Submitted:
23 October 2023
Posted:
24 October 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Chemical Analyses
2.4. Data Analyses
2.4.1. Indicators of Soil Pollution
2.4.2. Indicators of Activity Concentration of Radionuclides
2.4.3. Site Index
2.4.4. Principal Component Analysis
3. Results
3.1. Element Concentrations
3.2. Radionuclide Activity Concentrations
3.3. Analysis of Site Productivity
3.4. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chalupa, V. Fagus sylvatica L. (European Beech). In Trees IV. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Heidelberg, 1996. [Google Scholar]
- Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 2008, 35, 450. [Google Scholar] [CrossRef]
- Hultén, E.; Fries, M. Atlas of North European Vascular Plants North of the Tropic of Cancer; Koeltz Scientific: Germany, 1986. [Google Scholar]
- Fang, J.; Lechowicz, M.J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 2006, 33, 1804. [Google Scholar] [CrossRef]
- Packham, J.R.; Thomas, P.A. , Atkinson, M.D.; Degen, T. Biological flora of the British Isles: Fagus sylvatica. J Ecol 2012, 100, 1557. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 2002, 59, 233–253. [Google Scholar] [CrossRef]
- Paule, L. Gene conservation in European beech (Fagus sylvatica L.). Int J For Gen 1995, 2, 161–170. [Google Scholar]
- Gliński, J. Soil Phases. In Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series, Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, 2011. [Google Scholar]
- Anderson, D.W. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry 1988, 5, 71–97. [Google Scholar] [CrossRef]
- Blake, G.R.; Steinhardt, G.C.; Pombal, X.P.; Muñoz, J.C.N.; Cortizas, A.M.; Arnold, R. Pedology and pedogenesis. In Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series, Chesworth, W., Ed.; Springer: Dordrecht, 2008. [Google Scholar]
- Roca, N.; Susana Pazos, M.; Bech, J. The relationship between WRB soil units and heavy metals content in soils of Catamarco (Argentina). J Geochem Explor 2008, 96, 77–85. [Google Scholar] [CrossRef]
- Hernandez, L.; Probst, A.; Probst, J.L.; Ulrich, E. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 2003, 312, 195–219. [Google Scholar] [CrossRef]
- Hovmand, M.F.; Kemp, K.; Kystol, J.; Johnsen, I.; Riis-Nielsen, T.; Pacyna, J.M. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia. Environ Pollut 2008, 155, 537–541. [Google Scholar] [CrossRef]
- Schlenker, S.; Degering, D.; Unterricker, S.; Raben, G. Distribution of radionuclides in forest soils of varying pedochemistry. Radiat Phys Chem 2001, 61, 705–706. [Google Scholar] [CrossRef]
- Singh, S.; Rani, A.; Mahajan, K.R. 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 2005, 39, 431–439. [Google Scholar] [CrossRef]
- Bilous, A.; Holiaka, D.; Matsala, M.; Kashparov, V.; Schepaschenko, D.; Lakyda, P.; Shvidenko, A.; Myroniuk, V.; Otreshko, L. 90Sr content in the stemwood of forests within Ukrainian Polissya. Forests 2020, 11, 270. [Google Scholar] [CrossRef]
- Strzałek, M.; Barczak, K.; Karwowska, J.; Królak, E. Activity of 137Cs and 40K isotopes in pine (Pinus sylvestris L.) and birch (Betula pendula Roth) stands of different ages in a selected area of Eastern Poland. Forests 2021, 12, 1205. [Google Scholar] [CrossRef]
- Gulan, L.; Stajic, J.M.; Zeremski, T.; Durlević, U.; Valjarević, A. Radionuclides and metals in the parks of the city of Belgrade, Serbia: Spatial distribution and health risk assessment. Forests 2022, 13, 1648. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 2001, 114, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci Total Environ 2012, 425, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, S.; Zhao, Q.; Deng, L.; Dong, S. Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicol Environ Saf 2012, 82, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Čakmak, D.; Perović, V.; Antić-Mladenović, S.; Kresović, M.; Saljnikov, E.; Mitrović, M.; Pavlović, P. Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia. J Soils Sediments 2018, 18, 1981–1993. [Google Scholar] [CrossRef]
- Kapanadze, K.; Magalashvili, A.; Imnadze, P. Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia). Heliyon 2019, 5, e01377. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K. Possible impacts of climate change on forest soil health. In Soil Health and Climate Change. Soil Biology, Singh, B., Cowie, A., Chan, K., Eds.; Springer: Heidelberg, 2011. [Google Scholar]
- Pennock, D.J.; van Kessel, C. Clear-cut forest harvest impacts on soil quality indicators in the mixedwood forest of Saskatchewan, Canada. Geoderma 1997, 75, 13–32. [Google Scholar] [CrossRef]
- Chadlia, A.; Mohamed, K.; Najah, L.; Farouk, M.M. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants. J Hazard Mater 2009, 172, 1579–1590. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.A.; Abduli, M.A.; Karbassi, A.R.; Nasrabadi, T.; Khajeh, M. Evaluating the effects of fertilizers on bioavailable metallic pollution of soils, case study of Sistan Farms, Iran. Int J Environ Res 2012, 6, 565–570. [Google Scholar]
- Jiang, Z.; Liu, H.; Wang, H.; Peng, J.; Meersmans, J.; Green, S.M.; Quine, T.A.; Wu, X.; Song, Z. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat Commun 2020, 11, 2392. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Zhang, G.; Wang, H.; Zhao, Z.; Hu, Y.; Zhang, G.; Hui, G.; Liu, W. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol Inform 2019, 50, 86–94. [Google Scholar] [CrossRef]
- Baran, J.; Pielech, R.; Kauzal, P.; Kukla, W.; Bodziarczyk, J. Influence of forest management on stand structure in ravine forests. For Ecol Manag 2020, 463, 118018. [Google Scholar] [CrossRef]
- Podlaski, R. , Sobala, T., Kocurek, M. Patterns of tree diameter distributions in managed and unmanaged Abies alba Mill. and Fagus sylvatica L. forest patches. For Ecol Manage 2019, 435, 97–105. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed; CRC Press: Boca Raton, Florida, 2007. [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic. Pollution control: a sedimentological approach. Water Res 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M. J.; Demetriades, A.; Bidovec, M. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Finland, 2005. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2000 Report to the General Assembly; United Nations: New York, USA, 2000. [Google Scholar]
- Huy, N.Q.; Luyen, T.V. Study on external exposure doses from terrestrial radioactivity in southern Vietnam. Radiat Prot Dosimetry 2006, 118, 331–336. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development (OECD). Exposure to radiation from the natural radioactivity in building materials. Report by a Group of Experts of the OECD Nuclear Energy Agency; OECD: Paris, France, 1979. [Google Scholar]
- Nyland, R.D. Silviculture: Concepts and Applications, 2nd ed.; Waveland Press: Illinois, 2002. [Google Scholar]
- Dudzik, P.; Sawicka-Kapusta, K.; Tybik, R.; Pacwa, K. Assessment of environmental pollution by metals, sulphure dioxide and nitrogen in Wolinski National Park. Nat Environ Monit 2010, 11, 37–48. [Google Scholar]
- Staszewski, T.; Łukasik,W. ; Kubiesa, P. Contamination of Polish national parks with heavy metals. Environ Monit Assess 2012, 184, 4597–4608. [Google Scholar] [CrossRef] [PubMed]
- Dharani, N.; Onyari, J.M.; Maina, D.M.; Mavuti, K.M. The distribution of Cu and Pb levels in soils and Acacia xanthophloea Benth. from Lake Nakuru National Park Kenya. Bull Environ Contam Toxicol 2007, 79, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Wang, C.; Deng, L.; Dong, S. Effects of water-level fluctuations and land use type on heavy metal accumulation along a dam reservoir, southwest China. Fresen Environ Bull 2013, 4a, 1118–1125. [Google Scholar]
- Yang, Q.; Yang, Z.; Filippelli, G.; Ji, J.; Ji, W.; Liu, X.; Wang, L.; Yu, T.; Wu, T.; Zhuo, X.; Zhang, Q. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem Geol 2021, 567, 120081. [Google Scholar] [CrossRef]
- Yin, N.; Geng, N.; Wang, T.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Effect of acidification on clay minerals and surface properties of brown soil. Sustainability 2023, 15, 179. [Google Scholar] [CrossRef]
- Tyler, G. Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma 2004, 119, 277–290. [Google Scholar] [CrossRef]
- Tahir, S.N.; Jamil, K.; Zaidi, J.H.; Arif, M.; Ahmed, N. Activity Concentration of 137Cs in soil samples from Punjab province (Pakistan) and estimation of gamma-ray dose rate for external exposure. Radiat Prot Dosimetry 2006, 118, 345–351. [Google Scholar] [CrossRef]
- Nada, A.; Abd-El Maksoud, T.M.; Abu-Zeid Hosnia, M.; El-Nagar, T.; Awad, S. Distribution of radionuclides in soil samples from a petrified wood forest in El-Qattamia, Cairo, Egypt. Appl Radiat Isot 2009, 67, 643–649. [Google Scholar] [CrossRef]
- Navas, A.; Soto, J.; Machín, J. Edaphic and physiographic factors affecting the distribution of natural gamma-emitting radionuclides in the soils of the Arnás catchment in the Central Spanish Pyrenees. Eur J Soil Sci 2002, 53, 629–638. [Google Scholar] [CrossRef]
- Hajna, N.Z. Chemical weathering of limestones and dolomites in a cave environment. Speleogenes evol karst aquifers 2003, 1, 1–6. [Google Scholar]
- Kašanin-Grubin, M.; Hukić, E.; Bellan, M.; Bielak, K.; Bosela, M.; Coll, L.; Czacharowski, M.; Gajica, G.; Giammarchi, F.; Gomoryova, E.; del Rio, M.; Dinca, L.; Đogo Marčević, S.; Klopčić, M.; Mitrović, S.; Pach, M.; Ranđelović, D.; Ruiz-Peinado, R.; Skrzyszewski, J.; Orlić, J.; Štrbac, S.; Stojadinović, S.; Tonon, G.; Tosti, T.; Uhl, E.; Veselinović, G.; Veselinović, M.; Zlatanov, T.; Tognetti, R. Soil erodibility in European mountain beech forests. Can J Forest Res 2021, 51, 1846–1855. [Google Scholar] [CrossRef]
- Hristov, B.; Kirilov, I.; Pavlov, P. Soil organic matter composition of forest Rendzinas in West Bulgaria. Eurasian J Soil Sci 2021, 10, 320–326. [Google Scholar] [CrossRef]
- Yin, N.; Geng, N.; Wang, T.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Effect of acidification on clay minerals and surface properties of brown soil. Sustainability 2023, 15, 179. [Google Scholar] [CrossRef]
- Heinze, S.; Ludwig, B.; Piepho, H-P. ; Mikutta, R.; Don, A.; Wordell-Dietrich, P.; Helfrich, M.; Hertel, D.; Leuschner, C.; Kirfel, K.; Kandeler, E.; Preusser, S.; Guggenberger, G.; Leinemann, T.; Marschner, B. Factors controlling the variability of organic matter in the top- and subsoil of a sandy Dystric Cambisol under beech forest. Geoderma 2018, 311, 37–44. [Google Scholar]
- Košanin, O.; Knežević, M. Osobine proizvodni potencijal kambičnih zemljišta na andezitskim stenama u bukovim šumama na Crnom Vrhu kod Bora. Glasnik šumarskog fakulteta 2003, 87, 151–159. [Google Scholar]
- Zheng, Y.; Chen, N.; Zhang, C.; Dong, X.; Zhao, C. Effects of rock fragments on the soil physicochemical properties and vegetation on the northeastern Tibetan Plateau. Front Environ Sci 2019. [Google Scholar] [CrossRef]
- Lavkulich, L.M.; Arocena, J.M. Luvisolic soils of Canada: Genesis, distribution, and classification. Can. J Soil Sci 2011, 91. [Google Scholar] [CrossRef]
- Markoski, M.; Mitkova, T.; Tanaskovik, V.; Spalevic, V.; Zgorelec, Z. The influence of the parent material on the texture and water retention curves in the soil formed upon limestones and dolomites. Agric For 2016, 62, 175–192. [Google Scholar] [CrossRef]
- Eremija, S.; Cvjetićanin, R.; Novaković-Vuković, M.; Rakonjac, Lj.; Lučić, A.; Stajić, S.; Miletić, Z. Study of the floristic composition of fir-spruce-beech forest in the territory of Serbia and Bosnia and Herzegovina. Arch Biol Sci 2015, 67, 269–276. [Google Scholar] [CrossRef]
- Štrbac, S.; Ranđelović, D.; Gajica, G.; Hukić, E.; Stojadinović, S.; Veselinović, G.; Orlić, J.; Tognetti, R.; Kašanin-Grubin, M. Spatial distribution and source identification of heavy metals in European mountain beech forests soils. Chemosphere 2022, 309, 136662. [Google Scholar] [CrossRef]










| Country | Longitude | Latitude | Altitude (m a.s.l.) |
Geological settings | Soil type |
|---|---|---|---|---|---|
| Bosnia and Herzegovina (BA) | 18°15'44"E | 43°42'25"N | 1292 | limestone | calci cambisol |
| 16°40'06.4''E | 44°38'38.7''N | 524 | limestone | luvisol | |
| Bulgaria (BG) | 23°52'52''E | 42°46'45''N | 1350 | sandstone | cambisol |
| Czech Republic (CZ) | 16°44'21.4"E | 49°17'06.6"N | 490 | limestone | rendzina modal |
| 16°44'24.3"E | 49°17'05.1"N | 485 | limestone | rendzina modal | |
| 18°01'07.5"E | 49°02'08.3"N | 415 | sandstone, claystone | cambisol modal | |
| 18°01'30.7"E | 49°01'24.4"N | 620 | sandstone marlstone | cambisol modal | |
| Germany (DE) | 13°16'17.2"E | 49°03'45.9"N | 720 | granite | cambisol |
| Italy (IT) | 12°25'47"E | 46°07'08"N | 1090 | limestone moraine | luvisol |
| Poland (PL) | 20°54'11.2"E | 49°25'58.7"N | 830 | magura sandstone | cambisol |
| 18°54'52.6"E | 49°37'20.8"N | 520 | magura sandstone | cambisol | |
| Romania (RO) | 25°53'01.7"E | 45°32'14"N | 1277 | conglomerate | eutric cambisol |
| 25°48ꞌ19.3"E | 45°19ꞌ15.3"N | 970 | limestone | eutric cambisol | |
| Serbia (RS) | 21°22'41.7"E | 43°24'22.5"N | 695 | granite | cambisol dystric |
| Slovakia (SK) | 19°24'58.1"E | 48°38'58.4"N | 750 | andesite | andic cambisol |
| Slovenia (SL) | 15º03'42.8''E | 46º06'56.1''N | 600 | dolomite | leptosol |
| 15º03'58.7''E | 46º05'38.3''N | 1070 | dolomite | leptosol | |
| Spain (ES) | 2º43'19''E | 42º12'05''N | 1430 | granite and granodiorite | umbrisol |
| 2º43'34''E | 42º12'06''N | 1430 | granite and granodiorite | umbrisol | |
| 2°27'24''E | 41°46'32''N | 1186 | granite and granodiorite | umbrisol |
| Elements | Range | Median | Standard deviation |
Upper GAE |
Deeper GAE |
|---|---|---|---|---|---|
| As | 0.01 – 22.9 | 5.35 | 5.71 | 7.03 | 6.02 |
| Cd | 0.99 – 6.03 | 2.99 | 1.22 | 0.14 | 0.09 |
| Co | 2.51 – 26.0 | 11.1 | 4.53 | 8.00 | 8.97 |
| Cr | 14.2 – 335 | 86.2 | 48.7 | 60.0 | 62.0 |
| Cu | 11.3 – 39.8 | 22.1 | 7.79 | 12.9 | 13.9 |
| Ni | 4.79 – 56.3 | 22.5 | 13.3 | 18.0 | 21.8 |
| Pb | 1.38 – 91.8 | 13.6 | 18.0 | 22.6 | 17.2 |
| Zn | 51.0 – 361 | 111 | 57.3 | 52.0 | 47.0 |
| Hg | 0.20 – 5.07 | 2.09 | 1.41 | 0.04 | 0.02 |
| Rb | 16.6 – 156 | 89.7 | 37.1 | 79.5 | 83.0 |
| Sr | 45.4 – 371 | 61.8 | 65.7 | 89.0 | 95.0 |
| Y | 3.90 – 53.93 | 26.7 | 10.3 | 21.0 | 23.0 |
| Zr | 76.7 – 416 | 240 | 86.6 | 230 | 220 |
| Sn | 0.30 – 7.00 | 3.70 | 1.43 | 3.00 | 3.00 |
| Ba | 94.0 – 830 | 484 | 174 | 380 | 390 |
| W | 2.67 – 9.20 | 6.00 | 1.52 | < 5.00 | < 5.00 |
| Heavy metals | Range Igeo values | Igeo class | Pollution Level |
|---|---|---|---|
| As | -10.04 - 1.12 | 0 - 2 | Uncontaminated - moderately contaminated |
| Cd | 2.24 - 4.84 | 3 - 5 | Moderately to heavily - heavily to extremely contaminated |
| Co | -2.24 - 0.39 | 0 - 1 | Uncontaminated - uncontaminated to moderately contaminated |
| Cr | -2.36 - 0.82 | 0 - 1 | Uncontaminated - uncontaminated to moderately contaminated |
| Cu | -0.78 - 1.04 | 0 - 2 | Uncontaminated - moderately contaminated |
| Ni | -2.50 - 1.02 | 0 - 2 | Uncontaminated - moderately contaminated |
| Pb | -4.62 - 1.44 | 1 - 2 | Uncontaminated to moderately - moderately contaminated |
| Zn | -0.40 - 2.21 | 0 - 3 | Uncontaminated - moderately to heavily contaminated |
| Hg | 1.75 - 6.40 | 2 - 6 | Moderately - extremely contaminated |
| Heavy metals | Range Er values | Scope of Er | Ecological risk Level of Er |
Range RI values | Scope of RI |
General level of potential ecological risk |
|---|---|---|---|---|---|---|
| As | 0.01 - 32.69 | < 40 | low | 708.52 - 6419.19 | 600 ≤ RI | serious |
| Cd | 212.21 - 1291.71 | 160 ≤ Ef < 320 320 ≤ Ef |
high - serious | |||
| Co | 1.59 - 9.81 | < 40 | low | |||
| Cr | 0.59 - 5.28 | < 40 | low | |||
| Cu | 4.36 - 15.41 | < 40 | low | |||
| Ni | 1.33 - 15.16 | < 40 | low | |||
| Pb | 0.31 - 20.30 | < 40 | low | |||
| Zn | 1.14 - 6.95 | < 40 | low | |||
| Hg | 201. 57 - 5070.19 | 160 ≤ Ef < 320 320 ≤ Ef |
high - serious |
| Radionuclide | Range | Median | SD |
|---|---|---|---|
| 22Na | 0.50-4.99 | 2.15 | 0.79 |
| 40K | 10.0-1049 | 94.0 | 258 |
| 137Cs | 0.40-204 | 3.90 | 38.9 |
| 232Th | 3.30-50.8 | 14.7 | 7.67 |
| 226Ra | 16.2-85.4 | 43.0 | 15.1 |
| 238U | 21.0-150 | 54.0 | 24.3 |
| 235U | 1.00-7.71 | 3.00 | 1.25 |
| Radionuclide | Basalt | Syenite | Granite | Limestone | Sandstone |
|---|---|---|---|---|---|
| 40K | 210 | 1400 | 1290 | 89.0 | 370 |
| 232Th | 6.50 | 69.2 | 87.5 | 7.00 | 11.0 |
| 238U | 5.30 | 102 | 59.7 | 28 | 19.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
