Submitted:
07 November 2023
Posted:
07 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cholesterol Determination Methods in Foods
2.1. Detection of Cholesterol Using Enzymatic and Non-Enzymatic Methods
2.2. Determination of Cholesterol in Foods by Enzymatic Methods
2.3. Detection of Cholesterol in Foods by HPLC
2.3.1. Detection of Cholesterol in Foods by HPLC
2.3.2. Detection of Cholesterol in Foods with GC-MS
2.3.3. Electrospray Ionization Tandem Mass Spectrometer (ESI)
2.3.4. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI)
2.3.5. Ambient Ionization Mass Spectrometer
2.3.6. Removal of cholesterol from foods by nonenzymatic methods
2.4. Electrochemical Sensors
2.4.1. Nanomaterial-Based Electrochemical Sensors
2.5. Possibilities of using biosensors in measuring cholesterol in foods
2.5.1. Metal Nanoparticle (Mnp) Based Cholesterol Biosensors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Süt Teknolojisi Sütün Bileşimi Ve İşlenmesi - Mustafa Metin | Nadir Kitap Available online:. Available online: https://www.nadirkitap.com/sut-teknolojisi-sutun-bilesimi-ve-islenmesi-mustafa-metin-kitap26632213.html (accessed on 20 October 2023).
- Wang, H.H.; Li, T.; Portincasa, P.; Ford, D.A.; Neuschwander-Tetri, B.A.; Tso, P.; Wang, D.Q.-H. New Insights into the Role of Lith Genes in the Formation of Cholesterol-Supersaturated Bile. Liver Res 2017, 1, 42–53. [Google Scholar] [CrossRef]
- Ahmadalinezhad, A.; Chen, A. High-Performance Electrochemical Biosensor for the Detection of Total Cholesterol. Biosensors and Bioelectronics 2011, 26, 4508–4513. [Google Scholar] [CrossRef]
- Hayat, A.; Haider, W.; Raza, Y.; Marty, J.L. Colorimetric Cholesterol Sensor Based on Peroxidase like Activity of Zinc Oxide Nanoparticles Incorporated Carbon Nanotubes. Talanta 2015, 143, 157–161. [Google Scholar] [CrossRef]
- Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified Graphene Based Molecular Imprinted Polymer for Electrochemical Non-Enzymatic Cholesterol Biosensor. European Polymer Journal 2017, 86, 106–116. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, L.; Xue, Y.; Zhang, S.; Zhu, N.; Liang, J.; Li, G. Ultrasensitive Cholesterol Biosensor Based on Enzymatic Silver Deposition on Gold Nanoparticles Modified Screen-Printed Carbon Electrode. Materials Science and Engineering: C 2017, 77, 1–8. [Google Scholar] [CrossRef]
- Derina, K.V.; Korotkova, E.I.; Dorozhko, E.V.; Voronova, O.A. Voltammetric Determination of Cholesterol in Human Blood Serum. J Anal Chem 2017, 72, 904–910. [Google Scholar] [CrossRef]
- Derina, K.; Korotkova, E.; Barek, J. Non-Enzymatic Electrochemical Approaches to Cholesterol Determination. Journal of Pharmaceutical and Biomedical Analysis 2020, 191, 113538. [Google Scholar] [CrossRef]
- Aravamudhan, S.; Ramgir, N.S.; Bhansali, S. Electrochemical Biosensor for Targeted Detection in Blood Using Aligned Au Nanowires. Sensors and Actuators B: Chemical 2007, 127, 29–35. [Google Scholar] [CrossRef]
- Shen, J.; Liu, C.-C. Development of a Screen-Printed Cholesterol Biosensor: Comparing the Performance of Gold and Platinum as the Working Electrode Material and Fabrication Using a Self-Assembly Approach. Sensors and Actuators B: Chemical 2007, 120, 417–425. [Google Scholar] [CrossRef]
- Saxena, U.; Chakraborty, M.; Goswami, P. Covalent Immobilization of Cholesterol Oxidase on Self-Assembled Gold Nanoparticles for Highly Sensitive Amperometric Detection of Cholesterol in Real Samples. Biosensors and Bioelectronics 2011, 26, 3037–3043. [Google Scholar] [CrossRef]
- Hong, L.; Liu, A.-L.; Li, G.-W.; Chen, W.; Lin, X.-H. Chemiluminescent Cholesterol Sensor Based on Peroxidase-like Activity of Cupric Oxide Nanoparticles. Biosensors and Bioelectronics 2013, 43, 1–5. [Google Scholar] [CrossRef]
- Front Matter. Clinical Veterinary Advisor; Mayer, J., Donnelly, T.M., Eds.; W.B. Saunders: Saint Louis, 2013; ISBN 978-1-4160-3969-3. [Google Scholar]
- Gylling, H. Cholesterol Metabolism and Its Implications for Therapeutic Interventions in Patients with Hypercholesterolaemia. International Journal of Clinical Practice 2004, 58, 859–866. [Google Scholar] [CrossRef]
- Lee, A.; Griffin, B. Dietary Cholesterol, Eggs and Coronary Heart Disease Risk in Perspective. Nutrition Bulletin 2006, 31, 21–27. [Google Scholar] [CrossRef]
- Alderton, B.A.; Ball, J.W.; Barbon, A.R.; Batchelder, M.; Beaufrère, H.; Bingley, M.; Blanco, M.C.; Bays, T.B.; Brown, C.J.; Burgdorf-Moisuk, A.; et al. Contributors. In Clinical Veterinary Advisor; Mayer, J., Donnelly, T.M., Eds.; W.B. Saunders: Saint Louis, 2013; pp. ix–xii. ISBN 978-1-4160-3969-3. [Google Scholar]
- Motonaka, Junko. ; Faulkner, L.R. Determination of Cholesterol and Cholesterol Ester with Novel Enzyme Microsensors. Anal. Chem. 1993, 65, 3258–3261. [Google Scholar] [CrossRef]
- Sekretaryova, A.N.; Beni, V.; Eriksson, M.; Karyakin, A.A.; Turner, A.P.F.; Vagin, M.Yu. Cholesterol Self-Powered Biosensor. Anal. Chem. 2014, 86, 9540–9547. [Google Scholar] [CrossRef]
- Şanlıdere Aloğlu, H.; Öner, Z.; Demir Özer, E.; Uz, E. Gıda kaynaklı mayaların in vitroda kolesterolü asimile etme özelliklerinin belirlenmesi ve yüksek kolestorel içeren diyabetle sıçanlarda kolesterolü düşürücü ajan olarak kullanılabilirliğinin araştırılması. undefined 2013, 1–73. [Google Scholar]
- An Overview on Electrochemical Determination of Cholesterol - Amiri - 2020 - Electroanalysis - Wiley Online Library Available online:. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/elan.201900669 (accessed on 20 October 2023).
- Li, Y.; Cai, J.; Liu, F.; Yang, H.; Lin, Y.; Li, S.; Huang, X.; Lin, L. Construction of a Turn Off-on Fluorescent Nanosensor for Cholesterol Based on Fluorescence Resonance Energy Transfer and Competitive Host-Guest Recognition. Talanta 2019, 201, 82–89. [Google Scholar] [CrossRef]
- Demi̇rci̇, M.; Güldaş, M.; Başoğlu, F. Gıdalardan Kolesterol Azaltılabilir mi? GIDA 1996, 21. [Google Scholar]
- Huber, W.; Molero, A.; Pereyra, C.; Martínez de la Ossa, E. Dynamic Supercritical CO2 Extraction for Removal of Cholesterol from Anhydrous Milk Fat. International Journal of Food Science & Technology 1996, 31, 143–151. [Google Scholar] [CrossRef]
- Lunn, J.; Theobald, H.E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutrition Bulletin 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Akinwunmi, I.; Thompson, L. d.; Ramsey, C. b. Marbling, Fat Trim and Doneness Effects on Sensory Attributes, Cooking Loss and Composition of Cooked Beef Steaks. Journal of Food Science 1993, 58, 242–244. [Google Scholar] [CrossRef]
- Nirala, N.R.; Abraham, S.; Kumar, V.; Bansal, A.; Srivastava, A.; Saxena, P.S. Colorimetric Detection of Cholesterol Based on Highly Efficient Peroxidase Mimetic Activity of Graphene Quantum Dots. Sensors and Actuators B: Chemical 2015, 218, 42–50. [Google Scholar] [CrossRef]
- Nirala, N.R.; Saxena, P.S.; Srivastava, A. Colorimetric Detection of Cholesterol Based on Enzyme Modified Gold Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 190, 506–512. [Google Scholar] [CrossRef]
- Okazaki, M.; Usui, S.; Nakamura, M.; Yamashita, S. Evaluation of an HPLC Method for LDL-Cholesterol Determination in Patients with Various Lipoprotein Abnormalities in Comparison with Beta-Quantification. Clinica Chimica Acta 2008, 395, 62–67. [Google Scholar] [CrossRef]
- Wu, W.-F.; Wang, Q.-H.; Zhang, T.; Mi, S.-H.; Liu, Y.; Wang, L.-Y. Gas Chromatography Analysis of Serum Cholesterol Synthesis and Absorption Markers Used to Predict the Efficacy of Simvastatin in Patients with Coronary Heart Disease. Clinical Biochemistry 2013, 46, 993–998. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Oliveira, M.B.P.P.; Sanches-Silva, A.; Costa, H.S. Cholesterol Determination in Foods: Comparison between High Performance and Ultra-High Performance Liquid Chromatography. Food Chemistry 2016, 193, 18–25. [Google Scholar] [CrossRef]
- Sun, Q.; Fang, S.; Fang, Y.; Qian, Z.; Feng, H. Fluorometric Detection of Cholesterol Based on β-Cyclodextrin Functionalized Carbon Quantum Dots via Competitive Host-Guest Recognition. Talanta 2017, 167, 513–519. [Google Scholar] [CrossRef]
- Sun, L.; Li, S.; Ding, W.; Yao, Y.; Yang, X.; Yao, C. Fluorescence Detection of Cholesterol Using a Nitrogen-Doped Graphene Quantum Dot/Chromium Picolinate Complex-Based Sensor. J. Mater. Chem. B 2017, 5, 9006–9014. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Khataee, A. Ultrasensitive Chemiluminescent Biosensor for the Detection of Cholesterol Based on Synergetic Peroxidase-like Activity of MoS2 and Graphene Quantum Dots. Talanta 2018, 178, 992–1000. [Google Scholar] [CrossRef]
- Daneshfar, A.; Khezeli, T.; Lotfi, H.J. Determination of Cholesterol in Food Samples Using Dispersive Liquid–Liquid Microextraction Followed by HPLC–UV. Journal of Chromatography B 2009, 877, 456–460. [Google Scholar] [CrossRef]
- Haeckel, R.; Sonntag, O.; Külpmann, W.R.; Feldmann, U. Comparison of 9 Methods for the Determination of Cholesterol. 1979; 17, 553–563. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, J.; Cui, L.; Zhou, Z.; Zhou, S.; Zhang, Z.; Zheng, R.; Xue, Y.; Zhang, M.; Li, S.; et al. Graphene and Au NPs Co-Mediated Enzymatic Silver Deposition for the Ultrasensitive Electrochemical Detection of Cholesterol. Biosensors and Bioelectronics 2018, 102, 560–567. [Google Scholar] [CrossRef]
- Kotani, A.; Hakamata, H.; Nakayama, N.; Kusu, F. Picomole Level Determination of Cholesterol by HPLC with Electrochemical Detection Using Boron-Doped Diamond Electrode after Performance Assessment Based on the FUMI Theory. Electroanalysis 2011, 23, 2709–2715. [Google Scholar] [CrossRef]
- Becker, S.; Röhnike, S.; Empting, S.; Haas, D.; Mohnike, K.; Beblo, S.; Mütze, U.; Husain, R.A.; Thiery, J.; Ceglarek, U. LC–MS/MS-Based Quantification of Cholesterol and Related Metabolites in Dried Blood for the Screening of Inborn Errors of Sterol Metabolism. Anal Bioanal Chem 2015, 407, 5227–5233. [Google Scholar] [CrossRef]
- Barua, S.; Gogoi, S.; Khan, R. Fluorescence Biosensor Based on Gold-Carbon Dot Probe for Efficient Detection of Cholesterol. Synthetic Metals 2018, 244, 92–98. [Google Scholar] [CrossRef]
- Aryal, K.P.; Ekanayaka, T.K.; Gilbert, S.; Dowben, P.A.; Jeong, H.K. Fluorescent Detection of Cholesterol Using P-Sulfonatocalix[4]Arene Functionalized Carbon Nanotubes and Thermally Reduced Graphite Oxide Composites. Chemical Physics Letters 2020, 738, 136856. [Google Scholar] [CrossRef]
- Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; de Wael, K.; Cristea, C. Tackling the Problem of Sensing Commonly Abused Drugs Through Nanomaterials and (Bio)Recognition Approaches. Frontiers in Chemistry 2020, 8. [Google Scholar] [CrossRef]
- Phetsang, S.; Jakmunee, J.; Mungkornasawakul, P.; Laocharoensuk, R.; Ounnunkad, K. Sensitive Amperometric Biosensors for Detection of Glucose and Cholesterol Using a Platinum/Reduced Graphene Oxide/Poly(3-Aminobenzoic Acid) Film-Modified Screen-Printed Carbon Electrode. Bioelectrochemistry 2019, 127, 125–135. [Google Scholar] [CrossRef]
- Saxena, U.; Das, A.B. Nanomaterials towards Fabrication of Cholesterol Biosensors: Key Roles and Design Approaches. Biosensors and Bioelectronics 2016, 75, 196–205. [Google Scholar] [CrossRef]
- Cohen, A.; Hertz, H.S.; Mandel, J.; Paule, R.C.; Schaffer, R.; Sniegoski, L.T.; Sun, T.; Welch, M.J.; White, E. Total Serum Cholesterol by Isotope Dilution/Mass Spectrometry: A Candidate Definitive Method. Clin Chem 1980, 26, 854–860. [Google Scholar] [CrossRef]
- Miyamoto, T.; Sugiyama, Y.; Suzuki, J.; Oohashi, T.; Takahashi, Y. Determination of Bovine Serum Low-Density Lipoprotein Cholesterol Using the N-Geneous Method. Vet Res Commun 2006, 30, 467–474. [Google Scholar] [CrossRef]
- Srivastava, M.; Srivastava, S.K.; Nirala, N.R.; Prakash, R. A Chitosan-Based Polyaniline–Au Nanocomposite Biosensor for Determination of Cholesterol. Anal. Methods 2014, 6, 817–824. [Google Scholar] [CrossRef]
- Tyagi, M.; Chandran, A.; Joshi, T.; Prakash, J.; Agrawal, V.V.; Biradar, A.M. Self Assembled Monolayer Based Liquid Crystal Biosensor for Free Cholesterol Detection. Applied Physics Letters 2014, 104, 154104. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Chen, S.; Ruo, Y.; Zhong, X.; Wu, X. Bi-Pseudoenzyme Synergetic Catalysis to Generate a Coreactant of Peroxydisulfate for an Ultrasensitive Electrochemiluminescence-Based Cholesterol Biosensor. Biosensors and Bioelectronics 2014, 57, 71–76. [Google Scholar] [CrossRef]
- Morzycki, J.W.; Sobkowiak, A. Electrochemical Oxidation of Cholesterol. Beilstein J. Org. Chem. 2015, 11, 392–402. [Google Scholar] [CrossRef]
- Steckhan, E. Indirect Electroorganic Syntheses—A Modern Chapter of Organic Electrochemistry [New Synthetic Methods (59)]. Angewandte Chemie International Edition in English 1986, 25, 683–701. [Google Scholar] [CrossRef]
- Kowalski, J.; Płoszyńska, J.; Sobkowiak, A.; Morzycki, J.W.; Wilczewska, A.Z. Direct Electrochemical Acetoxylation of Cholesterol at the Allylic Position. Journal of Electroanalytical Chemistry 2005, 585, 275–280. [Google Scholar] [CrossRef]
- Hosokawa, Y.-Y.; Hakamata, H.; Murakami, T.; Aoyagi, S.; Kuroda, M.; Mimaki, Y.; Ito, A.; Morosawa, S.; Kusu, F. Electrochemical Oxidation of Cholesterol in Acetonitrile Leads to the Formation of Cholesta-4,6-Dien-3-One. Electrochimica Acta 2009, 54, 6412–6416. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin Chem 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Owen, W.E.; Thatcher, M.L.; Crabtree, K.J.; Greer, R.W.; Strathmann, F.G.; Straseski, J.A.; Genzen, J.R. Body Fluid Matrix Evaluation on a Roche Cobas 8000 System. Clinical Biochemistry 2015, 48, 911–914. [Google Scholar] [CrossRef]
- Amundson, D.M.; Zhou, M. Fluorometric Method for the Enzymatic Determination of Cholesterol. Journal of Biochemical and Biophysical Methods 1999, 38, 43–52. [Google Scholar] [CrossRef]
- Ferreira, C.E. dos S.; França, C.N.; Correr, C.J.; Zucker, M.L.; Andriolo, A.; Scartezini, M. Clinical Correlation between a Point-of-Care Testing System and Laboratory Automation for Lipid Profile. Clinica Chimica Acta 2015, 446, 263–266. [Google Scholar] [CrossRef]
- Saraiva, D.; Semedo, R.; Castilho, M. da C.; Silva, J.M.; Ramos, F. Selection of the Derivatization Reagent—The Case of Human Blood Cholesterol, Its Precursors and Phytosterols GC–MS Analyses. Journal of Chromatography B 2011, 879, 3806–3811. [Google Scholar] [CrossRef]
- Schneider, C. Chemistry and Biology of Vitamin E. Molecular Nutrition & Food Research 2005, 49, 7–30. [Google Scholar] [CrossRef]
- Mestre Prates, J.A.; Gonçalves Quaresma, M.A.; Branquinho Bessa, R.J.; Andrade Fontes, C.M.G.; Mateus Alfaia, C.M.P. Simultaneous HPLC Quantification of Total Cholesterol, Tocopherols and β-Carotene in Barrosã-PDO Veal. Food Chemistry 2006, 94, 469–477. [Google Scholar] [CrossRef]
- Hamill, T.W.; Soliman, A.M. Determination of Cholesterol by P-Nitrobenzoate Derivatization and Liquid Chromatography. Journal of AOAC INTERNATIONAL 1994, 77, 1190–1196. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Jeong, I.-S.; Kwak, B.-M.; Leem, D.; Yoon, T.; Yoon, C.; Jeong, J.; Park, J.-M.; Kim, J.-M. Rapid Determination of Cholesterol in Milk Containing Emulsified Foods. Food Chemistry 2012, 135, 2411–2417. [Google Scholar] [CrossRef]
- Bavisetty, S.C.B.; Narayan, B. An Improved RP-HPLC Method for Simultaneous Analyses of Squalene and Cholesterol Especially in Aquatic Foods. J Food Sci Technol 2015, 52, 6083–6089. [Google Scholar] [CrossRef]
- Lioe, H.; Setianingrum, T.; Anggraeni, R. Method Validation of Cholesterol Analysis in Egg Using HPLC-ELSD. Jurnal Ilmu Pertanian Indonesia 2013, 18, 178–185. [Google Scholar]
- Park, J.; Jeong, I.-S.; Kwak, B.-M.; Ahn, J.-H.; Leem, D.; Jeong, J.; Kim, J.-M. Application of Rapid Sample Preparation Method and Monitoring for Cholesterol Content in Chicken Egg and Egg Powder. Korean Journal for Food Science of Animal Resources 2013, 33. [Google Scholar] [CrossRef]
- Souza, H.A.L.; Mariutti, L.R.B.; Bragagnolo, N. Microwave Assisted Direct Saponification for the Simultaneous Determination of Cholesterol and Cholesterol Oxides in Shrimp. The Journal of Steroid Biochemistry and Molecular Biology 2017, 169, 88–95. [Google Scholar] [CrossRef]
- Stroher, G.L.; Rodrigues, A.C.; Dias, L.F.; Pedrão, M.R.; Paula, L.N. de; Visentainer, J.V.; Souza, N.E. de Comparative Analysis and Validation Methodologies of GC and HPLC for Analysis of Cholesterol in Meat Products. American Journal of Analytical Chemistry 2012, 3, 306–311. [Google Scholar] [CrossRef]
- Ramalho, H.M.M.; Casal, S.; Oliveira, M.B.P.P. Total Cholesterol and Desmosterol Contents in Raw, UHT, Infant Formula Powder and Human Milks Determined by a New Fast Micro-HPLC Method. Food Anal. Methods 2011, 4, 424–430. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; Thompson, L.D.; Galyean, M.L.; Brooks, J.C.; Patterson, K.Y.; Boylan, L.M. Cholesterol Content and Methods for Cholesterol Determination in Meat and Poultry. Comprehensive Reviews in Food Science and Food Safety 2011, 10, 269–289. [Google Scholar] [CrossRef]
- Shimada, K.; Mitamura, K.; Higashi, T. Gas Chromatography and High-Performance Liquid Chromatography of Natural Steroids. Journal of Chromatography A 2001, 935, 141–172. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Electrochemical Cholesterol Sensor Based on Cholesterol Oxidase and MoS2-AuNPs Modified Glassy Carbon Electrode. Sensors and Actuators B: Chemical 2016, 233, 100–106. [Google Scholar] [CrossRef]
- Borkovcová, I.; Janoušková, E.; Dračková, M.; Janštová, B.; Vorlová, L. Determination of Sterols in Dairy Products and Vegetable Fats by HPLC and GC Methods. Czech Journal of Food Sciences 2009, 27, S217–S219. [Google Scholar] [CrossRef]
- Kolarič, L.; Šimko, P. The Comparison of HPLC and Spectrophotometric Method for Cholesterol Determination. Potravinarstvo Slovak Journal of Food Sciences 2020, 14, 118–124. [Google Scholar] [CrossRef]
- Fenton, M. Chromatographic Separation of Cholesterol in Foods. Journal of Chromatography A 1992, 624, 369–388. [Google Scholar] [CrossRef]
- Kanal, M. Gas Chromatographic Separation of Sterols and Its Clinical Application. The Journal of Biochemistry 1964, 56, 266–272. [Google Scholar] [CrossRef]
- AOAC 994.10-1994(2010), Cholesterol in Foods. Direct Saponificat - $14.30 : AOAC Official Method Available online:. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=186 (accessed on 20 October 2023).
- Thompson, R.H.; Merola, G.V. A Simplified Alternative to the AOAC Official Method for Cholesterol in Multicomponent Foods. J AOAC Int 1993, 76, 1057–1068. [Google Scholar] [CrossRef]
- Liebisch, G.; Binder, M.; Schifferer, R.; Langmann, T.; Schulz, B.; Schmitz, G. High Throughput Quantification of Cholesterol and Cholesteryl Ester by Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS). Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2006, 1761, 121–128. [Google Scholar] [CrossRef]
- Hidaka, H.; Hanyu, N.; Sugano, M.; Kawasaki, K.; Yamauchi, K.; Katsuyama, T. Analysis of Human Serum Lipoprotein Lipid Composition Using MALDI-TOF Mass Spectrometry. Ann Clin Lab Sci 2007, 37, 213–221. [Google Scholar]
- Hsu, C.-C.; Dorrestein, P.C. Visualizing Life with Ambient Mass Spectrometry. Current Opinion in Biotechnology 2015, 31, 24–34. [Google Scholar] [CrossRef]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- Lee, W.-C.; Kim, K.-B.; Gurudatt, N.G.; Hussain, K.K.; Choi, C.S.; Park, D.-S.; Shim, Y.-B. Comparison of Enzymatic and Non-Enzymatic Glucose Sensors Based on Hierarchical Au-Ni Alloy with Conductive Polymer. Biosensors and Bioelectronics 2019, 130, 48–54. [Google Scholar] [CrossRef]
- Saha, M.; Das, S. Fabrication of a Nonenzymatic Cholesterol Biosensor Using Carbon Nanotubes from Coconut Oil. J Nanostruct Chem 2014, 4, 94. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, J.-Y. Nonenzymatic Free-Cholesterol Detection via a Modified Highly Sensitive Macroporous Gold Electrode with Platinum Nanoparticles. Biosensors and Bioelectronics 2010, 26, 1353–1358. [Google Scholar] [CrossRef]
- Nawaz, M.A.H.; Majdinasab, M.; Latif, U.; Nasir, M.; Gokce, G.; Anwar, M.W.; Hayat, A. Development of a Disposable Electrochemical Sensor for Detection of Cholesterol Using Differential Pulse Voltammetry. Journal of Pharmaceutical and Biomedical Analysis 2018, 159, 398–405. [Google Scholar] [CrossRef]
- Hayat, A.; Barthelmebs, L.; Sassolas, A.; Marty, J.-L. An Electrochemical Immunosensor Based on Covalent Immobilization of Okadaic Acid onto Screen Printed Carbon Electrode via Diazotization-Coupling Reaction. Talanta 2011, 85, 513–518. [Google Scholar] [CrossRef]
- Borisova, B.; Sánchez, A.; Jiménez-Falcao, S.; Martín, M.; Salazar, P.; Parrado, C.; Pingarrón, J.M.; Villalonga, R. Reduced Graphene Oxide-Carboxymethylcellulose Layered with Platinum Nanoparticles/PAMAM Dendrimer/Magnetic Nanoparticles Hybrids. Application to the Preparation of Enzyme Electrochemical Biosensors. Sensors and Actuators B: Chemical 2016, 232, 84–90. [Google Scholar] [CrossRef]
- Samdani, K.J.; Joh, D.W.; Rath, M.K.; Lee, K.T. Electrochemical Mediatorless Detection of Norepinephrine Based on MoO3 Nanowires. Electrochimica Acta 2017, 252, 268–274. [Google Scholar] [CrossRef]
- Settu, K.; Liu, J.-T.; Chen, C.-J.; Tsai, J.-Z. Development of Carbon−graphene-Based Aptamer Biosensor for EN2 Protein Detection. Analytical Biochemistry 2017, 534, 99–107. [Google Scholar] [CrossRef]
- David, M.; Barsan, M.M.; Brett, C.M.A.; Florescu, M. Improved Glucose Label-Free Biosensor with Layer-by-Layer Architecture and Conducting Polymer Poly(3,4-Ethylenedioxythiophene). Sensors and Actuators B: Chemical 2018, 255, 3227–3234. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Wu, L.-P.; Chou, T.-T.; Hsieh, Y.-Z. Functional Magnetic Nanoparticles–Assisted Electrochemical Biosensor for Eosinophil Cationic Protein in Cell Culture. Sensors and Actuators B: Chemical 2018, 257, 672–677. [Google Scholar] [CrossRef]
- Hernández, D.M.; González, M.A.; Astudillo, P.D.; Hernández, L.S.; González, F.J. Modification of Carbon Electrodes by Anodic Oxidation of Organic Anions. Procedia Chemistry 2014, 12, 3–8. [Google Scholar] [CrossRef]
- Yao, C.; Sun, H.; Fu, H.-F.; Tan, Z.-C. Sensitive Simultaneous Determination of Nitrophenol Isomers at Poly(p-Aminobenzene Sulfonic Acid) Film Modified Graphite Electrode. Electrochimica Acta 2015, 156, 163–170. [Google Scholar] [CrossRef]
- Wang, W.; Bai, H.; Li, H.; Lv, Q.; Zhang, Q.; Bao, N. Carbon Tape Coated with Gold Film as Stickers for Bulk Fabrication of Disposable Gold Electrodes to Detect Cr(VI). Sensors and Actuators B: Chemical 2016, 236, 218–225. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid: A Review. TrAC Trends in Analytical Chemistry 2016, 76, 15–29. [Google Scholar] [CrossRef]
- Derina, K.; Korotkova, E.; Taishibekova, Y.; Salkeeva, L.; Kratochvil, B.; Barek, J. Electrochemical Nonenzymatic Sensor for Cholesterol Determination in Food. Anal Bioanal Chem 2018, 410, 5085–5092. [Google Scholar] [CrossRef]
- Mehtab, S.; Zaidi, M.G.H.; Joshi, P. Metal Nanoparticles Based Electrochemical Biosensors for Cholesterol. Journal of Nanomedicine & Nanotechnology 2020, 11, 1–2. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel Paper-Based Cholesterol Biosensor Using Graphene/Polyvinylpyrrolidone/Polyaniline Nanocomposite. Biosensors and Bioelectronics 2014, 52, 13–19. [Google Scholar] [CrossRef]
- Singh, J.; Roychoudhury, A.; Srivastava, M.; Solanki, P.R.; Lee, D.W.; Lee, S.H.; Malhotra, B.D. A Dual Enzyme Functionalized Nanostructured Thulium Oxide Based Interface for Biomedical Application. Nanoscale 2013, 6, 1195–1208. [Google Scholar] [CrossRef]
- Souza, T.T.L.; Moraes, M.L.; Ferreira, M. Use of Hemoglobin as Alternative to Peroxidases in Cholesterol Amperometric Biosensors. Sensors and Actuators B: Chemical 2013, 178, 101–106. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Khodadadian, M. Amperometric Cholesterol Biosensor Based on the Direct Electrochemistry of Cholesterol Oxidase and Catalase on a Graphene/Ionic Liquid-Modified Glassy Carbon Electrode. Biosensors and Bioelectronics 2014, 53, 472–478. [Google Scholar] [CrossRef]
- Ferri, T.; Poscia, A.; Santucci, R. Direct Electrochemistry of Membrane-Entrapped Horseradish Peroxidase.: Part I. A Voltammetric and Spectroscopic Study. Bioelectrochemistry and Bioenergetics 1998, 44, 177–181. [Google Scholar] [CrossRef]
- Santucci, R.; Bongiovanni, C.; Marini, S.; Del Conte, R; Tien, M.; Banci, L.; Coletta, M. Redox Equilibria of Manganese Peroxidase from Phanerochaetes Chrysosporium: Functional Role of Residues on the Proximal Side of the Haem Pocket. Biochem J 2000, 349, 85–90. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-Generation Polymer Nanocomposite-Based Electrochemical Sensors and Biosensors: A Review. TrAC Trends in Analytical Chemistry 2016, 82, 55–67. [Google Scholar] [CrossRef]
- Raj, V.; Jaime, R.; Astruc, D.; Sreenivasan, K. Detection of Cholesterol by Digitonin Conjugated Gold Nanoparticles. Biosens Bioelectron 2011, 27, 197–200. [Google Scholar] [CrossRef]
- Giri, A.K.; Charan, C.; Saha, A.; Shahi, V.K.; Panda, A.B. An Amperometric Cholesterol Biosensor with Excellent Sensitivity and Limit of Detection Based on an Enzyme-Immobilized Microtubular ZnO@ZnS Heterostructure. J. Mater. Chem. A 2014, 2, 16997–17004. [Google Scholar] [CrossRef]
- Komathi, S.; Muthuchamy, N.; Lee, K.-P.; Gopalan, A.-I. Fabrication of a Novel Dual Mode Cholesterol Biosensor Using Titanium Dioxide Nanowire Bridged 3D Graphene Nanostacks. Biosensors and Bioelectronics 2016, 84, 64–71. [Google Scholar] [CrossRef]
- Dey, R.S.; Raj, C.R. Enzyme-Integrated Cholesterol Biosensing Scaffold Based on in Situ Synthesized Reduced Graphene Oxide and Dendritic Pd Nanostructure. Biosensors and Bioelectronics 2014, 62, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Du, K.; Liu, W.; Zhang, J.; Li, M. Electrochemical Sensors Based on Molybdenum Disulfide Nanomaterials. Electroanalysis 2015, 27, 2091–2097. [Google Scholar] [CrossRef]

| Foods | Cholesterol (mg/100g) |
|---|---|
| Brain | 2353 |
| Egg yolk | 1260 |
| Kidney | 803 |
| Egg | 396 |
| Liver | 360 |
| Butter | 240 |
| Cheese | 160 |
| Cream | 109 |
| Veal | 100 |
| Chicken meat | 98 |
| Beef | 60 |
| Breast milk | 25 |
| Cow's milk | 12.3 |
| Yogurt | 12.2 |
| Skim milk | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
