Submitted:
19 October 2023
Posted:
23 October 2023
You are already at the latest version
Abstract
Keywords:
1. Challenges for mining & society – Element scarcity, decreasing ore grades and ever increasing contamination
2. Biomining
3. Bioleaching
4. Biosorption and bioaccumulation
5. Biosorption and bioaccumulation of Cobalt and Nickel
6. Arsenic and its biotechnological removal strategies
Author Contributions
Funding
Conflicts of Interest
References
- Braun, R. Tailor-made metal-and metalloid-binding peptides – From the identification of phage displayed peptides to their provision for biosorbent development. PhD, University of Bielefeld, Bielefeld. Dissertation at HZDR (2021).
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Sterritt, R.M.; Lester, J.N. Interactions of heavy metals with bacteria. Sci. Total Environ. 1980, 14, 5–17. [Google Scholar] [CrossRef]
- Pollmann, K.; Kutschke, S.; Matys, S.; Raff, J.; Hlawacek, G.; Lederer, F.L. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol. Adv. 2018, 36, 1048–1062. [Google Scholar] [CrossRef]
- Li, P.S.; Tao, H.C. Cell surface engineering of microorganisms towards adsorption of heavy metals. Critical Reviews in Microbiology 2015, 41, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Batayneh, A.T. Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int. J. Environ. Sci. Technol. 2012, 9, 153–162. [Google Scholar] [CrossRef]
- Hilson, G. Pollution prevention and cleaner production in the mining industry: an analysis of current issues. J. Clean. Prod. 2000, 8, 119–126. [Google Scholar] [CrossRef]
- Driussi, C.; Jansz, J. Technological options for waste minimisation in the mining industry. J. Clean. Prod. 2006, 14, 682–688. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A. A Path to Sustainable Energy by 2030. Sci. Am. 2009, 301, 58–65. [Google Scholar] [CrossRef]
- Dodson, J.R.; Hunt, A.J.; Parker, H.L.; Yang, Y.; Clark, J.H. Elemental sustainability: Towards the total recovery of scarce metals. Chem. Eng. Process. Process Intensif. 2012, 51, 69–78. [Google Scholar] [CrossRef]
- de Boer, M.A.; Lammertsma, K. Scarcity of Rare Earth Elements. ChemSusChem 2013, 6, 2045–2055. [Google Scholar] [CrossRef]
- Hunt, A.J.; Farmer, T.J.; Clark, J.H. Elemental Sustainability and the Importance of Scarce Element Recovery. In A. Hunt (Ed.), Element Recovery and Sustainability (2013) (pp. 1-28). (RSC Green Chemistry). The Royal Society of Chemistry. [CrossRef]
- Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 2013, 38, 384–394. [Google Scholar] [CrossRef]
- European Commission, Study on the Critical Raw Materials for the EU 2023 – Final Report.
- Johnson, D.B. Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Cheng, C.-L.; Han, Y.-L.; Chen, B.-Y.; Chang, J.-S. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. Bioresour. Technol. 2014, 160, 182–190. [Google Scholar] [CrossRef]
- Temple, K.L.; Colmer, A.R. The auxotrophic oxidation of iron by a new bacterium: thiobacillus ferrooxidans. J. Bacteriol. 1951, 62, 605–611. [Google Scholar] [CrossRef]
- Vera, M.; Schippers, A.; Sand, W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl. Microbiol. Biotechnol. 2013, 97, 7529–7541. [Google Scholar] [CrossRef] [PubMed]
- Schippers, A.; Hedrich, S.; Vasters, J.; Drobe, M.; Sand, W.; Willscher, S. Biomining: metal recovery from ores with microorganisms. Adv. Biochem. Eng. Biotechnol. 2014, 141, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Dopson, M.; Halinen, A.-K.; Rahunen, N.; Boström, D.; Sundkvist, J.-E.; Riekkola-Vanhanen, M.; Kaksonen, A.H.; Puhakka, J.A. Silicate mineral dissolution during heap bioleaching. Biotechnol. Bioeng. 2008, 99, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Dixon, D.G. Principles, Mechanisms And Dynamics Of Chalcocite Heap Bioleaching. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. 2007, Springer, Dordrecht. [CrossRef]
- Jain, N.; Sharma, D.K. Biohydrometallurgy for Nonsulfidic Minerals—A Review. Geomicrobiol. J. 2004, 21, 135–144. [Google Scholar] [CrossRef]
- Rezza, I.; Salinas, E.; Elorza, M.; Sanz de Tosetti, M.; Donati, E. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem. 2001, 36, 495–500. [Google Scholar] [CrossRef]
- Johnson, D.B.; Roberto, F.F. Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals. in Biomining 259–279 (Springer Berlin Heidelberg, 1997). [CrossRef]
- Piervandi, Z.; Darban, A.K.; Mousavi, S.M.; Abdollahy, M.; Asadollahfardi, G.; Funari, V.; Dinelli, E. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment. Ecotoxicol. Environ. Saf. 2019, 182, 109443. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: a review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Glombitza, F.; Reichel, S. Metal-Containing Residues from Industry and in the Environment: Geobiotechnological Urban Mining. Adv. Biochem. Eng. Biotechnol. 2014, 141, 49–107. [Google Scholar] [PubMed]
- Brady, D.; Duncan, J.R. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1994, 41, 149–154. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z.R. Biosorption of heavy metals. Biotechnol. Prog. 1995, 11, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front. Bioeng. Biotechnol. 2019, 6. [Google Scholar] [CrossRef]
- Riba, I.; Blasco, J.; Jiménez-Tenorio, N.; DelValls, T.Á. Heavy metal bioavailability and effects: I. Bioaccumulation caused by mining activities in the Gulf of Cádiz (SW, Spain). Chemosphere 2005, 58, 659–669. [Google Scholar] [CrossRef]
- Arief, V.O.; Trilestari, K.; Sunarso, J.; Indraswati, N.; Ismadji, S. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies. Clean - Soil, Air, Water 2008, 36, 937–962. [Google Scholar] [CrossRef]
- Dhankhar, R.; Hooda, A. Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 2011, 32, 467–491. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 2006, 24, 427–451. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Vegliò, F.; Beolchini, F. Removal of metals by biosorption: a review. Hydrometallurgy 1997, 44, 301–316. [Google Scholar] [CrossRef]
- Nakbanpote, W.; Thiravetyan, P.; Kalambaheti, C. Comparison of gold adsorption by Chlorella vulgaris, rice husk and activated carbon. Miner. Eng. 2002, 15, 549–552. [Google Scholar] [CrossRef]
- Ramakul, P.; Yanachawakul, Y.; Leepipatpiboon, N.; Sunsandee, N. Biosorption of palladium(II) and platinum(IV) from aqueous solution using tannin from Indian almond (Terminalia catappa L.) leaf biomass: Kinetic and equilibrium studies. Chem. Eng. J. 2012, 193–194, 102–111. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef] [PubMed]
- Tapia, J.M.; Muñoz, J.A.; González, F.; Blázquez, M.L.; Ballester, A. Mechanism of adsorption of ferric iron by extracellular polymeric substances (EPS) from a bacterium Acidiphilium sp. Water Sci. Technol. 2011, 64, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Morillo Pérez, J.A.; García-Ribera, R.; Quesada, T.; Aguilera, M.; Ramos-Cormenzana, A.; Monteoliva-Sánchez, M. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J. Microbiol. Biotechnol. 2008, 24, 2699–2704. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ramesh, A.; Maki, T.; Hasegawa, H.; Ueda, K. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J. Hazard. Mater. 2007, 146, 39–5. [Google Scholar] [CrossRef]
- Ramesh, A.; Hasegawa, H.; Sugimoto, W.; Maki, T.; Ueda, K. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99, 3801–3809. [Google Scholar] [CrossRef]
- Huang, C.-C.; Su, C.-C.; Hsieh, J.-H.; Tseng, C.-P.; Lin, P.-J.; Chang, J.-S. Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzyme Microb. Technol. 2003, 33, 379–385. [Google Scholar] [CrossRef]
- Kao, W.C.; Huang, C.C.; Chang, J.S. Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. J. Hazard. Mater. 2008, 158, 100–106. [Google Scholar] [CrossRef]
- Diniz, V.; Volesky, B. Biosorption of La, Eu and Yb using Sargassum biomass. Water Res. 2005, 39, 239–247. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Sathishkumar, M.; Balasubramanian, R. Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination 2011, 265, 54–59. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Sathishkumar, M.; Balasubramanian, R. Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, turbinaria conoides. Ind. Eng. Chem. Res. 2010, 49, 4405–4411. [Google Scholar] [CrossRef]
- Hosomomi, Y.; Baba, Y.; Kubota, F.; Kamiya, N.; Goto, M. Biosorption of Rare Earth Elements by Escherichia coli. J. Chem. Eng. JAPAN 2013, 46, 450–454. [Google Scholar] [CrossRef]
- Karamushka, V.I.; Gadd, G.M. Interaction of Saccharomyces cerevisiae with gold: Toxicity and accumulation. BioMetals 1999, 12, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Dodson, J.R.; Parker, H.L.; García, A.M.; Hicken, A.; Asemave, K.; Farmer, T.J.; He, H.; Clark, J.H.; Hunt, A.J. Bio-derived materials as a green route for precious & critical metal recovery and re-use. Green Chem. 2015, 17, 1951–1965. [Google Scholar]
- Tsezos, M.; Volesky, B. The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 1982, 24, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Aryal, M.; Liakopoulou-Kyriakides, M. Bioremoval of heavy metals by bacterial biomass. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- Kratochvil, D.; Pimentel, P.; Volesky, B. Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. Technol. 1998, 32, 2693–2698. [Google Scholar] [CrossRef]
- Holan, Z.R.; Volesky, B. Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Appl. Biochem. Biotechnol. 1995, 53, 133–146. [Google Scholar] [CrossRef]
- Paul, M.L.; Samuel, J.; Chandrasekaran, N.; Mukherjee, A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem. Eng. J. 2012, 187, 104–113. [Google Scholar] [CrossRef]
- Mameri, N.; Boudries, N.; Addour, L.; Belhocine, D.; Lounici, H.; Grib, H.; Pauss, A. Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res. 1999, 33, 1347–1354. [Google Scholar] [CrossRef]
- Wang, L.; Chua, H.; Wong, P.K.; Lo, W.H.; Yu, P.H.F. Ni2+ removal and recovery from electroplating effluent by Pseudomonas putida 5-x cell biomass. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2003, 38, 521–531. [Google Scholar]
- Mao, J.; Won, S.W.; Yun, Y.S. Development of poly(acrylic acid)-modified bacterial biomass as a high-performance biosorbent for removal of Cd(II) from aqueous solution. Ind. Eng. Chem. Res. 2013, 52, 6446–6452. [Google Scholar] [CrossRef]
- Ma, W.; Zong, P.; Cheng, Z.; Wang, B.; Sun, Q. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water. J. Hazard. Mater. 2014, 266, 19–25. [Google Scholar] [CrossRef]
- Tsezos, M.; Remoudaki, E.; Angelatou, V. A study of the effects of competing ions on the biosorption of metals. Int. Biodeterior. Biodegradation 1996, 38, 19–29. [Google Scholar] [CrossRef]
- Chen, X.; Lam, K.F.; Mak, S.F.; Ching, W.K.; Ng, T.N.; Yeung, K.L. Assessment of sericin biosorbent for selective dye removal. Chinese J. Chem. Eng. 2012, 20, 426–432. [Google Scholar] [CrossRef]
- Deng, X.; Li, Q.B.; Lu, Y.H.; Sun, D.H.; Huang, Y.L.; Chen, X.R. Bioaccumulation of nickel from aqueous solutions by genetically engineered Escherichia coli. Water Res. 2003, 37, 2505–2511. [Google Scholar] [CrossRef]
- Ahalya, N.; Ramachandra, T.V.; Kanamadi, R.D. Biosorption of heavy metals. Res. J. Chem. Env. 2003, 7, 71–79. [Google Scholar]
- Chojnacka, K.; Chojnacki, A.; Górecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Chi, Q.; Zhu, G.; Langdon, A. Bioaccumulation of heavy metals in fishes from Taihu Lake, China. J. Environ. Sci. 2007, 19, 1500–1504. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C. Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environ. Pollut. 2000, 110, 61–71. [Google Scholar] [CrossRef]
- Heikens, A.; Peijnenburg, W.J.G.; Hendriks, A. . Bioaccumulation of heavy metals in terrestrial invertebrates. Environ. Pollut. 2001, 113, 385–393. [Google Scholar] [CrossRef]
- Ismail, B.S.; Farihah, K.; Khairiah, J. Bioaccumulation of Heavy Metals in Vegetables from Selected Agricultural Areas. Bull. Environ. Contam. Toxicol. 2005, 74, 320–327. [Google Scholar] [CrossRef]
- Margoshes, M.; Vallee, B.L. A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 1957, 79, 4813–4814. [Google Scholar] [CrossRef]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef]
- Grill, E.; Loffler, S.; Winnacker, E.-L.; Zenk, M.H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific -glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. 1989, 86, 6838–6842. [Google Scholar] [CrossRef]
- Kawashima, I.; Kennedy, T.D.; Chino, M.; Lane, B.G. Wheat Ec metallothionein genes. Like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis. Eur. J. Biochem. 1992, 209, 971–976. [Google Scholar] [CrossRef]
- Hamer, D.H. Metallothionein. Annu. Rev. Biochem. 1986, 55, 913–951. [Google Scholar] [CrossRef]
- Parwin, S.; Kalan, S.; Srivastava, P. Bacterial Cell Surface Display. in ACS Symposium Series 2019, 1329, 81–108. [Google Scholar]
- Sousa, C.; Cebolla, A.; De Lorenzo, V. Enhanced metalloadsorption of bacterial cells displaying poly-his peptides. Nat. Biotechnol. 1996, 14, 1017–1020. [Google Scholar] [CrossRef]
- Sousa, C.; Kotrba, P.; Ruml, T.; Cebolla, A.; De Lorenzo, V. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J. Bacteriol. 1998, 180, 2280–2284. [Google Scholar] [CrossRef]
- Kotrba, P.; Dolecková, L.; de Lorenzo, V.; Ruml, T. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl. Environ. Microbiol. 1999, 65, 1092–8. [Google Scholar] [CrossRef]
- Mejáre, M.; Ljung, S.; Bülow, L. Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng. 1998, 11, 489–494. [Google Scholar] [CrossRef]
- Cruz, N.; Le Borgne, S.; Hernández-Chávez, G.; Gosset, G.; Valle, F.; Bolivar, F. Engineering the Escherichia coli outer membrane protein OmpC for metal bioadsorption. Biotechnol. Lett. 2000, 22, 623–629. [Google Scholar] [CrossRef]
- Patel, J.; Zhang, Q.; McKay, R.M.L.; Vincent, R.; Xu, Z. Genetic engineering of caulobacter crescentus for removal of cadmium from water. Appl. Biochem. Biotechnol. 2010, 160, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, P.; Wernérus, H.; Svedberg, M.; Ståhl, S. Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl. Environ. Microbiol. 2000, 66, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Shibasaki, S.; Ueda, M.; Tanaka, A. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 2001, 57, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Ueda, M.; Shibasaki, S.; Tanaka, A. Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl. Microbiol. Biotechnol. 2002, 59, 259–264. [Google Scholar]
- Kuroda, K.; Ueda, M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl. Microbiol. Biotechnol. 2003, 63, 182–186. [Google Scholar] [CrossRef]
- Singh, S.; Mulchandani, A.; Chen, W. Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl. Environ. Microbiol. 2008, 74, 2924–2927. [Google Scholar] [CrossRef]
- Singh, S.; Kang, S.H.; Lee, W.; Mulchandani, A.; Chen, W. Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli. Biotechnol. Bioeng. 2010, 105, 780–785. [Google Scholar] [CrossRef]
- Kang, S.H.; Singh, S.; Kim, J.Y.; Lee, W.; Mulchandani, A.; Chen, W. Bacteria Metabolically Engineered for Enhanced Phytochelatin Production and Cadmium Accumulation. Appl. Environ. Microbiol. 2007, 73, 6317–6320. [Google Scholar] [CrossRef]
- Singh, S.; Lee, W.; DaSilva, N.A.; Mulchandani, A.; Chen, W. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol. Bioeng. 2008, 99, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.-B.; Smith, A.P.; Howden, R.; Dietrich, W.M.; Bugg, S.; O'Connell, M.J.; Goldsbrough, P.B.; Cobbett, C.S. Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces pombe. Plant Cell 1999, 11, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Mejáre, M.; Bülow, L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 2001, 19, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.; Chen, W.; Mulchandani, A.; Mehra, R.K. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol. Bioeng. 2000, 70, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Nishitani, T.; Ueda, M. Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl. Microbiol. Biotechnol. 2012, 96, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Mulqueen, P.; Tingey, J.M.; Horrocks, W.D. Characterization of lanthanide(III) ion binding to calmodulin using luminescence spectroscopy. Biochemistry 1985, 24, 6639–6645. [Google Scholar] [CrossRef]
- Park, D.M.; Reed, D.W.; Yung, M.C.; Eslamimanesh, A.; Lencka, M.M.; Anderko, A.; Fujita, Y.; Riman, R.E.; Navrotsky, A.; Jiao, Y. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. Environ. Sci. Technol. 2016, 50, 2735–2742. [Google Scholar] [CrossRef]
- Park, D.M.; Brewer, A.; Reed, D.W.; Lammers, L.N.; Jiao, Y. Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria. Environ. Sci. Technol. 2017, 51, 13471–13480. [Google Scholar] [CrossRef]
- Jin, H.; Park, D.M.; Gupta, M.; Brewer, A.W.; Ho, L.; Singer, S.L.; Bourcier, W.L.; Woods, S.; Reed, D.W.; Lammers, L.N.; Sutherland, J.W.; Jiao, Y. Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process. ACS Sustain. Chem. Eng. 2017. [Google Scholar] [CrossRef]
- Nian, R.; Kim, D.S.; Nguyen, T.; Tan, L.; Kim, C.W.; Yoo, I.K.; Choe, W.S. Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library. J. Chromatogr. A 2010, 1217, 5940–5949. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Lee, H.R.; Hong, S.H.; Jang, J.R.; Choe, W.S.; Yoo, I.K. Selective Lead Adsorption by Recombinant Escherichia coli Displaying a Lead-Binding Peptide. Appl. Biochem. Biotechnol. 2013, 169, 1188–1196. [Google Scholar] [CrossRef]
- Li, H.; Dong, W.; Liu, Y.; Zhang, H.; Wang, G. Enhanced Biosorption of Nickel Ions on Immobilized Surface-Engineered Yeast Using Nickel-Binding Peptides. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, X.-Y.; Zhang, X.-X.; Chen, M.-L.; Wang, J.-H. Chromium(III) Binding Phage Screening for the Selective Adsorption of Cr(III) and Chromium Speciation. ACS Appl. Mater. Interfaces 2015, 7, 21287–21294. [Google Scholar] [CrossRef]
- Gadd, G.M.; Pan, X. Biomineralization, Bioremediation and Biorecovery of Toxic Metals and Radionuclides. Geomicrobiol. J. 2016, 33, 175–178. [Google Scholar] [CrossRef]
- Maleke, M.; Valverde, A.; Vermeulen, J.-G.; Cason, E.; Gomez-Arias, A.; Moloantoa, K.; Coetsee-Hugo, L.; Swart, H.; van Heerden, E.; Castillo, J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Rawlings, D.E.; Dew, D.; du Plessis, C. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 2003, 21, 38–44. [Google Scholar] [CrossRef]
- Laguna, C.; González, F.; García-Balboa, C.; Ballester, A.; Blázquez, M.L.; Muñoz, J.A. Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery. Miner. Eng. 2011, 24, 10–18. [Google Scholar] [CrossRef]
- Mata, Y.N.; Torres, E.; Blázquez, M.L.; Ballester, A.; González, F.; Muñoz, J.A. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J. Hazard. Mater. 2009, 166, 612–618. [Google Scholar] [CrossRef]
- Andreazza, R.; Pieniz, S.; Wolf, L.; Lee, M.K.; Camargo, F.A.; Okeke, B.C. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci. Total Environ. 2010, 408, 1501–1507. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Mohan, S.V.; Lens, P.N.L. Biological and Bioelectrochemical Recovery of Critical and Scarce Metals. Trends Biotechnol. 2016, 34, 137–155. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, R.; Zhou, L.; Li, J. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment. J. Hazard. Mater. 2011. [Google Scholar] [CrossRef]
- Yang, J.; Pan, X.; Zhao, C.; Mou, S.; Achal, V.; Al-Misned, F.A.; Mortuza, M.G.; Gadd, G.M. Bioimmobilization of Heavy Metals in Acidic Copper Mine Tailings Soil. Geomicrobiol. J. 2016, 33, 261–266. [Google Scholar] [CrossRef]
- Kuyumcu, H.Z.; Bielig, T.; Vilinska, A.; Rao, K.H. Biocoagulation and its Application Potentials for Mineral Bioprocessing. Open Miner. Process. J. 2009, 2, 1–11. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhu, R.; Pandey, A.; Sahoo, D. Bioflocculation: An alternative strategy for harvesting of microalgae – An overview. Bioresour. Technol. 2017, 242, 227–235. [Google Scholar] [CrossRef]
- Valentine, N.B.; Bolton, H.; Kingsley, M.T.; Drake, G.R.; Balkwill, D.L.; Plymale, A.E. Biosorption of cadmium, cobalt, nickel, and strontium by a Bacillus simplex strain isolated from the vadose zone. J. Ind. Microbiol. 1996, 16, 189–196. [Google Scholar] [CrossRef]
- Gao, R.; Wang, Y.; Zhang, Y.; Tong, J.; Dai, W. Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnol. Biotechnol. Equip. 2017, 31, 527–534. [Google Scholar] [CrossRef]
- Galedar, M.; Younesi, H. Biosorption of ternary cadmium, nickel and cobalt ions from aqueous solution onto Saccharomyces cerevisiae cells: batch and column studies. Am. J. Biochem. Biotechnol. 2013, 9, 47–60. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 2005, 60, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 2005, 44, 53–59. [Google Scholar] [CrossRef]
- Kuyucak, N.; Volesky, B. Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 1989, 33, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Ghosh, S.; Paul, A.K. Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour. Technol. 2006, 97, 1253–1258. [Google Scholar] [CrossRef]
- Suhasini, I.P.; Sriram, G.; Asolekar, S.R.; Sureshkumar, G.K. Biosorptive removal and recovery of cobalt from aqueous systems. Process Biochem. 1999, 34, 239–247. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Minocha, A.K.; Sillanpää, M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 2010, 48, 181–186. [Google Scholar] [CrossRef]
- Keeling, S.M.; Stewart, R.B.; Anderson, C.W.N.; Robinson, B.H. Nickel and Cobalt Phytoextraction by the Hyperaccumulator Berkheya coddii : Implications for Polymetallic Phytomining and Phytoremediation. Int. J. Phytoremediation 2003, 5, 235–244. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Palanivelu, K.; Velan, M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour. Technol. 2006, 97, 1411–1419. [Google Scholar] [CrossRef]
- Nazari, A.M.; Cox, P.W.; Waters, K.E. Biosorption of copper, nickel and cobalt ions from dilute solutions using BSA-coated air bubbles. J. Water Process Eng. 2014, 3, 10–17. [Google Scholar] [CrossRef]
- Duprey, A.; Chansavang, V.; Frémion, F.; Gonthier, C.; Louis, Y.; Lejeune, P.; Springer, F.; Desjardin, V.; Rodrigue, A.; Dorel, C. “NiCo Buster”: engineering E. coli for fast and efficient capture of cobalt and nickel. J. Biol. Eng. 2014, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, Q.B.; Lu, Y.H.; He, N.; Jiang, J. Genetic engineering of E. coli SE5000 and its potential for Ni2+ bioremediation. Process Biochem. 2005, 40, 425–430. [Google Scholar] [CrossRef]
- Deng, X.; He, J.; He, N. Comparative study on Ni2+-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni2+ bioaccumulation. Bioresour. Technol. 2013, 130, 69–74. [Google Scholar] [CrossRef]
- Jesu Jaya Sudan, R.; Lesitha Jeeva Kumari, J.; Sudandiradoss, C. Ab Initio Coordination Chemistry for Nickel Chelation Motifs. PLoS One 2015, 10, e0126787. [Google Scholar] [CrossRef]
- Wolfram, L.; Bauerfeind, P. Conserved Low-Affinity Nickel-Binding Amino Acids Are Essential for the Function of the Nickel Permease NixA of Helicobacter pylori. J. Bacteriol. 2002, 184, 1438–1443. [Google Scholar] [CrossRef]
- Fulkerson, J.F.; Garner, R.M.; Mobley, H.L.T. Conserved Residues and Motifs in the NixA Protein of Helicobacter pylori Are Critical for the High Affinity Transport of Nickel Ions. J. Biol. Chem. 1998, 273, 235–241. [Google Scholar] [CrossRef]
- Cullen, W.R. Is Arsenic an Aphrodisiac? Royal Society of Chemistry, 2008. [CrossRef]
- Luo, T.; Cui, J.; Hu, S.; Huang, Y.; Jing, C. Arsenic Removal and Recovery from Copper Smelting Wastewater Using TiO2. Environ. Sci. Technol. 2010, 44, 9094–9098. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef]
- Majumder, S.; Banik, P. Geographical variation of arsenic distribution in paddy soil, rice and rice-based products: A meta-analytic approach and implications to human health. J. Environ. Manage. 2019, 233, 184–199. [Google Scholar] [CrossRef]
- Ahuja, S. Arsenic Contamination of Groundwater. John Wiley & Sons, Inc., 2008. [CrossRef]
- Substance Priority List | ATSDR. Available at: https://www.atsdr.cdc.gov/SPL/index.html (accessed on 13 February 2021). (accessed on 13 February 2021).
- Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic binding to proteins. Chemical Reviews 2013, 113, 7769–7792. [Google Scholar] [CrossRef]
- Rosen, B.P. Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 86–92. [Google Scholar] [CrossRef]
- Oremland, R.S. The Ecology of Arsenic. Science 2003, 300, 939–944. [Google Scholar] [CrossRef]
- Styblo, M.; Del Razo, L.M.; Vega, L.; Germolec, D.R.; LeCluyse, E.L.; Hamilton, G.A.; Reed, W.; Wang, C.; Cullen, W.R.; Thomas, D.J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289–299. [Google Scholar] [CrossRef]
- Gulledge, J.H.; O’Connor, J.T. Removal of Arsenic (V) From Water by Adsorption on Aluminum and Ferric Hydroxides. J. Am. Water Works Assoc. 1973, 65, 548–552. [Google Scholar] [CrossRef]
- Hansen, H.K. , Ribeiro, A. & Mateus, E. Biosorption of arsenic (V) with Lessonia nigrescens. Miner. Eng. 2006, 19, 486–490. [Google Scholar]
- Hering, J.G.; Chen, P.-Y.; Wilkie, J.A.; Elimelech, M. Arsenic Removal from Drinking Water during Coagulation. J. Environ. Eng. 1997, 123, 800–807. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Z.; Shi, Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J. Environ. Heal. Sci. Eng. 2014, 12. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.T.; Zheng, Y.M.; Chen, J.P. Uptake of methylated arsenic by a polymeric adsorbent: Process performance and adsorption chemistry. Water Res. 2011, 45, 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Aryal, M.; Ziagova, M.; Liakopoulou-Kyriakides, M. Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem. Eng. J. 2010, 162, 178–185. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.-L.; Liu, L.-H.; Wang, J.-H.; Dasgupta, P.K. Iron(III) Modification of Bacillus subtilis Membranes Provides Record Sorption Capacity for Arsenic and Endows Unusual Selectivity for As(V). Environ. Sci. Technol. 2012, 46, 2251–2256. [Google Scholar] [CrossRef]
- Seki, H.; Suzuki, A.; Maruyama, H. Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J. Colloid Interface Sci. 2005, 281, 261–266. [Google Scholar] [CrossRef]
- Sari, A.; Uluozlü, Ö.D.; Tüzen, M. Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem. Eng. J. 2011, 167, 155–161. [Google Scholar] [CrossRef]
- Pandey, P.K.; Choubey, S.; Verma, Y.; Pandey, M.; Chandrashekhar, K. Biosorptive removal of arsenic from drinking water. Bioresour. Technol. 2009, 100, 634–637. [Google Scholar] [CrossRef]
- Kamala, C.T.; Chu, K.H.; Chary, N.S.; Pandey, P.K.; Ramesh, S.L.; Sastry, A.R.; Sekhar, K.C. Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass. Water Res. 2005, 39, 2815–2826. [Google Scholar] [CrossRef] [PubMed]
- Baig, J.A.; Kazi, T.G.; Shah, A.Q.; Kandhro, G.A.; Afridi, H.I.; Khan, S.; Kolachi, N.F. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water. J. Hazard. Mater. 2010, 178, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, D.; Talat, M.; Hasan, S.H. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J. Hazard. Mater. 2009, 166, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Brahman, K.D.; Kazi, T.G.; Baig, J.A.; Afridi, H.I.; Arain, S.S.; Saraj, S.; Arain, M.B.; Arain, S.A. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate. Chemosphere 2016, 150, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Nigam, S.; Gopal, K.; Vankar, P.S. Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata. Environ. Sci. Pollut. Res. 2013, 20, 4000–4008. [Google Scholar] [CrossRef] [PubMed]
- Say, R.; Yılmaz, N.; Denizli, A. Biosorption of Cadmium, Lead, Mercury, and Arsenic Ions by the Fungus Penicillium purpurogenum. Sep. Sci. Technol. 2003, 38, 2039–2053. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M. Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: Equilibrium and kinetic studies. J. Hazard. Mater. 2009, 164, 1372–1378. [Google Scholar] [CrossRef]
- Niu, C.H.; Volesky, B.; Cleiman, D. Biosorption of arsenic (V) with acid-washed crab shells. Water Res. 2007, 41, 2473–2478. [Google Scholar] [CrossRef]
- Benis, K.Z.; Damuchali, A.M.; McPhedran, K.N.; Soltan, J. Treatment of aqueous arsenic – A review of biosorbent preparation methods. J. Environ. Manage. 2020, 273, 111126. [Google Scholar] [CrossRef]
- Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. 2008, 42, 633–642. [Google Scholar] [CrossRef]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Research 2008, 42, 1343–1368. [Google Scholar] [CrossRef] [PubMed]
- Canovas, D.; Duran, C.; Rodriguez, N.; Amils, R.; de Lorenzo, V. Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ. Microbiol. 2003, 5, 133–138. [Google Scholar] [CrossRef]
- Rosen, B.P. Families of arsenic transporters. Trends Microbiol. 1999, 7, 207–212. [Google Scholar] [CrossRef]
- Dey, S.; Rosen, B.P. Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J. Bacteriol. 1995, 177, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Shen, J.; Rosen, B.P. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 1999, 96, 5001–5006. [Google Scholar] [CrossRef] [PubMed]
- Rosen, B.P.; Tamás, M.J. Arsenic Transport in Prokaryotes and Eukaryotic Microbes. in 47–55 (2010). [CrossRef]
- Liu, Z.; Shen, J.; Carbrey, J.M.; Mukhopadhyay, R.; Agre, P.; Rosen, B.P. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. 2002, 99, 6053–6058. [Google Scholar] [CrossRef]
- Yang, H.-C.; Fu, H.-L.; Lin, Y.-F.; Rosen, B.P. Pathways of Arsenic Uptake and Efflux. Current Topics in Membranes 2012, 69, 325–358. [Google Scholar] [PubMed]
- Bun-ya, M.; Shikata, K.; Nakade, S.; Yompakdee, C.; Harashima, S.; Oshima, Y. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 1996, 29, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Giots, F.; Donaton, M.C.V.; Thevelein, J.M. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 2003, 47, 1163–1181. [Google Scholar] [CrossRef] [PubMed]
- Oden, K.L.; Gladysheva, T.B.; Rosen, B.P. Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol. Microbiol. 1994, 12, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Rosen, B.P. Arsenate reductases in prokaryotes and eukaryotes. Environ. Health Perspect. 2002, 110, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Aposhian, H.V. Enzymatic Methylation Of Arsenic Species And Other New Approaches To Arsenic Toxicity. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 397–419. [Google Scholar] [CrossRef]
- Li, X.; Geng, Z.; Chang, J.; Wang, S.; Song, X.; Hu, X.; Wang, Z. Identification of the Third Binding Site of Arsenic in Human Arsenic (III) Methyltransferase. PLoS One 2013, 8, e84231. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, H.; Sheng, J.; Ajees, A.A.; Mukhopadhyay, R.; Rosen, B.P. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases. Biochemistry 2010, 49, 802–809. [Google Scholar] [CrossRef]
- Pandey, S.; Shrivastava, A.K.; Singh, V.K.; Rai, R.; Singh, P.K.; Rai, S.; Rai, L.C. A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct. Integr. Genomics 2013, 13, 43–55. [Google Scholar] [CrossRef]
- Wang, P.-P.; Bao, P.; Sun, G.-X. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM. FEMS Microbiol. Lett. 2015, 362, 1–8. [Google Scholar] [CrossRef]
- Badilla, C.; Osborne, T.H.; Cole, A.; Watson, C.; Djordjevic, S.; Santini, J.M. A new family of periplasmic-binding proteins that sense arsenic oxyanions. Sci. Rep. 2018, 8, 6282. [Google Scholar] [CrossRef]
- Shi, J.; Mukhopadhyay, R.; Rosen, B.P. Identification of a triad of arginine residues in the active site of the ArsC arsenate reductase of plasmid R773. FEMS Microbiol. Lett. 2003, 227, 295–301. [Google Scholar] [CrossRef]
- Bhattacharjee, H.; Rosen, B.P. Role of conserved histidine residues in metalloactivation of the ArsA ATPase. BioMetals 2000, 13, 281–288. [Google Scholar] [CrossRef]
- Singh, S.; Kang, S.H.; Lee, W.; Mulchandani, A.; Chen, W. Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli. Biotechnol. Bioeng. 2009. [Google Scholar] [CrossRef]
- Ellis, D.R.; Gumaelius, L.; Indriolo, E.; Pickering, I.J.; Banks, J.B.; Salt, D.E. A Novel Arsenate Reductase from the Arsenic Hyperaccumulating Fern Pteris vittata. Plant Physiol. 2006, 141, 1544–1554. [Google Scholar] [CrossRef]
- Shahpiri, A.; Mohammadzadeh, A. Bioaccumulation of Arsenic by Engineered Escherichia coli Cells Expressing Rice Metallothionein Isoforms. Curr. Microbiol. 2018, 75, 1537–1542. [Google Scholar] [CrossRef]
- Su, Y.J.; Lin, J.Q.; Lin, J.Q.; Hao, D.H. Bioaccumulation of Arsenic in recombinant Escherichia coli expressing human metallothionein. Biotechnol. Bioprocess Eng. 2009, 14, 565–570. [Google Scholar] [CrossRef]
- Merrifield, M.E.; Ngu, T.; Stillman, M.J. Arsenic binding to Fucus vesiculosus metallothionein. Biochem. Biophys. Res. Commun. 2004, 324, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Shen, M.W.Y.; Chen, W.; Da Silva, N.A. Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p. J. Biotechnol. 2010, 150, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.W.Y.; Shah, D.; Chen, W.; Da Silva, N. Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol. Prog. 2012, 28, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Villadangos, A.F.; Ordóñez, E.; Pedre, B.; Messens, J.; Gil, J.A.; Mateos, L.M. Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl. Microbiol. Biotechnol. 2014, 98, 10143–10152. [Google Scholar] [CrossRef]
- Kostal, J. , Yang, R., Wu, C.H., Mulchandani, A. & Chen, W. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl. Environ. Microbiol. 2004, 70, 4582–4587. [Google Scholar]
- Yang, T.; Liu, J.-W.; Gu, C.; Chen, M.-L.; Wang, J.-H. Expression of Arsenic Regulatory Protein in Escherichia coli for Selective Accumulation of Methylated Arsenic Species. ACS Appl. Mater. Interfaces 2013, 5, 2767–2772. [Google Scholar] [CrossRef]
- Schmöger, M.E.V.; Oven, M.; Grill, E. Detoxification of Arsenic by Phytochelatins in Plants. Plant Physiol. 2000, 122, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Gong, Z.; Li, X.-F.; Cullen, W.R.; Le, X.C. Interaction of Trivalent Arsenicals with Metallothionein. Chem. Res. Toxicol. 2003, 16, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Raab, A.; Feldmann, J.; Meharg, A.A. The Nature of Arsenic-Phytochelatin Complexes in Holcus lanatus and Pteris cretica. Plant Physiol. 2004, 134, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
