Submitted:
30 October 2023
Posted:
31 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Field investigation
2.3. Sampling and measurement of soil properties
2.4. Data analysis
3. Results
3.1. Characteristics of shrub patch
3.2. Heterogeneity of soil nutrient distribution and the shrub types
3.3. Distribution characteristics of shrub patch soil nutrients in different soil layers
3.4. Characteristics of soil nutrient distribution in different locations of shrub patches
| Shrub patch type | Patch microsites | soil depth (cm) | SOM (g/kg) | TN (g/kg) | TK (g/kg) | TP (g/kg) |
| SO | ES | 0—20 | 91.603 | 2.224 | 1.872 | 0.749 |
| 20—40 | 52.842 | 2.163 | 1.444 | 0.490 | ||
| 40—60 | 35.822 | 1.681 | 1.411 | 0.451 | ||
| mean value | 60.09±65a | 2.02±0.17a | 1.58±0.15b | 0.56±0.09a | ||
| BC | 0—20 | 101.541 | 2.666 | 1.993 | 0.610 | |
| 20—40 | 61.453 | 2.147 | 1.703 | 0.515 | ||
| 40—60 | 49.071 | 1.556 | 1.595 | 0.440 | ||
| mean value | 70.69±5.83a | 2.12±0.32a | 1.76±0.12ab | 0.52±0.05a | ||
| CS | 0—20 | 138.960 | 3.182 | 2.188 | 0.526 | |
| 20—40 | 97.297 | 1.929 | 2.010 | 0.411 | ||
| 40—60 | 54.224 | 1.774 | 1.927 | 0.407 | ||
| mean value | 96.83±4.46a | 2.29±0.45a | 2.04±0.08a | 0.45±0.04a | ||
| SA | ES | 0—20 | 45.132 | 1.378 | 1.225 | 0.647 |
| 20—40 | 35.180 | 1.028 | 1.193 | 0.591 | ||
| 40—60 | 21.960 | 0.530 | 0.954 | 0.417 | ||
| mean value | 34.09±6.71a | 0.98±0.24a | 1.12±0.09a | 0.55±0.07a | ||
| BC | 0—20 | 37.154 | 1.338 | 1.143 | 0.558 | |
| 20—40 | 29.853 | 1.276 | 1.122 | 0.358 | ||
| 40—60 | 27.948 | 0.841 | 0.978 | 0.389 | ||
| mean value | 31.65±2.81a | 1.15±0.16a | 1.08±0.05a | 0.43±0.06a | ||
| CS | 0—20 | 53.197 | 1.875 | 1.674 | 0.441 | |
| 20—40 | 37.099 | 1.027 | 1.146 | 0.379 | ||
| 40—60 | 32.680 | 0.639 | 0.894 | 0.191 | ||
| mean value | 40.99±6.23a | 1.18±0.36a | 1.24±0.23a | 0.34±0.08a | ||
| RC | ES | 0—20 | 96.349 | 0.450 | 0.703 | 0.653 |
| 20—40 | 88.560 | 0.555 | 0.748 | 0.670 | ||
| 40—60 | 58.997 | 0.446 | 0.716 | 0.663 | ||
| mean value | 81.30±11.38a | 0.48±0.03a | 0.72±0.01b | 0.66±0.00b | ||
| BC | 0—20 | 113.684 | 0.520 | 0.820 | 0.938 | |
| 20—40 | 100.827 | 0.466 | 0.809 | 0.886 | ||
| 40—60 | 79.332 | 0.497 | 0.864 | 0.794 | ||
| mean value | 97.95±10.02a | 0.49±0.02a | 0.83±0.02a | 0.87±0.04a | ||
| CS | 0—20 | 120.596 | 0.474 | 0.914 | 0.836 | |
| 20—40 | 60.498 | 0.317 | 0.832 | 0.727 | ||
| 40—60 | 51.402 | 0.284 | 0.834 | 0.842 | ||
| mean value | 77.50±7.08a | 0.36±0.06a | 0.86±0.03a | 0.80±0.04a | ||
| PF | ES | 0—20 | 103.082 | 0.579 | 0.900 | 1.319 |
| 20—40 | 92.046 | 0.451 | 0.797 | 0.938 | ||
| 40—60 | 88.549 | 0.448 | 0.784 | 1.159 | ||
| mean value | 94.56±4.38a | 0.49±0.04b | 0.83±0.04b | 1.14±0.11a | ||
| BC | 0—20 | 86.040 | 0.396 | 0.982 | 1.148 | |
| 20—40 | 81.743 | 0.280 | 0.885 | 1.091 | ||
| 40—60 | 73.026 | 0.419 | 0.845 | 0.928 | ||
| mean value | 80.27±3.83a | 0.36±0.04ab | 0.90±0.04ab | 1.06±0.07a | ||
| CS | 0—20 | 97.748 | 0.623 | 1.041 | 1.124 | |
| 20—40 | 70.697 | 0.431 | 1.017 | 1.206 | ||
| 40—60 | 73.282 | 0.588 | 0.902 | 1.082 | ||
| mean value | 73.97±9.57a | 1.09±0.26a | 1.28±0.15a | 0.68±0.10a |
3.5. Characteristics of soil nutrient enrichment rate in shrub patches
3.6. The correlation between shrub patch characteristics and soil nutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ravolainen, V.T.; Bråthen, K.A.; Ims, R.A.; Yoccoz, N.G.; Soininen, E.M. Shrub patch configuration at the landscape scale is related to the diversity of adjacent herbaceous vegetation. Plant Ecology & Diversity 2013, 6, 257–268. [Google Scholar]
- Whitford, W.G.; Duval, B.D. Ecology of desert systems; Academic Press, 2019. [Google Scholar]
- D'Odorico, P.; Okin, G.S.; Bestelmeyer, B.T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 2012, 5, 520–530. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology letters 2011, 14, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; Yu, Q.; Lü, X.-T.; Trumbore, S.E.; Yang, J.-J.; Han, X.-G. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen. Oecologia 2016, 180, 1213–1222. [Google Scholar] [CrossRef]
- Zhao, L.-X.; Zhang, K.; Siteur, K.; Li, X.-Z.; Liu, Q.-X.; van de Koppel, J. Fairy circles reveal the resilience of self-organized salt marshes. Science Advances 2021, 7, eabe1100. [Google Scholar] [CrossRef] [PubMed]
- Sheffer, E.; von Hardenberg, J.; Yizhaq, H.; Shachak, M.; Meron, E. Emerged or imposed: a theory on the role of physical templates and self-organisation for vegetation patchiness. Ecology letters 2013, 16, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.-Q.; Wang, C.-H.; Chang, L.-L.; Wu, Y.-P.; Li, L.; Jin, Z. Effects of feedback regulation on vegetation patterns in semi-arid environments. Applied Mathematical Modelling 2018, 61, 200–215. [Google Scholar] [CrossRef]
- Vogel, B.; Rostagno, C.M.; Molina, L.; Antilef, M.; La Manna, L. Cushion shrubs encroach subhumid rangelands and form fertility islands along a grazing gradient in Patagonia. Plant and Soil 2022, 475, 623–643. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Zhang, P.; Zhao, X.; Zhou, L.; Liu, T.; Hu, H.; Bai, Y.; Shen, H.; Fang, J. Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology 2015, 30, 1627–1641. [Google Scholar] [CrossRef]
- Soliveres, S.; Eldridge, D.J. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Functional Ecology 2014, 28, 530–537. [Google Scholar] [CrossRef]
- Ochoa-Hueso, R.; Eldridge, D.J.; Delgado-Baquerizo, M.; Soliveres, S.; Bowker, M.A.; Gross, N.; Le Bagousse-Pinguet, Y.; Quero, J.L.; García-Gómez, M.; Valencia, E. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology 2018, 106, 242–253. [Google Scholar] [CrossRef]
- Berdugo, M.; Soliveres, S.; Kéfi, S.; Maestre, F.T. The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands. Ecography 2019, 42, 755–767. [Google Scholar] [CrossRef]
- Liu, Z.-w.; Chen, R.-s.; Song, Y.-x.; Han, C.-t. Aboveground biomass and water storage allocation in alpine willow shrubs in the Qilian Mountains in China. Journal of Mountain Science 2015, 12, 207–217. [Google Scholar] [CrossRef]
- Zhang, F.; Jia, W.; Zhu, G.; Zhang, Z.; Shi, Y.; Yang, L.; Xiong, H.; Zhang, M. Using stable isotopes to investigate differences of plant water sources in subalpine habitats. Hydrological Processes 2022, 36, e14518. [Google Scholar] [CrossRef]
- Niu, H.; Lu, X.; Zhang, G.; Sarangi, C. Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau. Environmental Pollution 2022, 302, 119093. [Google Scholar] [CrossRef] [PubMed]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Abalori, T.A.; Cao, W.; Weobong, C.A.-A.; Wang, S.; Anning, D.K.; Sam, F.E.; Liu, W.; Wang, W. Spatial variability of soil organic carbon fractions and aggregate stability along an elevation gradient in the alpine meadow grasslands of the Qilian Mountains, China. Chilean journal of agricultural research 2022, 82, 52–64. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, C.; Xu, Z.; Wang, Y.; Peng, H. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. Journal of arid land 2013, 5, 207–219. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods 1996, 5, 961–1010. [Google Scholar]
- Lynch, J.M.; Barbano, D.M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. Journal of AOAC international 1999, 82, 1389–1398. [Google Scholar] [CrossRef]
- Armas, C.; Ordiales, R.; Pugnaire, F.I. Measuring plant interactions: a new comparative index. Ecology 2004, 85, 2682–2686. [Google Scholar] [CrossRef]
- Titus, J.H.; Nowak, R.S.; Smith, S.D. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments 2002, 52, 269–292. [Google Scholar] [CrossRef]
- Zhang, Q.-p.; Wang, J.; Wang, Q. Effects of abiotic factors on plant diversity and species distribution of alpine meadow plants. Ecological Informatics 2021, 61, 101210. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Zhang, P.; Zhao, X.; Zhou, L.; Liu, T.; Hu, H.; Bai, Y.; Shen, H.; Fang, J. Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology 2015, 30, 1627–1641. [Google Scholar] [CrossRef]
- Hao, H.-M.; Lu, R.; Liu, Y.; Fang, N.-F.; Wu, G.-L.; Shi, Z.-H. Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau. Catena 2016, 144, 177–183. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.Y.; Huang, Y.M.; Li, L.; Zhang, J.H.; Liu, Q.; Jiang, Z.Y. Shrub patch configuration in relation to precipitation and soil properties in Northwest China. Ecohydrology 2018, 11, e1916. [Google Scholar] [CrossRef]
- Shi, Y.; Jia, W.; Zhu, G.; Ding, D.; Yuan, R.; Xu, X.; Zhang, Z.; Yang, L.; Xiong, H. Hydrogen and Oxygen Isotope Characteristics of Water and the Recharge Sources in Subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies 2021, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, H.-Y.; Jia, B.; Gang, S.; Li, Y.; Li, F.-C.; Mou, X.M.; Li, X.G. Soil sampling depth matters in assessing the impact of shrubification on soil organic carbon storage in grazed alpine meadows. Geoderma 2022, 426, 116119. [Google Scholar] [CrossRef]
- Howard, K.S.; Eldridge, D.J.; Soliveres, S. Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology 2012, 13, 159–168. [Google Scholar] [CrossRef]
- Aguirre, D.; Benhumea, A.E.; McLaren, J.R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biology and Biochemistry 2021, 153, 108121. [Google Scholar] [CrossRef]
- Vitasse, Y.; Delzon, S.; Bresson, C.C.; Michalet, R.; Kremer, A. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research 2009, 39, 1259–1269. [Google Scholar] [CrossRef]
- Cui, G.; Wei, X.; Degen, A.A.; Wei, X.; Zhou, J.; Ding, L.; Shang, Z.; Liu, S.; Long, R. Trolox-equivalent antioxidant capacity and composition of five alpine plant species growing at different elevations on the Qinghai–Tibetan Plateau. Plant ecology & diversity 2016, 9, 387–396. [Google Scholar]
- Wang, J.; Li, W.; Cao, W.; Abalori, T.A.; Liu, Y.; Xin, Y.; Wang, S.; Zhang, D. Soil bacterial community responses to short-term grazing exclusion in a degraded alpine shrubland–grassland ecotone. Ecological Indicators 2021, 130, 108043. [Google Scholar] [CrossRef]
- Li, X.; Rossi, S.; Liang, E.; Julio Camarero, J. Temperature thresholds for the onset of xylogenesis in alpine shrubs on the Tibetan Plateau. Trees 2016, 30, 2091–2099. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Elmendorf, S.C.; Beck, P.S.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; Macias-Fauria, M.; Forbes, B.C. Climate sensitivity of shrub growth across the tundra biome. Nature climate change 2015, 5, 887–891. [Google Scholar] [CrossRef]
- Wu, B.; Peng, H.; Sheng, M.; Luo, H.; Wang, X.; Zhang, R.; Xu, F.; Xu, H. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety 2021, 220, 112368. [Google Scholar] [CrossRef] [PubMed]
- Makoto, K.; Kudo, G. Intraspecific differentiation in the root system of Potentilla matsumurae along a snow accumulation gradient in mid-altitude alpine environment. Arctic, Antarctic, and Alpine Research 2020, 52, 408–415. [Google Scholar] [CrossRef]
- Hales, T.C. Modelling biome-scale root reinforcement and slope stability. Earth Surface Processes and Landforms 2018, 43, 2157–2166. [Google Scholar] [CrossRef]
- Lu, X.; Camarero, J.J.; Wang, Y.; Liang, E.; Eckstein, D. Up to 400-year-old Rhododendron shrubs on the southeastern Tibetan Plateau: prospects for shrub-based dendrochronology. Boreas 2015, 44, 760–768. [Google Scholar] [CrossRef]
- d'Onofrio, D.; Baudena, M.; d'Andrea, F.; Rietkerk, M.; Provenzale, A. Tree-grass competition for soil water in arid and semiarid savannas: The role of rainfall intermittency. Water Resources Research 2015, 51, 169–181. [Google Scholar] [CrossRef]
- Erfanzadeh, R.; Yazdani, M.; Arani, A.M. Effect of different shrub species on their sub-canopy soil and vegetation properties in semiarid regions. Land Degradation & Development 2021, 32, 3236–3247. [Google Scholar]
- Yue, K.; De Frenne, P.; Fornara, D.A.; Van Meerbeek, K.; Li, W.; Peng, X.; Ni, X.; Peng, Y.; Wu, F.; Yang, Y. Global patterns and drivers of rainfall partitioning by trees and shrubs. Global change biology 2021, 27, 3350–3357. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shen, H.; Chen, L.; Li, H.; Zhang, P.; Zhao, X.; Liu, T.; Liu, S.; Xing, A.; Hu, H. Ecological consequences of shrub encroachment in the grasslands of northern China. Landscape Ecology 2019, 34, 119–130. [Google Scholar] [CrossRef]
- Dearborn, K.D.; Danby, R.K. Topographic influences on ring widths of trees and shrubs across alpine treelines in southwest Yukon. Arctic, Antarctic, and Alpine Research 2018, 50, e1495445. [Google Scholar] [CrossRef]
- Hrotkó, K. Potentials in Prunus mahaleb L. for cherry rootstock breeding. Scientia Horticulturae 2016, 205, 70–78. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.-h.; Yao, B.-q.; Ma, Z.; Huang, X.-t.; Zhou, B.-r.; Xu, M.-h.; Guo, J.; Zhou, H.-k. Effects of drought and heat on the productivity and photosynthetic characteristics of alpine meadow plants on the Qinghai-Tibetan Plateau. Journal of Mountain Science 2021, 18, 2079–2093. [Google Scholar] [CrossRef]
- Midoko-Iponga, D.; Krug, C.B.; Milton, S.J. Competition and herbivory influence growth and survival of shrubs on old fields: Implications for restoration of renosterveld shrubland. Journal of Vegetation Science 2005, 16, 685–692. [Google Scholar] [CrossRef]
- Li, H.; Shen, H.; Zhou, L.; Zhu, Y.; Chen, L.; Hu, H.; Zhang, P.; Fang, J. Shrub encroachment increases soil carbon and nitrogen stocks in temperate grasslands in China. Land Degradation & Development 2019, 30, 756–767. [Google Scholar]
- Du, B.; Ji, H.; Peng, C.; Liu, X.; Liu, C. Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. Plant and Soil 2017, 413, 193–202. [Google Scholar] [CrossRef]
- Ding, L.; Wang, P.; Zhang, W.; Zhang, Y.; Li, S.; Wei, X.; Chen, X.; Zhang, Y.; Yang, F. Shrub encroachment shapes soil nutrient concentration, stoichiometry and carbon storage in an abandoned subalpine Grassland. Sustainability 2019, 11, 1732. [Google Scholar] [CrossRef]
- Armas, C.; Kim, J.H.; Bleby, T.M.; Jackson, R.B. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species. Oecologia 2012, 168, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Sarris, D.; Mazza, G. Mediterranean pine root systems under drought. Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin 2021, 129–140. [Google Scholar]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Advances in agronomy 2009, 102, 223–265. [Google Scholar]
- Lehmann, J.; Schroth, G. Nutrient leaching. In Trees, crops and soil fertility: Concepts and research methods; CABI publishing Wallingford UK, 2002; pp. 151–166. [Google Scholar]
- Uhlig, D.; Amelung, W.; Von Blanckenburg, F. Mineral nutrients sourced in deep regolith sustain long-term nutrition of mountainous temperate forest ecosystems. Global Biogeochemical Cycles 2020, 34, e2019GB006513. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Zaleski, T.; Józefowska, A.; Mazurek, R. Soil formation on calcium carbonate-rich parent material in the outer Carpathian Mountains–A case study. Catena 2019, 174, 436–451. [Google Scholar] [CrossRef]
- Wutzler, T.; Zaehle, S.; Schrumpf, M.; Ahrens, B.; Reichstein, M. Adaptation of microbial resource allocation affects modelled long term soil organic matter and nutrient cycling. Soil Biology and Biochemistry 2017, 115, 322–336. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R.; Moscetti, R.; Campiglia, E. Management of winter cover crop residues under different tillage conditions affects nitrogen utilization efficiency and yield of eggplant (Solanum melanogena L.) in Mediterranean environment. Soil and Tillage Research 2016, 155, 329–338. [Google Scholar] [CrossRef]
- Barnes, P.W.; Throop, H.L.; Archer, S.R.; Breshears, D.D.; McCulley, R.L.; Tobler, M.A. Sunlight and soil–litter mixing: drivers of litter decomposition in drylands. Progress in Botany 2015, 76, 273–302. [Google Scholar]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The M icrobial E fficiency-M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global change biology 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Thomas, A.D.; Elliott, D.R.; Dougill, A.J.; Stringer, L.C.; Hoon, S.R.; Sen, R. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degradation & Development 2018, 29, 1306–1316. [Google Scholar]
- Ward, D.; Trinogga, J.; Wiegand, K.; du Toit, J.; Okubamichael, D.; Reinsch, S.; Schleicher, J. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 2018, 310, 153–162. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant health: feedback effect of root exudates-rhizobiome interactions. Applied microbiology and biotechnology 2019, 103, 1155–1166. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B.; Wu, Y.; Gao, J.; Shi, F. Flower litters of alpine plants affect soil nitrogen and phosphorus rapidly in the eastern Tibetan Plateau. Biogeosciences 2016, 13, 5619–5631. [Google Scholar] [CrossRef]
- Córdova, S.C.; Olk, D.C.; Dietzel, R.N.; Mueller, K.E.; Archontouilis, S.V.; Castellano, M.J. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biology and Biochemistry 2018, 125, 115–124. [Google Scholar] [CrossRef]
- López-Angulo, J.; de la Cruz, M.; Chacón-Labella, J.; Illuminati, A.; Matesanz, S.; Pescador, D.S.; Pías, B.; Sánchez, A.M.; Escudero, A. The role of root community attributes in predicting soil fungal and bacterial community patterns. New Phytologist 2020, 228, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Liu, D.; Li, Y.; Liu, P. Soil net N mineralization and hydraulic properties of carbonate-derived laterite under different vegetation types in Karst forests of China. Science of The Total Environment 2023, 856, 159116. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Pei, X.; Peng, S.; Wang, G.; Smoak, J.M.; Duan, B. Litter inputs drive increases in topsoil organic carbon after scrub encroachment in an alpine grassland. Pedobiologia 2021, 85, 150731. [Google Scholar] [CrossRef]
- Tuomisto, H.; Ruokolainen, K.; Yli-Halla, M. Dispersal, environment, and floristic variation of western Amazonian forests. Science 2003, 299, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yan, Y.; Xu, D.; Xu, X.; Wang, C.; Wang, X.; Chen, J.; Xin, X.; Eldridge, D.J. The fertile island effect collapses under extreme overgrazing: evidence from a shrub-encroached grassland. Plant and Soil 2020, 448, 201–212. [Google Scholar] [CrossRef]
- QU, W.-L.; YANG, X.-P.; ZHANG, C.-T.; Wei, B. Shrub-mediated “fertile island” effects in arid and semi-arid grassland. Acta Prataculturae Sinica 2015, 24, 201. [Google Scholar]
- Allington, G.R.; Valone, T.J. Islands of fertility: a byproduct of grazing? Ecosystems 2014, 17, 127–141. [Google Scholar] [CrossRef]
- Bai, Y.; She, W.; Zhang, Y.; Qiao, Y.; Fu, J.; Qin, S. N enrichment, increased precipitation, and the effect of shrubs collectively shape the plant community in a desert ecosystem in northern China. Science of the Total Environment 2020, 716, 135379. [Google Scholar] [CrossRef] [PubMed]



| Patch type | Patch area (m2) | Height (cm) | Litter depth (cm) | Shoot biomass (g/m2) | Root biomass (g/m2) |
| SO | 1.66±0.41a | 117.94±3.58a | 3.33±0.03a | 1098.53±64.52a | 2284.29±105.40b |
| SA | 0.08±0.01b | 61.32±3.04b | 0.70±0.04b | 1062.93±94.04a | 2581.55±186.08b |
| RC | 0.37±0.01b | 60.05±1.51b | 0.75±0.01b | 613.68±81.33b | 3983.36±490.31a |
| PF | 0.12±0.01b | 43.90±3.10c | 1.10±0.01b | 579.53±97.15b | 3291.81±264.77a |
| Shrub patch type | Soil depth (cm) | SOM (g/kg) | TN (g/kg) | TK (g/kg) | TP(g/kg) |
| SO | 0-20 | 0.205 | 0.177 | 0.078 | -0.175 |
| 20-40 | 0.296 | -0.057 | 0.164 | -0.087 | |
| 40-60 | 0.204 | 0.027 | 0.155 | -0.052 | |
| Mean Value | 0.235 | 0.049 | 0.132 | -0.105 | |
| SA | 0-20 | 0.082 | 0.153 | 0.155 | -0.189 |
| 20-40 | 0.027 | 0.000 | -0.020 | -0.219 | |
| 40-60 | 0.196 | 0.093 | -0.032 | -0.371 | |
| Mean Value | 0.102 | 0.082 | 0.034 | -0.260 | |
| RC | 0-20 | 0.112 | 0.026 | 0.130 | 0.122 |
| 20-40 | -0.188 | -0.273 | 0.053 | 0.041 | |
| 40-60 | -0.069 | -0.222 | 0.076 | 0.119 | |
| Mean Value | -0.048 | -0.156 | 0.087 | 0.094 | |
| PF | 0-20 | -0.027 | 0.037 | 0.073 | -0.080 |
| 20-40 | -0.131 | -0.022 | 0.121 | 0.125 | |
| 40-60 | -0.094 | 0.135 | 0.070 | -0.034 | |
| Mean Value | -0.084 | 0.050 | 0.088 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
