs’, Nature Photon, vol. 13, no. 3, pp. 170–179, Mar. 2019. [CrossRef]
- W. T. Rhodes, ‘Acousto-optic signal processing: Convolution and correlation’, Proc. IEEE, vol. 69, no. 1, pp. 65–79, 1981. [CrossRef]
- D. B. Hunter, L. G. Edvell, and M. A. Englund, ‘Wideband Microwave Photonic Channelised Receiver’, in 2005 International Topical Meeting on Microwave Photonics, Seoul, Korea: IEEE, 2005, pp. 249–252. [CrossRef]
- S. T. Winnall and A. C. Lindsay, ‘A Fabry-Perot scanning receiver for microwave signal processing’, IEEE Trans. Microwave Theory Techn., vol. 47, no. 7, pp. 1385–1390, Jul. 1999. [CrossRef]
- F. Gambini, R. Moreira, A. Gambacorta, J. Klamkin, and M. Stephen, ‘An Innovative Photonic Integrated Channelizer Design for Hyperspectral Microwave Sounding’, in OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC: Optica Publishing Group, 2021, p. HF4E.5. [CrossRef]
- J. Yang et al., ‘Broadband dual-channel channelizer based on a microwave photonic power tunable image rejection down-conversion’, Opt. Express, vol. 30, no. 18, p. 31795, Aug. 2022. [CrossRef]
- C. Wang and J. Yao, ‘Ultrahigh-Resolution Photonic-Assisted Microwave Frequency Identification Based on Temporal Channelization’, IEEE Trans. Microwave Theory Techn., vol. 61, no. 12, pp. 4275–4282, Dec. 2013. [CrossRef]
- E. M. Alexander and R. W. Gammon, ‘The Fabry-Perot Etalon As An Rf Frequency Channelizer’, in Solid-State Optical Control Devices, P. Yeh, Ed., SPIE, 1984, pp. 45–52. [CrossRef]
- C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, ‘Reconfigurable parametric channelized receiver for instantaneous spectral analysis’, Opt. Express, vol. 19, no. 4, p. 3531, Feb. 2011. [CrossRef]
- Wenshen Wang, et al., ‘Characterization of a coherent optical RF channelizer based on a diffraction grating’, IEEE Trans. Microwave Theory Techn., vol. 49, no. 10, pp. 1996–2001, Oct. 2001. [CrossRef]
- W. Hao et al., ‘Chirped-pulse-based broadband RF channelization implemented by a mode-locked laser and dispersion’, Opt. Lett., vol. 42, no. 24, p. 5234, Dec. 2017. [CrossRef]
- X. Zou, W. X. Zou, W. Pan, B. Luo, and L. Yan, ‘Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source’, Opt. Lett., vol. 35, no. 3, p. 438, Feb. 2010. [CrossRef]
- X. Xie et al., ‘Broadband Photonic Radio-Frequency Channelization Based on a 39-GHz Optical Frequency Comb’, IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663, Apr. 2012. [CrossRef]
- C.-S. Bres, A. O. J. Wiberg, S. Zlatanovic, and S. Radic, ‘Performance of Instantaneous Microwave Analysis by Parametric Channelized Receiver Through Time Domain Monitoring’, J. Lightwave Technol., vol. 30, no. 20, pp. 3192–3198, Oct. 2012. [CrossRef]
- X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, ‘Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering’, IEEE Trans. Microwave Theory Techn., vol. 61, no. 9, pp. 3470–3478, Sep. 2013. [CrossRef]
- G. Gao and L. Lei, ‘Photonics-Based Broadband RF Spectrum Measurement With Sliced Coherent Detection and Spectrum Stitching Technique’, IEEE Photonics J., vol. 9, no. 5, pp. 1–11, Oct. 2017. [CrossRef]
- B. Yang, H. Chi, S. Yang, Z. Cao, J. Ou, and Y. Zhai, ‘Broadband Microwave Spectrum Sensing Based on Photonic RF Channelization and Compressive Sampling’, IEEE Photonics J., vol. 12, no. 1, pp. 1–9, Feb. 2020. [CrossRef]
- X. Lu et al., ‘Wideband and Ambiguous-Free RF Channelizer Assisted Jointly by Spacing and Profile of Optical Frequency Comb’, IEEE Photonics J., vol. 12, no. 3, pp. 1–11, Jun. 2020. [CrossRef]
- ‘Photonic channelized RF receiver employing dense wavelength division multiplexing’, 2003.
- H. Huang et al., ‘Photonics-Assisted Multi-Band Microwave Receiver Based on Spectrum Analysis and Coherent Channelization’, Front. Phys., vol. 8, p. 562456, Oct. 2020. [CrossRef]
- H. Huang, C. Zhang, H. Zhou, H. Yang, W. Yuan, and K. Qiu, ‘Double-efficiency photonic channelization enabling optical carrier power suppression’, Opt. Lett., vol. 43, no. 17, p. 4073, Sep. 2018. [CrossRef]
- S. Wang, Y. Sun, J. Chen, and G. Wu, ‘Broadband Photonic RF Channelization Based on Optical Sampling Pulse Shaping’, IEEE Photon. Technol. Lett., vol. 32, no. 18, pp. 1195–1198, Sep. 2020. [CrossRef]
- Z. Tang, D. Zhu, and S. Pan, ‘Coherent Optical RF Channelizer With Large Instantaneous Bandwidth and Large In-Band Interference Suppression’, J. Lightwave Technol., vol. 36, no. 19, pp. 4219–4226, Oct. 2018. [CrossRef]
- W. Xu, D. Zhu, and S. Pan, ‘Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering’, Opt. Eng, vol. 55, no. 4, p. 046106, Apr. 2016. [CrossRef]
- Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, ‘Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation’, Sci. China Technol. Sci., vol. 56, no. 3, pp. 621–628, Mar. 2013. [CrossRef]
- A.O. J. Wiberg et al., ‘Coherent Filterless Wideband Microwave/Millimeter-Wave Channelizer Based on Broadband Parametric Mixers’, J. Lightwave Technol., vol. 32, no. 20, pp. 3609–3617, Oct. 2014. [CrossRef]
- W. Hao et al., ‘Coherent wideband microwave channelizer based on dual optical frequency combs’, in 2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP), Long Beach, CA, USA: IEEE, Oct. 2016, pp. 183–184. [CrossRef]
- W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, ‘Microwave channelizer based on a photonic dual-output image-reject mixer’, Opt. Lett., vol. 44, no. 16, p. 4052, Aug. 2019. [CrossRef]
- A. Lukashchuk et al., ‘Photonic-assisted analog-to-digital conversion using integrated soliton microcombs’, in 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland: Institution of Engineering and Technology, 2019, p. 280 (4 pp.)-280 (4 pp.). [CrossRef]
- J. Yang, R. Li, Y. Dai, J. Dong, and W. Li, ‘Wide-band RF receiver based on dual-OFC-based photonic channelization and spectrum stitching technique’, Opt. Express, vol. 27, no. 23, p. 33194, Nov. 2019. [CrossRef]
- J. Yang, R. Li, Z. Mo, J. Dong, and W. Li, ‘Channelized photonic-assisted deramp receiver with an extended detection distance along the range direction for LFM-CW radars’, Opt. Express, vol. 28, no. 5, p. 7576, Mar. 2020. [CrossRef]
- H. Huang, R. Wang, C. Zhang, Y. Chen, H. Yang, and K. Qiu, ‘Tunable ultra-flat optical-comb-enabled, reconfigurable, and efficient coherent channelized receiver’, Opt. Lett., vol. 45, no. 4, p. 848, Feb. 2020. [CrossRef]
- F. Yin, Z. Yin, X. Xie, Y. Dai, and K. Xu, ‘Broadband radio-frequency signal synthesis by photonic-assisted channelization’, Opt. Express, vol. 29, no. 12, p. 17839, Jun. 2021. [CrossRef]
- N. P. O’Malley et al., ‘Architecture for Compact Photonic Downconversion of Broadband RF Signals’, in Conference on Lasers and Electro-Optics, San Jose, California: Optica Publishing Group, 2022, p. STh5M.7. [CrossRef]
- W. Zhai, A. Wen, Y. Gao, D. Shan, and Y. Fan, ‘An Ultraefficient Broadband Photonic Channelizer Based on Polarization-Division Multiplexing and Integrated Dual-Polarization Coherent Detection Receiver’, IEEE Trans. Microwave Theory Techn., vol. 70, no. 3, pp. 1821–1831, Mar. 2022. [CrossRef]
- N. Li, H. Huang, C. Zhang, and K. Qiu, ‘Acousto-optic frequency shifter-based microwave photonic channelized receiver using a single optical frequency comb’, Opt. Lett., vol. 47, no. 11, p. 2662, Jun. 2022. [CrossRef]
- Q. Jia, J. Li, L. Sun, C. Wang, J. Liu, and Z. Zhao, ‘Simple microwave photonic downconversion channelizer based on multi-wavelength laser sources’, Appl. Opt., vol. 61, no. 23, p. 6795, Aug. 2022. [CrossRef]
- W. Gou, J. Zhang, Z. Zhang, X. Cheng, and T. Jiang, ‘Microwave photonics scanning channelizer with digital image-reject mixing and linearization’, Optics Communications, vol. 528, p. 129055, Feb. 2023. [CrossRef]
- R. Li, H. Chen, Y. Yu, M. Chen, S. Yang, and S. Xie, ‘Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning’, Opt. Lett., vol. 38, no. 22, p. 4781, Nov. 2013. [CrossRef]
- W. Jiang, S. Zhao, Q. Tan, D. Liang, X. Li, and Y. Gao, ‘Wideband photonic microwave channelization and image-reject down-conversion’, Optics Communications, vol. 445, pp. 41–49, Aug. 2019. [CrossRef]
- B. Chen, Y. Fan, T. Liu, Y. Gao, X. Xue, and Y. Liu, ‘Broadband photonic RF channelizer with 66 channels based on acousto-optic frequency shifter’, Opt. Eng., vol. 60, no. 12, Dec. 2021. [CrossRef]
- S. J. Strutz and K. J. Williams, ‘An 8-18-GHz all-optical microwave downconverter with channelization’, IEEE Trans. Microwave Theory Techn., vol. 49, no. 10, pp. 1992–1995, Oct. 2001. [CrossRef]
- X. Xu et al., ‘Broadband RF Channelizer Based on an Integrated Optical Frequency Kerr Comb Source’, J. Lightwave Technol., vol. 36, no. 19, pp. 4519–4526, Oct. 2018. [CrossRef]
- X. Xu et al., ‘Broadband Photonic RF Channelizer With 92 Channels Based on a Soliton Crystal Microcomb’, J. Lightwave Technol., vol. 38, no. 18, pp. 5116–5121, Sep. 2020. [CrossRef]
- M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, ‘Microresonator soliton dual-comb spectroscopy’, Science, vol. 354, no. 6312, pp. 600–603, Nov. 2016. [CrossRef]
- M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, ‘Silicon-chip-based mid-infrared dual-comb spectroscopy’, Nat Commun, vol. 9, no. 1, p. 1869, 18. [CrossRef]
- P. Marin-Palomo et al., ‘Microresonator-based solitons for massively parallel coherent optical communications’, Nature, vol. 546, no. 7657, pp. 274–279, Jun. 2017. [CrossRef]
- A. Lukashchuk, J. Riemensberger, M. Karpov, J. Liu, and T. J. Kippenberg, ‘Dual chirped microcomb based parallel ranging at megapixel-line rates’, Nat Commun, vol. 13, no. 1, p. 3280, Jun. 2022. [CrossRef]
- T. Fortier and E. Baumann, ‘20 years of developments in optical frequency comb technology and applications’, Commun Phys, vol. 2, no. 1, p. 153, Dec. 2019. [CrossRef]
- N. R. Newbury and W. C. Swann, ‘Low-noise fiber-laser frequency combs (Invited)’, J. Opt. Soc. Am. B, vol. 24, no. 8, p. 1756, Aug. 2007. [CrossRef]
- B. R. Washburn et al., ‘Fiber-laser-based frequency comb with a tunable repetition rate’, Opt. Express, vol. 12, no. 20, p. 4999, 2004. [CrossRef]
- J. L. Hall, ‘Optical frequency measurement: 40 years of technology revolutions’, IEEE J. Select. Topics Quantum Electron., vol. 6, no. 6, pp. 1136–1144, Nov. 2000. [CrossRef]
- S. Okubo, A. Onae, K. Nakamura, T. Udem, and H. Inaba, ‘Offset-free optical frequency comb self-referencing with an f-2f interferometer’, Optica, vol. 5, no. 2, p. 188, Feb. 2018. [CrossRef]
- H. Leopardi et al., ‘Single-branch Er:fiber frequency comb for precision optical metrology with 10^−18 fractional instability’, Optica, vol. 4, no. 8, p. 879, Aug. 2017. [CrossRef]
- R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, ‘Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms’, Opt. Lett., vol. 35, no. 19, p. 3234, Oct. 2010. [CrossRef]
- D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, ‘Ultra-high-Q toroid microcavity on a chip’, Nature, vol. 421, no. 6926, pp. 925–928, Feb. 2003. [CrossRef]
- T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, ‘Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity’, Phys. Rev. Lett., vol. 93, no. 8, p. 083904, Aug. 2004. [CrossRef]
- T. Herr et al., ‘Temporal solitons in optical microresonators’, Nature Photon, vol. 8, no. 2, pp. 145–152, Feb. 2014. [CrossRef]
- Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, ‘Octave-spanning frequency comb generation in a silicon nitride chip’, Opt. Lett., vol. 36, no. 17, p. 3398, Sep. 2011. [CrossRef]
- T. C. Briles et al., ‘Hybrid InP and SiN integration of an octave-spanning frequency comb’, APL Photonics, vol. 6, no. 2, p. 026102, Feb. 2021. [CrossRef]
- X. Liu, Z. Gong, A. W. Bruch, J. B. Surya, J. Lu, and H. X. Tang, ‘Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing’, Nat Commun, vol. 12, no. 1, p. 5428, Sep. 2021. [CrossRef]
- Z. Gong, X. Liu, Y. Xu, and H. X. Tang, ‘Near-octave lithium niobate soliton microcomb’, Optica, vol. 7, no. 10, p. 1275, Oct. 2020. [CrossRef]
- G. Moille et al., ‘Ultra-broadband Kerr microcomb through soliton spectral translation’, Nat Commun, vol. 12, no. 1, p. 7275, Dec. 2021. [CrossRef]
- H.-J. Chen et al., ‘Chaos-assisted two-octave-spanning microcombs’, Nat Commun, vol. 11, no. 1, p. 2336, May 2020. [CrossRef]
- P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, ‘Octave Spanning Tunable Frequency Comb from a Microresonator’, Phys. Rev. Lett., vol. 107, no. 6, p. 063901, Aug. 2011. [CrossRef]
- M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, ‘Mode-locked mid-infrared frequency combs in a silicon microresonator’, Optica, vol. 3, no. 8, p. 854, Aug. 2016. [CrossRef]
- D. C. Cole et al., ‘Kerr-microresonator solitons from a chirped background’, Optica, vol. 5, no. 10, p. 1304, Oct. 2018. [CrossRef]
- V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, ‘Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state’, Opt. Express, vol. 24, no. 25, p. 29312, Dec. 2016. [CrossRef]
- C. Joshi et al., ‘Thermally controlled comb generation and soliton modelocking in microresonators’, Opt. Lett., vol. 41, no. 11, p. 2565, Jun. 2016. [CrossRef]
- H. Zhou et al., ‘Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities’, Light Sci Appl, vol. 8, no. 1, p. 50, Dec. 2019. [CrossRef]
- J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, ‘CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects’, Nature Photon, vol. 4, no. 1, pp. 37–40, Jan. 2010. [CrossRef]
- W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, ‘Generation of near-infrared frequency combs from a MgF_2 whispering gallery mode resonator’, Opt. Lett., vol. 36, no. 12, p. 2290, Jun. 2011. [CrossRef]
- B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, ‘Diamond nonlinear photonics’, Nature Photon, vol. 8, no. 5, pp. 369–374, May 2014. [CrossRef]
- A. Pasquazi et al., ‘Sub-picosecond phase-sensitive optical pulse characterization on a chip’, Nature Photon, vol. 5, no. 10, pp. 618–623, Oct. 2011. [CrossRef]
- A. Guarino, G., Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, ‘Electro–optically tunable microring resonators in lithium niobate’, Nature Photon, vol. 1, no. 7, pp. 407–410, Jul. 2007. [CrossRef]
- C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, ‘Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation’, Nat Commun, vol. 10, no. 1, p. 978, Dec. 2019. [CrossRef]
- M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, ‘Efficient frequency comb generation in AlGaAs-on-insulator’, Optica, vol. 3, no. 8, p. 823, Aug. 2016. [CrossRef]
- G. Moille et al., ‘Dissipative Kerr Solitons in a III-V Microresonator’, Laser & Photonics Reviews, vol. 14, no. 8, p. 2000022, Aug. 2020. [CrossRef]
- L. Chang et al., ‘Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators’, Nat Commun, vol. 11, no. 1, p. 1331, Mar. 2020. [CrossRef]
- J. Chiles et al., ‘Deuterated silicon nitride photonic devices for broadband optical frequency comb generation’, Opt. Lett., vol. 43, no. 7, p. 1527, Apr. 2018. [CrossRef]
- D.J. Wilson et al., ‘Integrated gallium phosphide nonlinear photonics’, Nat. Photonics, vol. 14, no. 1, pp. 57–62, Jan. 2020. [CrossRef]
- H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, ‘Tantala Kerr nonlinear integrated photonics’, Optica, vol. 8, no. 6, p. 811, Jun. 2021. [CrossRef]
- H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, ‘Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator’, Optica, vol. 1, no. 6, p. 396, Dec. 2014. [CrossRef]
- A. W. Bruch et al., ‘Pockels soliton microcomb’, Nat. Photonics, vol. 15, no. 1, pp. 21–27, Jan. 2021. [CrossRef]
- A. Wang et al., ‘High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics’, Light Sci Appl, vol. 10, no. 1, p. 139, Jul. 2021. [CrossRef]
- Y. Zheng et al., ‘Integrated Gallium Nitride Nonlinear Photonics’, Laser & Photonics Reviews, vol. 16, no. 1, p. 2100071, Jan. 2022. [CrossRef]
- B. Yao et al., ‘Gate-tunable frequency combs in graphene–nitride microresonators’, Nature, vol. 558, no. 7710, pp. 410–414, Jun. 2018. [CrossRef]
- S. B. Papp and S. A. Diddams, ‘Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb’, Phys. Rev. A, vol. 84, no. 5, p. 053833, Nov. 2011. [CrossRef]
- S. B. Papp, P. Del’Haye, and S. A. Diddams, ‘Mechanical Control of a Microrod-Resonator Optical Frequency Comb’, Phys. Rev. X, vol. 3, no. 3, p. 031003, Jul. 2013. [CrossRef]
- T. Tan et al., ‘Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator’, Nat Commun, vol. 12, no. 1, p. 6716, Nov. 2021. [CrossRef]
- J. Hofer, A. Schliesser, and T. J. Kippenberg, ‘Cavity optomechanics with ultrahigh- Q crystalline microresonators’, Phys. Rev. A, vol. 82, no. 3, p. 031804, Sep. 2010. [CrossRef]
- S. Grudinin, V. S. Ilchenko, and L. Maleki, ‘Ultrahigh optical Q factors of crystalline resonators in the linear regime’, Phys. Rev. A, vol. 74, no. 6, p. 063806, Dec. 2006. [CrossRef]
- C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, ‘Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials’, Nat Commun, vol. 7, no. 1, p. 13383, Nov. 2016. [CrossRef]
- C. Xiang et al., ‘Laser soliton microcombs heterogeneously integrated on silicon’, Science, vol. 373, no. 6550, pp. 99–103, Jul. 2021. [CrossRef]
- H. Shu et al., ‘Microcomb-driven silicon photonic systems’, Nature, vol. 605, no. 7910, pp. 457–463, May 2022. [CrossRef]
- J. Riemensberger et al., ‘Massively parallel coherent laser ranging using a soliton microcomb’, Nature, vol. 581, no. 7807, pp. 164–170, May 2020. [CrossRef]
- Z. L. Newman et al., ‘Architecture for the photonic integration of an optical atomic clock’, Optica, vol. 6, no. 5, p. 680, May 2019. [CrossRef]
- M.-G. Suh et al., ‘Searching for exoplanets using a microresonator astrocomb’, Nature Photon, vol. 13, no. 1, pp. 25–30, Jan. 2019. [CrossRef]
- X. Xu et al., ‘11 TOPS photonic convolutional accelerator for optical neural networks’, Nature, vol. 589, no. 7840, pp. 44–51, Jan. 2021. [CrossRef]
- Marpaung, M. Pagani, B. Morrison, and B. J. Eggleton, ‘Nonlinear Integrated Microwave Photonics’, J. Lightwave Technol., vol. 32, no. 20, pp. 3421–3427, Oct. 2014. [CrossRef]
- W. Liang et al., ‘High spectral purity Kerr frequency comb radio frequency photonic oscillator’, Nat Commun, vol. 6, no. 1, p. 7957, Aug. 2015. [CrossRef]
- D. Marpaung, J. Yao, and J. Capmany, ‘Integrated microwave photonics’, Nature Photon, vol. 13, no. 2, pp. 80–90, Feb. 2019. [CrossRef]
- J. Liu et al., ‘Photonic microwave generation in the X- and K-band using integrated soliton microcombs’, Nat. Photonics, vol. 14, no. 8, pp. 486–491, Aug. 2020. [CrossRef]
- D. Kwon, D. Jeong, I. Jeon, H. Lee, and J. Kim, ‘Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs’, Nat Commun, vol. 13, no. 1, p. 381, Jan. 2022. [CrossRef]
- X. Xue et al., ‘Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring’, J. Lightwave Technol., vol. 32, no. 20, pp. 3557–3565, Oct. 2014. [CrossRef]
- X. Xu et al., ‘Advanced Adaptive Photonic RF Filters with 80 Taps Based on an Integrated Optical Micro-Comb Source’, J. Lightwave Technol., vol. 37, no. 4, pp. 1288–1295, Feb. 2019. [CrossRef]
- X. Xu et al., ‘Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source’, APL Photonics, vol. 2, no. 9, p. 096104, Sep. 2017. [CrossRef]
- X. Xue et al., ‘Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control’, J. Lightwave Technol., vol. 36, no. 12, pp. 2312–2321, Jun. 2018. [CrossRef]
- X. Xu et al., ‘Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source [Invited]’, Photon. Res., vol. 6, no. 5, p. B30, May 2018. [CrossRef]
- J. Li and K. Vahala, ‘Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands’, Optica, vol. 10, no. 1, p. 33, Jan. 2023. [CrossRef]
- J. Li, H. Lee, T. Chen, and K. J. Vahala, ‘Low-Pump-Power, Low-Phase-Noise, and Microwave to Millimeter-Wave Repetition Rate Operation in Microcombs’, Phys. Rev. Lett., vol. 109, no. 23, p. 233901, Dec. 2012. [CrossRef]
- J. Li, H. Lee, and K. J. Vahala, ‘Microwave synthesizer using an on-chip Brillouin oscillator’, Nat Commun, vol. 4, no. 1, p. 2097, Jun. 2013. [CrossRef]
- J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, ‘Electro-optical frequency division and stable microwave synthesis’, Science, vol. 345, no. 6194, pp. 309–313, Jul. 2014. [CrossRef]
- Lucas, P. Brochard, R. Bouchand, S. Schilt, T. Südmeyer, and T. J. Kippenberg, ‘Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator’, Nat Commun, vol. 11, no. 1, p. 374, Jan. 2020. [CrossRef]
- X. Xu et al., ‘High performance RF filters via bandwidth scaling with Kerr micro-combs’, APL Photonics, vol. 4, no. 2, p. 026102, Feb. 2019. [CrossRef]
- J. Li, S. Yang, H. Chen, X. Wang, M. Chen, and W. Zou, ‘Fully integrated hybrid microwave photonic receiver’, Photon. Res., vol. 10, no. 6, p. 1472, Jun. 2022. [CrossRef]
- Y. Tao et al., ‘Fully On-Chip Microwave Photonic Instantaneous Frequency Measurement System’, Laser & Photonics Reviews, vol. 16, no. 11, p. 2200158, Nov. 2022. [CrossRef]
- B. Bai et al., ‘Microcomb-based integrated photonic processing unit’, Nat Commun, vol. 14, no. 1, p. 66, Jan. 2023. [CrossRef]
- B. Shen et al., ‘Integrated turnkey soliton microcombs’, Nature, vol. 582, no. 7812, pp. 365–369, Jun. 2020. [CrossRef]
- C. Xiang et al., ‘3D integration enables ultralow-noise isolator-free lasers in silicon photonics’, Nature, vol. 620, no. 7972, pp. 78–85, Aug. 2023. [CrossRef]
- W. Bogaerts et al., ‘Programmable photonic circuits’, Nature, vol. 586, no. 7828, pp. 207–216, Oct. 2020. [CrossRef]
- C. Xiang, W. Jin, and J. E. Bowers, ‘Silicon nitride passive and active photonic integrated circuits: trends and prospects’, Photon. Res., vol. 10, no. 6, p. A82, Jun. 2022. [CrossRef]
- W. Bogaerts and A. Rahim, ‘Programmable Photonics: An Opportunity for an Accessible Large-Volume PIC Ecosystem’, IEEE J. Select. Topics Quantum Electron., vol. 26, no. 5, pp. 1–17, Sep. 2020. [CrossRef]
- T. Aalto et al., ‘Open-Access 3-μm SOI Waveguide Platform for Dense Photonic Integrated Circuits’, IEEE J. Select. Topics Quantum Electron., vol. 25, no. 5, pp. 1–9, Sep. 2019. [CrossRef]
- P. Munoz et al., ‘Foundry Developments Toward Silicon Nitride Photonics From Visible to the Mid-Infrared’, IEEE J. Select. Topics Quantum Electron., vol. 25, no. 5, pp. 1–13, Sep. 2019. [CrossRef]
- E. Hoefler et al., ‘Foundry Development of System-On-Chip InP-Based Photonic Integrated Circuits’, IEEE J. Select. Topics Quantum Electron., vol. 25, no. 5, pp. 1–17, Sep. 2019. [CrossRef]
- N. Li, C. P. Ho, S. Zhu, Y. H. Fu, Y. Zhu, and L. Y. T. Lee, ‘Aluminium nitride integrated photonics: a review’, Nanophotonics, vol. 10, no. 9, pp. 2347–2387, Jul. 2021. [CrossRef]
- A. Yi et al., ‘Silicon carbide for integrated photonics’, Applied Physics Reviews, vol. 9, no. 3, p. 031302, Sep. 2022. [CrossRef]
- D. Thomson et al., ‘Roadmap on silicon photonics’, J. Opt., vol. 18, no. 7, p. 073003, Jul. 2016. [CrossRef]
- R. Jones et al., ‘Heterogeneously Integrated InP\/Silicon Photonics: Fabricating Fully Functional Transceivers’, IEEE Nanotechnology Mag., vol. 13, no. 2, pp. 17–26, Apr. 2019. [CrossRef]
- P. Kaur, A. Boes, G. Ren, T. G. Nguyen, G. Roelkens, and A. Mitchell, ‘Hybrid and heterogeneous photonic integration’, APL Photonics, vol. 6, no. 6, p. 061102, Jun. 2021. [CrossRef]
- J. M. Ramirez et al., ‘III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits’, IEEE J. Select. Topics Quantum Electron., vol. 26, no. 2, pp. 1–13, Mar. 2020. [CrossRef]
- Z. Zhou et al., ‘Prospects and applications of on-chip lasers’, eLight, vol. 3, no. 1, p. 1, Jan. 2023. [CrossRef]
- W.-Q. Wei et al., ‘Monolithic integration of embedded III-V lasers on SOI’, Light Sci Appl, vol. 12, no. 1, p. 84, Apr. 2023. [CrossRef]
- Y. Tao et al., ‘Hybrid-integrated high-performance microwave photonic filter with switchable response’, Photon. Res., vol. 9, no. 8, p. 1569, Aug. 2021. [CrossRef]
- A. D. Lee, Qi Jiang, Mingchu Tang, Yunyan Zhang, A. J. Seeds, and Huiyun Liu, ‘InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates’, IEEE J. Select. Topics Quantum Electron., vol. 19, no. 4, pp. 1901107–1901107, Jul. 2013. [CrossRef]
- S. Chen et al., ‘Electrically pumped continuous-wave III–V quantum dot lasers on silicon’, Nature Photon, vol. 10, no. 5, pp. 307–311, May 2016. [CrossRef]
- T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, ‘Silicon optical modulators’, Nature Photon, vol. 4, no. 8, pp. 518–526, Aug. 2010. [CrossRef]
- Y. Shi et al., ‘Silicon photonics for high-capacity data communications’, Photon. Res., vol. 10, no. 9, p. A106, Sep. 2022. [CrossRef]
- C. Xiang et al., ‘Narrow-linewidth III-V/Si/Si 3 N 4 laser using multilayer heterogeneous integration’, Optica, vol. 7, no. 1, p. 20, Jan. 2020. [CrossRef]
- M. A. Tran et al., ‘Extending the spectrum of fully integrated photonics to submicrometre wavelengths’, Nature, vol. 610, no. 7930, pp. 54–60, Oct. 2022. [CrossRef]
- Y. Hu et al., ‘III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template’, Light Sci Appl, vol. 8, no. 1, p. 93, Oct. 2019. [CrossRef]
- P. Dhingra et al., ‘Low-threshold visible InP quantum dot and InGaP quantum well lasers grown by molecular beam epitaxy’, Journal of Applied Physics, vol. 133, no. 10, p. 103101, Mar. 2023. [CrossRef]
- Y. Wan et al., ‘Directly Modulated Single-Mode Tunable Quantum Dot Lasers at 1.3 µm’, Laser & Photonics Reviews, vol. 14, no. 3, p. 1900348, Mar. 2020. [CrossRef]
- B. Zhang et al., ‘O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy’, AIP Advances, vol. 9, no. 1, p. 015331, Jan. 2019. [CrossRef]
- M. He et al., ‘High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond’, Nat. Photonics, vol. 13, no. 5, pp. 359–364, May 2019. [CrossRef]
- C. Wang et al., ‘Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages’, Nature, vol. 562, no. 7725, pp. 101–104, Oct. 2018. [CrossRef]
- V. Sorianello et al., ‘Graphene–silicon phase modulators with gigahertz bandwidth’, Nature Photon, vol. 12, no. 1, pp. 40–44, Jan. 2018. [CrossRef]
- C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, ‘Graphene electro-optic modulator with 30 GHz bandwidth’, Nature Photon, vol. 9, no. 8, pp. 511–514, Aug. 2015. [CrossRef]
- A. Liu et al., ‘A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor’, Nature, vol. 427, no. 6975, pp. 615–618, Feb. 2004. [CrossRef]
- M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, ‘Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications’, Photon. Res., vol. 6, no. 2, p. 109, Feb. 2018. [CrossRef]
- Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, ‘Micrometre-scale silicon electro-optic modulator’, Nature, vol. 435, no. 7040, pp. 325–327, May 2005. [CrossRef]
- J. Sharma et al., ‘Silicon Photonic Microring-Based 4 × 112 Gb/s WDM Transmitter With Photocurrent-Based Thermal Control in 28-nm CMOS’, IEEE J. Solid-State Circuits, vol. 57, no. 4, pp. 1187–1198, Apr. 2022. [CrossRef]
- D. Pérez et al., ‘Multipurpose silicon photonics signal processor core’, Nat Commun, vol. 8, no. 1, p. 636, Sep. 2017. [CrossRef]
- X. Xu et al., ‘Self-calibrating programmable photonic integrated circuits’, Nat. Photon., Jul. 2022. [CrossRef]
- J. Michel, J. Liu, and L. C. Kimerling, ‘High-performance Ge-on-Si photodetectors’, Nature Photon, vol. 4, no. 8, pp. 527–534, Aug. 2010. [CrossRef]
- Bao, C.; et al. Direct soliton generation in microresonators. Opt. Lett 2017, 42, 2519. [Google Scholar] [CrossRef] [PubMed]
- M. Ferrera et al. CMOS compatible integrated all-optical RF spectrum analyzer. Opt. Express 2014, 22, 21488–21498. [Google Scholar] [CrossRef] [PubMed]
- M. Kues, et al. Passively modelocked laser with an ultra-narrow spectral width. Nat. Photonics 2017, 11, 159. [Google Scholar] [CrossRef]
- Razzari, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 2010, 4, 41–45. [Google Scholar] [CrossRef]
- Ferrera, et al. , “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics 2008, 2, 737–740. [Google Scholar] [CrossRef]
- M. Ferrera et al. On-Chip ultra-fast 1st and 2nd order CMOS compatible all-optical integration. Opt. Express 2011, 19, 23153–23161. [Google Scholar] [CrossRef]
- D. Duchesne, M. Peccianti, M. R. E. Lamont, et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express 2010, 18, 923–930. [Google Scholar] [CrossRef]
- H Bao, L Olivieri, M Rowley, ST Chu, BE Little, R Morandotti, DJ Moss. Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Phys. Rev. Res. 2020, 2, 023395–2020. [Google Scholar] [CrossRef]
- Ferrera, et al. On-chip CMOS-compatible all-optical integrator. Nat. Commun. 2010, 1, 29. [Google Scholar] [CrossRef]
- A. Pasquazi, et al. All-optical wavelength conversion in an integrated ring resonator. Opt. Express 2010, 18, 3858–3863. [Google Scholar] [CrossRef]
- A. Pasquazi, Y. Park, J. Azana, et al. Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide. Opt. Express 2010, 18, 7634–7641. [Google Scholar] [CrossRef]
- Peccianti, M. Ferrera, L. Razzari, et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt. Express 2010, 18, 7625–7633. [Google Scholar] [CrossRef]
- Little, B. E. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol. Lett. 2004, 16, 2263–2265. [Google Scholar] [CrossRef]
- M. Ferrera et al. Low Power CW Parametric Mixing in a Low Dispersion High Index Doped Silica Glass Micro-Ring Resonator with Q-factor > 1 Million. Opt. Express 2009, 17, 14098–14103. [Google Scholar] [CrossRef]
- M. Peccianti, et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat. Commun. 2012, 3, 765. [Google Scholar] [CrossRef]
- A. Pasquazi, et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip. Opt. Express 2013, 21, 13333–13341. [Google Scholar] [CrossRef]
- A. Pasquazi, et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt. Express 2012, 20, 27355–27362. [Google Scholar] [CrossRef]
- Pasquazi, A. Micro-combs: a novel generation of optical sources. Phys. Rep. 2018, 729, 1–81. [Google Scholar] [CrossRef]
- H. Bao, et al.; Laser cavity-soliton microcombs. Nat. Photonics 2019, 13, 384–389. [Google Scholar] [CrossRef]
- Cutrona, A.; Rowley, M.; Das, D.; Olivieri, L.; Peters, L.; Chu, S.T.; Little, B.E.; Morandotti, R.; Moss, D.J.; Gongora, J.S.T.; et al. High parametric efficiency in laser cavity-soliton microcombs. Opt. Express 2022, 30, 39816–39825. [Google Scholar] [CrossRef]
- M.Rowley, P.Hanzard, A.Cutrona, H.Bao, S.Chu, B.Little, R.Morandotti, D. J. Moss, G. Oppo, J. Gongora, M. Peccianti and A. Pasquazi, “Self-emergence of robust solitons in a micro-cavity. Nature 608 (7922) 303–309 (2022).
- Cutrona, A.; Cecconi, V.; Hanzard, P.H.; Rowley, M.; Das, D.; Cooper, A.; Peters, L.; Olivieri, L.; Wetzel, B.; Morandotti, R.; et al. Nonlocal bonding of a soliton and a blue-detuned state in a microcomb laser. Commun. Phys. 2023, 6, 1–10. [Google Scholar] [CrossRef]
- A. Cutrona, M. Rowley, A. Bendahmane, V. Cecconi,L. Peters, L. Olivieri, B. E. Little, S. T. Chu, S. Stivala, R. Morandotti, D. J. Moss, J. S. Totero-Gongora, M. Peccianti, A. Pasquazi, “Stability Properties of Laser Cavity-Solitons for Metrological Applications”, Applied Physics Letters 122 (12) 121104 (2023); X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics, vol. 2, no. 9, 096104, Sep. 2017. [CrossRef]
- Xu, X.; Wu, J.; Nguyen, T.G.; Moein, T.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source [Invited]. Photon- Res. 2018, 6, B30–B36. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Wu, J.; Morandotti, R.; Mitchell, A.; Moss, D.J. Microcomb-Based Photonic RF Signal Processing. IEEE Photon- Technol. Lett. 2019, 31, 1854–1857. [Google Scholar] [CrossRef]
- Xu, et al., “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” Journal of Lightwave Technology, vol. 37, no. 4, pp. 1288-1295 (2019).
- Xu, X.; Tan, M.; Wu, J.; Boes, A.; Corcoran, B.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. Photonic RF and Microwave Integrator Based on a Transversal Filter With Soliton Crystal Microcombs. IEEE Trans. Circuits Syst. II: Express Briefs 2020, 67, 3582–3586. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Wu, J.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photon- 2019, 4, 026102. [Google Scholar] [CrossRef]
- Tan, M.; Mitchell, A.; Moss, D.J.; Xu, X.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; et al. Microwave and RF Photonic Fractional Hilbert Transformer Based on a 50 GHz Kerr Micro-Comb. J. Light. Technol. 2019, 37, 6097–6104. [Google Scholar] [CrossRef]
- Tan, M.; Xu, X.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. RF and Microwave Fractional Differentiator Based on Photonics. IEEE Trans. Circuits Syst. II: Express Briefs 2020, 67, 2767–2771. [Google Scholar] [CrossRef]
- Tan, M.; Xu, X.; Boes, A.; Corcoran, B.; Wu, J.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. Photonic RF Arbitrary Waveform Generator Based on a Soliton Crystal Micro-Comb Source. J. Light. Technol. 2020, 38, 6221–6226. [Google Scholar] [CrossRef]
- Tan, M.; Xu, X.; Wu, J.; Morandotti, R.; Mitchell, A.; Moss, D.J. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv. Physics: X 2020, 6. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Nguyen, T.G.; Shoeiby, M.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express 2018, 26, 2569–2583. [Google Scholar] [CrossRef]
- Tan, M.; Xu, X.; Boes, A.; Corcoran, B.; Wu, J.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Lowery, A.J.; Morandotti, R.; et al. Highly Versatile Broadband RF Photonic Fractional Hilbert Transformer Based on a Kerr Soliton Crystal Microcomb. J. Light. Technol. 2021, 39, 7581–7587. [Google Scholar] [CrossRef]
- Wu, J. et al. RF Photonics: An Optical Microcombs’ Perspective. IEEE Journal of Selected Topics in Quantum Electronics Vol. 24, 6101020, 1-20 (2018).
- Nguyen, T.G.; Shoeiby, M.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express 2015, 23, 22087–22097. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Jia, L.; Tan, M.; Nguyen, T.G.; Chu, S.T.; E Little, B.; Morandotti, R.; Mitchell, A.; Moss, D.J. Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. J. Opt. 2018, 20, 115701. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Tan, M.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Orthogonally Polarized RF Optical Single Sideband Generation and Dual-Channel Equalization Based on an Integrated Microring Resonator. J. Light. Technol. 2018, 36, 4808–4818. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Wu, J.; Boes, A.; Corcoran, B.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. Photonic RF Phase-Encoded Signal Generation With a Microcomb Source. J. Light. Technol. 2020, 38, 1722–1727. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Tan, M.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Broadband Microwave Frequency Conversion Based on an Integrated Optical Micro-Comb Source. J. Light. Technol. 2019, 38, 332–338. [Google Scholar] [CrossRef]
- Tan, M.; Xu, X.; Wu, J.; Morandotti, R.; Mitchell, A.; Moss, D.J. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Opt. Commun. 2020, 465, 125563. [Google Scholar] [CrossRef]
- M. Tan et al., “Orthogonally polarized Photonic Radio Frequency single sideband generation with integrated micro-ring resonators”, IOP Journal of Semiconductors, Vol. 42 (4), 041305 (2021). [CrossRef]
- Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Optical Micro-combs”, IOP Journal of Semiconductors Vol. 42 (4), 041302 (2021). [CrossRef]
- B. Corcoran, et al., “Ultra-dense optical data transmission over standard fiber with a single chip source”, Nature Communications, vol. 11, Article:2568, 2020.
- X. Xu et al., “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, Laser and Photonics Reviews, vol. 14, no. 8, 2000070 (2020). [CrossRef]
- X. Xu, et al., “11 TOPs photonic convolutional accelerator for optical neural networks”, Nature 589, 44-51 (2021).
- X. Xu et al., “Neuromorphic computing based on wavelength-division multiplexing”, 28 IEEE Journal of Selected Topics in Quantum Electronics Vol. 29 Issue: 2, Article 7400112 (2023). [CrossRef]
- Yang Sun, Jiayang Wu, Mengxi Tan, Xingyuan Xu, Yang Li, Roberto Morandotti, Arnan Mitchell, and David Moss, “Applications of optical micro-combs”, Advances in Optics and Photonics 15 (1) 86-175 (2023). [CrossRef]
- Yunping Bai, Xingyuan Xu,1, Mengxi Tan, Yang Sun, Yang Li, Jiayang Wu, Roberto Morandotti, Arnan Mitchell, Kun Xu, and David J. Moss, “Photonic multiplexing techniques for neuromorphic computing”, Nanophotonics 12 (5): 795–817 (2023). [CrossRef]
- Chawaphon Prayoonyong, Andreas Boes, Xingyuan Xu, Mengxi Tan, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss, and Bill Corcoran, “Frequency comb distillation for optical superchannel transmission”, Journal of Lightwave Technology 39 (23) 7383-7392 (2021). [CrossRef]
- Mengxi Tan, Xingyuan Xu, Jiayang Wu, Bill Corcoran, Andreas Boes, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Integral order photonic RF signal processors based on a soliton crystal micro-comb source”, IOP Journal of Optics 23 (11) 125701 (2021). [CrossRef]
- Yang Sun, Jiayang Wu, Yang Li, Xingyuan Xu, Guanghui Ren, Mengxi Tan, Sai Tak Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Performance analysis of microcomb-based microwave photonic transversal signal processors with experimental errors”, Journal of Lightwave Technology Vol. 41 Special Issue on Microwave Photonics (2023).
- Mengxi Tan, Xingyuan Xu, Andreas Boes, Bill Corcoran, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Jiayang Wu, Arnan Mitchell, and David J. Moss, “Photonic signal processor for real-time video image processing at 17 Tb/s”, Communications Engineering Vol. 2 (2023).
- Mengxi Tan, Xingyuan Xu, Jiayang Wu, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Photonic RF and microwave filters based on 49GHz and 200GHz Kerr microcombs”, Optics Communications, 465, Article: 125563 (2020). [CrossRef]
- Yang Sun, Jiayang Wu, Yang Li, Mengxi Tan, Xingyuan Xu, Sai Chu, Brent Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Quantifying the Accuracy of Microcomb-based Photonic RF Transversal Signal Processors”, IEEE Journal of Selected Topics in Quantum Electronics 29 no. 6, pp. 1-17, Art no. 7500317 (2023). [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).