Submitted:
17 October 2023
Posted:
19 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. AKT3-derived circRNAs
3. AKT3 and miRNA/AKT3 axes in human cancers
3.1. Breast cancer
| Tumor tissue/cell lines | LncRNA or circRNA/functions | MiRNAs in the miRNA/AKT3 axis/related functions | Ref. |
|---|---|---|---|
| Breast cancer (BC) | |||
| BC tissues; MDA-MB-231, HUVECs |
miR-29b/ angiogenesis↓ tumorigenesis↓ |
[36] | |
| Docetaxel resistance of BC MCF7, MDA-MB-231, docetaxel resistant cell lines: MCF7/DTX, MDA-MB-231/DTX | miR-145/ cell viability↓, colony formation↓, docetaxel sensitivity↑ |
[53] | |
| MCF10A, MCF10. AT1, MCF10.neoT, CF10. Ca1d, MCF10. Ca1h, MCF10. DCIS | miR-29c/ preneoplastic TNBC cell proliferation↓, colonization ability↓ |
[54] | |
| MDA-MB-231 | miR-181a-5p/ viability↓, migration↓, survival↓, Warburg effect↓ |
[55] | |
| BC tissues; SKBR3, MDA-MB-231, HS578T, MCF7, BT474 |
miR-326/ cell growth↓, colony formation↓, apoptosis↑, migration↓ |
[56] | |
| BC tissues; BT-549, MCF-7, MDA-MB-453, MDA-MB-231 |
miR-433/ cell proliferation↓, cell viability↓, apoptosis↑ |
[57] | |
| Drug-resistant and drug-sensitive BC tumor tissues; MCF-7, MDA-MB-231, MDA-MB-468, T47D |
miR-489/ chemosensitivity↑, cell proliferation↓, invasion↓ |
[58] | |
| MCF-7, MDA-MB-231 | miR-3614-3p/ invasion↓, migration↓ |
[59] | |
| BC tissues; MDA-MB-231 |
circWHSC1/ cell growth↑, proliferation↑, migration↑, invasion↑, glycolysis↑, apoptosis↓ |
miR-212-5p | [61] |
| HCC1937, BT549, MDA-MB-231, MCF-7, T47D, BT474 | RP11-480I12.5-004/ cell proliferation↑, colony formation↑, apoptosis↓ |
miR-29c-3p | [60] |
| Non-small cell lung cancer (NSCLC) | |||
| NSCLC tissues; cell lines: BEAS-2B, A549, HCC823, NCL-H23, NCL-H358 cells |
miR-217/ cell proliferation↓, apoptosis↑ |
[62] | |
| NSCLC tissues; A549 |
circulating miR-320a/ metastatic potential↓, apoptosis↑ |
[63] | |
| NSCLC tissues; NSCLC cell lines: CALU3, CALU6, A549, H1229, H1975 |
circWHSC1/ colony formation↑, viability↑, metastasis↑, progression↑ |
miR-296-3p | [64] |
| NSCLC tissues; NSCLC cell lines: A549 and H460 |
circ_0016760/proliferation↑, migration↑, apoptosis↓ | miR-646 | [65] |
| NSCLC tissues; Cell lines: NCI-H1299, A549, H460, NCI-H2106, H1975 |
circ_0000520/ cell growth↑, migration↑, invasion↑ |
miR-1258 | [66] |
| Hepatocellular carcinoma (HCC) | |||
| HCC specimens; HCC cell lines: HepG2 | miR-122, miR-124/ function not validated |
[67] | |
| HCC tissue samples and cell lines: Huh-7, SNU-182, SNU-475, Hep3B2, HepG2 | miR-122/ cell growth↓, migration↓, apoptosis↑, |
[68] | |
| HCC-BCLC9 cell | miR-122/ cell proliferation↓, dormancy↑ |
[69] | |
| HCC specimens; HepG2, HuH7, SMMC-7721 |
miR-144/ cell proliferation↓, migration↓, invasion↓ |
[70] | |
| HCC tissues of solitary large, nodular, and small HCC; HCC cell lines: SMMC7721, HepG2, HUH7, MHCC97-L, MHCC97-H, HCCLM3 |
miR-424/ cell proliferation↓ |
[71] | |
| HCC specimens; HCC cell lines: QGY-7703, Huh7, BEL-7402, HepG2, Hep3B |
miR-582-5p/ colony formation↓, cell proliferation↓ |
[72] | |
| HCC tissues; HCC cell lines: SNU-449, SNU-182, Huh7, LM3, Bel-7405, SK-hep1, Hep3B | LINC00680/stemness behavior↑, chemosensitivity↓ | miR-568 | [73] |
| HCC specimens; HCC cell lines: HepG2, Hep3B, Huh-7, SNU398, NU449, SNU182, SNU475 |
miR-519d/AKT3? miR-519d/ cell proliferation↑, migration↑, apoptosis↓ |
[74] | |
| Colorectal cancer (CRC) | |||
| CRC cell lines: RKO, HCT116 | miR-124-3p.1/ proliferation↓, metastasis↓ |
[75] | |
| CRC tissues CRC cell lines: SW480, HCT116, LOVO, SW620 |
miR-384/ proliferation↓ |
[76] | |
| CRC tissues; CRC cell lines: Colo205, SW620, HCT116, HT29, LOVO, SW480 |
LINC02163/proliferation↑, metastasis↑ | miR-511-3p | [77] |
| CRC tissues; CRC cell lines: LOVO, PKO, SW480, HT29 |
lncRNA DSCAM-AS1/proliferation↑, invasion↑, migration↑ | miR-384 | [78] |
| Gastric carcinoma (GC) | |||
| GC tissues; cell lines: SGC-7901, MKN45, BGC823 |
miR-195/ apoptosis↑ |
[79] | |
| Gastric adenocarcinoma serum; cell line: MGC-803 |
MALAT1/ apoptosis↓ |
miR-181a-5p | [80] |
| GC tissues; GC cell lines: MKN28, NCI-N87, AGS, KATOIII, RF1, RF48 |
circNF1/cell proliferation↑ | miR-16 | [81] |
| Cholangiocarcinoma (CCA) cell lines: HCCC-9810, RBE | circRNA CDR1a/proliferation↑, invasion↑ | miR-641 | [82] |
|
Pancreatic cancer (PC) tissues; cell line: PANC-1 |
miR-489/proliferation↓, apoptosis↑ | [83] | |
| Ovarian cancer (OC)/epithelial ovarian cancer (EOC) | |||
| EOC tissues; cell lines: SKOV3, A2780, HO8910, 3AO |
miR-29b/ Warburg effect↓, tumor growth↓ |
[84] | |
| OC cell lines: SKOV3, OVCAR3, cisplatin-resistant SKOV and OVCAR3 cells | miR-489/ survival↓, growth↓, apoptosis↑, sensitivity of cisplatin-resistant OC to cisplatin↑ |
[85] | |
| OC tissues; Cell lines: CaOV3, OVCAR3, SKOV3 |
RHPN1-AS1/proliferation↑, migration↑, invasion↑ | miR-665 | [86] |
| OC tissues; OC cell lines: SKOV-3, ES-2, OVCAR3, A2780, CAOV3 |
lncRNA EMX2OS/proliferation↑, invasion↑, tumor growth ↑ | miR-654 | [87] |
| Endometrial carcinoma (EC) | |||
| EC tissues; EC cell line ECC1 |
miR-582-5p/proliferation↓, apoptosis↑ | [88] | |
| Endometrial adenocarcinoma cell line: Ishikawa (ISK) cells | lncCDKN2B-AS1/proliferation↑, invasion↑ | miR-424-5p | [89] |
| EC tissues; EC cell lines: HEC1A, HEC1B, Ishikawa |
LINC01224/ proliferation↑, apoptosis↓ |
miR-485-5p | [90] |
| Thyroid carcinoma (TC)/papillary thyroid carcinoma (PTC) | |||
| TC tissues; cell lines: TPC-1, FTC-133, 8505C; primary PTC cells; |
miR-145/ growth↓, metastasis↓ |
[91] | |
| PTC tissues; PTC cell line: K1 |
miR-29a/ growth↓, apoptosis↑, metastasis↓ |
[92] | |
| TC tissues; PTC cell lines: 8505C, TPC-1, SW1736 |
miR-217/ proliferation↓, migration↓, invasion↓ |
[93] | |
| PTC tissues; PTC cell lines: B-CPAP, KTC-1 |
lncRNA n384546/progression↑, metastasis↑ | miR-145-5p | [94] |
| TC tissues; TC cell lines: BCPAP, K1, H7H83, TPC-1 |
circ_0000144/proliferation↑, migration↑, invasion↑ | miR-217 | [95] |
| Nasopharyngeal carcinoma (NPC) | |||
| NPC tissues; Human primary NPC cell |
miR-424-5p/ proliferation↓, migration↓, apoptosis↑ |
[96] | |
| NPC tissues; NPC cell lines: C666-1, SUNE1, 5-8 F, HNE1, HNE2 |
circTRAF3/proliferation↑, invasion↑, apoptosis↓ | miR-203a-3p | [97] |
|
Oral squamous cell carcinoma (OSCC) tissues; cell line: SCC-4, SCC-25, HN-6, CAL-27, TCA-83 |
miR-16/ proliferation↓, apoptosis↑ |
[98] | |
| Glioblastoma multiforme (GBM) | |||
| GBM cell lines: T98G, U87, A172, LN229, LN18 | miR-610/ proliferation↓, anchorage independent growth↓ |
[99] | |
| GBM cell lines: LN229, A172, U373, SHG44 | lncRNA, GAS5/proliferation↓, migration↓, invasion↓ | miR-424 | [100] |
| Multiple myeloma (MM) | |||
| MM cell lines: OPM2, RPMI-8226; Endothelial cell: HUVECs |
miR-29b/ endothelial cell proliferation↓, migration↓, tube formation↓ |
[101] | |
| MM tissues; Cell lines: KM3, H929, MM1S, U266 cells |
circ_0000142/proliferation↑, metastasis↑ | miR-610 | [102] |
| MM tissues; cell lines: OPM-2, U266, KM3, U1996, H929 |
lncRNA FEZF1-AS1/ proliferation↑, apoptosis↓ |
miR-610 | [103] |
| Osteosarcoma (OS) | |||
| OS tissues; cell lines: HOS, MG-63, Saos-2, SW1353, U2OS |
miR-1258/ proliferation↓ |
[104] | |
| OS tissues; OS cell lines: HOS, MG-63, SaOS-2, U2OS, |
MALAT1/ glycolysis↑, proliferation↑, metastasis↑ |
miR-485-3p | [105] |
|
Uveal melanoma (UM) tissues; UM cell line: OCM-1A |
miR-224-5p/ proliferation↓, migration↓, invasion↓ |
[106] | |
| UM cell lines: OMM2.5, UM001, Mel285, Mel290; UM xenografts |
miR-181a-5p/ proliferation↓, colony formation↓, apoptosis↑, tumor growth ↓ |
[107] | |
|
NK/T cell lymphoma (NKTL) tissues; cell lines: KHYG-1, NK-92, HANK-1, SNK-1, SNK-6 |
miR-150/ sensitivity of NKTL to radiation treatment↑ |
[108] | |
| Bladder cancer TCGA database | miR-195/ cell proliferation↓ |
[109] | |
|
Wilms’ tumor tissues; cell lines: 17-94, WIT49 |
miR-22-3p/ proliferation↓, invasion↓ |
[110] |
3.2. Lung cancer
3.3. Digestive/gastrointestinal cancers
3.4. Gynecologic cancers
3.5. Thyroid carcinoma and head and neck cancers
3.6. Other types of human cancer
4. Dysregulation of the same miRNA/AKT3 axis in different cancers
5. Conclusion
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
List of abbreviations
| Abbreviation | Full name |
| 3′-UTRs | 3′-untranslated region |
| 5-Fu | 5-fluorouracil |
| CCA | cholangiocarcinoma |
| ccRCC | clear cell renal cell carcinoma |
| ceRNA | competitive endogenous RNA |
| circRNAs | circular RNAs |
| CRC | colorectal cancer |
| DDR | discoidin domain receptors |
| DNA-PKcs | DNA-dependent protein kinase catalytic subunit |
| DSBs | DNA double-strand breaks |
| EC | endometrial carcinoma |
| EOC | epithelial ovarian cancer |
| ERα | estrogen receptor alpha |
| GAS5 | growth arrest-specific 5 |
| GBM | glioblastoma multiforme |
| GC | gastric cancer |
| HCC | hepatocellular carcinoma |
| HER2 | ErbB2 receptor tyrosine kinase 2 |
| HK2 | hexokinase2 |
| HUVEC | human umbilical vein endothelial cells |
| IBC | inflammatory breast cancer |
| K-RASmut | K-RAS-mutated |
| lncRNAs | long non-coding RNAs |
| MALAT-1 | metastasis-associated lung adenocarcinoma transcript 1 |
| miRNA, miR- | microRNA |
| MM | multiple myeloma |
| ncRNAs | non-coding RNAs |
| NKTL | NK/T cell lymphoma |
| NPC | nasopharyngeal carcinoma |
| NSCLC | non-small cell lung cancer |
| OC | ovarian cancer |
| OS | osteosarcoma |
| OSCC | oral squamous cell carcinoma |
| PC | pancreatic cancer |
| PIK3R3 | Phosphoinositide-3-Kinase Regulatory Subunit 3 |
| PKM2 | pyruvate kinase isozyme M2 |
| PTC | papillary thyroid carcinoma |
| RCC | renal cell carcinoma |
| TGFβ | transforming growth factor β |
| TNBC | triple-negative breast cancer |
| ULM | uterine leiomyomas |
| UM | uveal melanoma |
| UTR | untranslated region |
References
- Cardone MH: Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318-1321. [CrossRef]
- Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: A comprehensive review. Cell Communication and Signaling 2019; 17: 154. [CrossRef]
- Jeong SH, Yang MJ, Choi S, Kim J, Koh GY. Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat Commun 2021; 12: 4405. [CrossRef]
- Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 2019; 20: 515-534. [CrossRef]
- Yang Q, Jiang W, Hou P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol 2019; 59: 112-124. [CrossRef]
- Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943-1947. [CrossRef]
- Xu M, Mo YY. The Akt-associated microRNAs. Cell Mol Life Sci 2012; 69: 3601-3612. [CrossRef]
- Costa FF. Non-coding RNAs: New players in eukaryotic biology. Gene 2005; 357: 83-94. [CrossRef]
- Selvakumar SC, Preethi KA, Sekar D. MicroRNAs as important players in regulating cancer through PTEN/PI3K/AKT signalling pathways. Biochim Biophys Acta Rev Cancer 2023; 1878: 188904. [CrossRef]
- Ebbesen KK, Hansen TB, Kjems J. Insights into circular RNA biology. RNA Biol 2017; 14: 1035-1045. [CrossRef]
- Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y et al. The Landscape of Circular RNA in Cancer. Cell 2019; 176: 869-881.e813. [CrossRef]
- Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384-388. [CrossRef]
- Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 2018; 187: 31-44. [CrossRef]
- Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduction and Targeted Therapy 2021; 6: 400. [CrossRef]
- Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology 2021; 22: 96-118. [CrossRef]
- Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology 2023. [CrossRef]
- Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: Insights into functions. Nat Rev Genet 2009; 10: 155-159. [CrossRef]
- Ghafouri-Fard S, Askari A, Hussen BM, Taheri M, Mokhtari M. A long non-coding RNA with important roles in the carcinogenesis. Front Cell Dev Biol 2022; 10: 1037149. [CrossRef]
- Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 1991; 201: 475-481. [CrossRef]
- Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381-395. [CrossRef]
- Toulany M, Maier J, Iida M, Rebholz S, Holler M, Grottke A et al. Akt1 and Akt3 but not Akt2 through interaction with DNA-PKcs stimulate proliferation and post-irradiation cell survival of K-RAS-mutated cancer cells. Cell death discovery 2017; 3: 1-10. [CrossRef]
- Basu A, Lambring CB. Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13. [CrossRef]
- Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001; 15: 2203-2208. [CrossRef]
- Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, 3rd et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292: 1728-1731. [CrossRef]
- Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Miesk M, Watanabe T et al. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 2005; 132: 2943-2954. [CrossRef]
- Wainstein E, Maik-Rachline G, Blenis J, Seger R. AKTs do not translocate to the nucleus upon stimulation but AKT3 can constitutively signal from the nuclear envelope. Cell Rep 2022; 41: 111733. [CrossRef]
- Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ et al. Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem 1999; 274: 21528-21532. [CrossRef]
- Risso G, Blaustein M, Pozzi B, Mammi P, Srebrow A. Akt/PKB: One kinase, many modifications. Biochem J 2015; 468: 203-214. [CrossRef]
- Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K et al. Molecular cloning and characterization of a new member of the RAC protein kinase family: Association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun 1995; 216: 526-534. [CrossRef]
- Davies MA, Stemke-Hale K, Tellez C, Calderone TL, Deng W, Prieto VG et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 2008; 99: 1265-1268. [CrossRef]
- Yeganeh PN, Richardson C, Bahrani-Mostafavi Z, Tait DL, Mostafavi MT. Dysregulation of AKT3 along with a small panel of mRNAs stratifies high-grade serous ovarian cancer from both normal epithelia and benign tumor tissues. Genes Cancer 2017; 8: 784-798. [CrossRef]
- Madhunapantula SV, Robertson GP. Targeting protein kinase-b3 (akt3) signaling in melanoma. Expert Opin Ther Targets 2017; 21: 273-290. [CrossRef]
- Lin F-M, Yost SE, Wen W, Frankel PH, Schmolze D, Chu P-G et al. Differential gene expression and AKT targeting in triple negative breast cancer. Oncotarget 2019; 10: 4356. [CrossRef]
- Joy A, Kapoor M, Georges J, Butler L, Chang Y, Li C et al. The role of AKT isoforms in glioblastoma: AKT3 delays tumor progression. J Neurooncol 2016; 130: 43-52. [CrossRef]
- Lu S, Chen L, Tang L. Upregulation of AKT1 and downregulation of AKT3 caused by dysregulation of microRNAs contributes to pathogenesis of hemangioma by promoting proliferation of endothelial cells. J Cell Physiol 2019; 234: 21342-21351. [CrossRef]
- Li Y, Cai B, Shen L, Dong Y, Lu Q, Sun S et al. MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3. Cancer Lett 2017; 397: 111-119. [CrossRef]
- Xu Y, Jiang T, Wu C, Zhang Y. CircAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol Lett 2020; 42: 1123-1135. [CrossRef]
- Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer 2019; 18: 71. [CrossRef]
- Li H, Xu W, Xia Z, Liu W, Pan G, Ding J et al. Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. Aging (Albany NY) 2021; 13: 4522-4551. [CrossRef]
- Xue D, Wang H, Chen Y, Shen D, Lu J, Wang M et al. Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals. Mol Cancer 2019; 18: 151. [CrossRef]
- Xia X, Li X, Li F, Wu X, Zhang M, Zhou H et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer 2019; 18: 131. [CrossRef]
- Rahmani F, Ferns GA, Talebian S, Nourbakhsh M, Avan A, Shahidsales S. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene 2020; 737: 144459. [CrossRef]
- Turner KM, Sun Y, Ji P, Granberg KJ, Bernard B, Hu L et al. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci U S A 2015; 112: 3421-3426. [CrossRef]
- Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012; 486: 405-409. [CrossRef]
- Suyama K, Yao J, Liang H, Benard O, Loudig OD, Amgalan D et al. An Akt3 Splice Variant Lacking the Serine 472 Phosphorylation Site Promotes Apoptosis and Suppresses Mammary Tumorigenesis. Cancer Res 2018; 78: 103-114. [CrossRef]
- Chin YR, Yoshida T, Marusyk A, Beck AH, Polyak K, Toker A. Targeting Akt3 signaling in triple-negative breast cancer. Cancer Res 2014; 74: 964-973. [CrossRef]
- Grabinski N, Möllmann K, Milde-Langosch K, Müller V, Schumacher U, Brandt B et al. AKT3 regulates ErbB2, ErbB3 and estrogen receptor α expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice. Cell Signal 2014; 26: 1021-1029. [CrossRef]
- Maroulakou IG, Oemler W, Naber SP, Tsichlis PN. Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res 2007; 67: 167-177. [CrossRef]
- Chung S, Yao J, Suyama K, Bajaj S, Qian X, Loudig OD et al. N-cadherin regulates mammary tumor cell migration through Akt3 suppression. Oncogene 2013; 32: 422-430. [CrossRef]
- Hinz N, Baranowsky A, Horn M, Kriegs M, Sibbertsen F, Smit DJ et al. Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells 2021; 10. [CrossRef]
- Lehman HL, Van Laere SJ, van Golen CM, Vermeulen PB, Dirix LY, van Golen KL. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBα phosphorylation of RhoC GTPase. Mol Cancer Res 2012; 10: 1306-1318. [CrossRef]
- Dabi Y, Bendifallah S, Suisse S, Haury J, Touboul C, Puchar A et al. Overview of non-coding RNAs in breast cancers. Transl Oncol 2022; 25: 101512. [CrossRef]
- Zhou Y, Cai W, Lu H. Overexpression of microRNA-145 enhanced docetaxel sensitivity in breast cancer cells via inactivation of protein kinase B gamma-mediated phosphoinositide 3-kinase -protein kinase B pathway. Bioengineered 2022; 13: 11310-11320. [CrossRef]
- Bhardwaj A, Singh H, Rajapakshe K, Tachibana K, Ganesan N, Pan Y et al. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Oncotarget 2017; 8: 19645-19660. [CrossRef]
- Wang Y, Tahiri H, Yang C, Gu M, Ruan X, Hardy P. Overexpression of miR-181a regulates the Warburg effect in triple-negative breast cancer. Climacteric 2023; 26: 64-71. [CrossRef]
- Ghaemi Z, Soltani BM, Mowla SJ. MicroRNA-326 Functions as a Tumor Suppressor in Breast Cancer by Targeting ErbB/PI3K Signaling Pathway. Front Oncol 2019; 9: 653. [CrossRef]
- Hu X, Wang J, He W, Zhao P, Ye C. MicroRNA-433 targets AKT3 and inhibits cell proliferation and viability in breast cancer. Oncol Lett 2018; 15: 3998-4004. [CrossRef]
- Chen X, Wang YW, Xing AY, Xiang S, Shi DB, Liu L et al. Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. J Pathol 2016; 239: 459-472. [CrossRef]
- Wang Z, Jing X, Li F, Chen Y, Huang C. miR-3614-3p suppresses cell aggressiveness of human breast cancer by targeting AKT3 and HDAC1 expression. Transl Cancer Res 2022; 11: 1565-1575. [CrossRef]
- Lou W, Ding B, Zhong G, Yao J, Fan W, Fu P. RP11-480I12.5-004 Promotes Growth and Tumorigenesis of Breast Cancer by Relieving miR-29c-3p-Mediated AKT3 and CDK6 Degradation. Mol Ther Nucleic Acids 2020; 21: 916-931. [CrossRef]
- Ding L, Xie Z. CircWHSC1 regulates malignancy and glycolysis by the miR-212-5p/AKT3 pathway in triple-negative breast cancer. Exp Mol Pathol 2021; 123: 104704. [CrossRef]
- Qi YJ, Zha WJ, Zhang W. MicroRNA-217 alleviates development of non-small cell lung cancer by inhibiting AKT3 via PI3K pathway. Eur Rev Med Pharmacol Sci 2018; 22: 5972-5979. [CrossRef]
- Khandelwal A, Sharma U, Barwal TS, Seam RK, Gupta M, Rana MK et al. Circulating miR-320a Acts as a Tumor Suppressor and Prognostic Factor in Non-small Cell Lung Cancer. Front Oncol 2021; 11: 645475. [CrossRef]
- Shi F, Yang Q, Shen D, Chen J. CircRNA WHSC1 promotes non-small cell lung cancer progression via sponging microRNA-296-3p and up-regulating expression of AKT serine/threonine kinase 3. J Clin Lab Anal 2021; 35: e23865. [CrossRef]
- Chen S, Zhou L, Ran R, Huang J, Zheng Y, Xing M et al. Circ_0016760 accelerates non-small-cell lung cancer progression through miR-646/AKT3 signaling in vivo and in vitro. Thorac Cancer 2021; 12: 3223-3235. [CrossRef]
- Han L, Yang H, Wei W, Hu F, Yuan L. Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. J Oncol 2022; 2022: 3676685. [CrossRef]
- Zhang Y, Guo X, Xiong L, Yu L, Li Z, Guo Q et al. Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway. Mol Cancer 2014; 13: 253. [CrossRef]
- Xing M, Xie X, Liu Z, Du X. Regulation of Tumorigenesis in Hepatocellular Carcinoma via the AKT3 Pathway in Cell Lines. Comput Math Methods Med 2021; 2021: 3267536. [CrossRef]
- Boix L, López-Oliva JM, Rhodes AC, Bruix J. Restoring miR122 in human stem-like hepatocarcinoma cells, prompts tumor dormancy through Smad-independent TGF-β pathway. Oncotarget 2016; 7: 71309-71329. [CrossRef]
- Ma Y, She XG, Ming YZ, Wan QQ, Ye QF. MicroRNA-144 suppresses tumorigenesis of hepatocellular carcinoma by targeting AKT3. Mol Med Rep 2015; 11: 1378-1383. [CrossRef]
- Yang H, Zheng W, Shuai X, Chang RM, Yu L, Fang F et al. MicroRNA-424 inhibits Akt3/E2F3 axis and tumor growth in hepatocellular carcinoma. Oncotarget 2015; 6: 27736-27750. [CrossRef]
- Zhang Y, Huang W, Ran Y, Xiong Y, Zhong Z, Fan X et al. miR-582-5p inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3. Tumour Biol 2015; 36: 8309-8316. [CrossRef]
- Shu G, Su H, Wang Z, Lai S, Wang Y, Liu X et al. LINC00680 enhances hepatocellular carcinoma stemness behavior and chemoresistance by sponging miR-568 to upregulate AKT3. J Exp Clin Cancer Res 2021; 40: 45. [CrossRef]
- Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G et al. In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 2012; 227: 275-285. [CrossRef]
- Li Y, Dong W, Yang H, Xiao G. Propofol suppresses proliferation and metastasis of colorectal cancer cells by regulating miR-124-3p.1/AKT3. Biotechnol Lett 2020; 42: 493-504. [CrossRef]
- Wang YX, Zhu HF, Zhang ZY, Ren F, Hu YH. MiR-384 inhibits the proliferation of colorectal cancer by targeting AKT3. Cancer Cell Int 2018; 18: 124. [CrossRef]
- Ma J, Zhang L, Shang A, Song H, Huo J, Zhang M et al. LINC02163 promotes colorectal cancer progression via miR-511-3p/AKT3 axis. Artif Cells Nanomed Biotechnol 2020; 48: 961-968. [CrossRef]
- Li B, Sun H, Zhang J. LncRNA DSCAM-AS1 promotes colorectal cancer progression by acting as a molecular sponge of miR-384 to modulate AKT3 expression. Aging (Albany NY) 2020; 12: 9781-9792. [CrossRef]
- Yang Y, Wu F, Zhang J, Sun R, Li F, Li Y et al. EGR1 interacts with DNMT3L to inhibit the transcription of miR-195 and plays an anti-apoptotic role in the development of gastric cancer. J Cell Mol Med 2019; 23: 7372-7381. [CrossRef]
- Lu Z, Luo T, Pang T, Du Z, Yin X, Cui H et al. MALAT1 promotes gastric adenocarcinoma through the MALAT1/miR-181a-5p/AKT3 axis. Open Biol 2019; 9: 190095. [CrossRef]
- Wang Z, Ma K, Pitts S, Cheng Y, Liu X, Ke X et al. Novel circular RNA circNF1 acts as a molecular sponge, promoting gastric cancer by absorbing miR-16. Endocr Relat Cancer 2019; 26: 265-277. [CrossRef]
- Li D, Tang Z, Gao Z, Shen P, Liu Z, Dang X. Circular RNA CDR1as Exerts Oncogenic Properties Partially through Regulating MicroRNA 641 in Cholangiocarcinoma. Mol Cell Biol 2020; 40. [CrossRef]
- Zeng M, Zhou Y, Zhang Y, Wang T, Wang J. Role of miR-489 in the proliferation and apoptosis of pancreatic carcinoma. J buon 2019; 24: 1574-1580.
- Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W et al. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget 2015; 6: 40799-40814. [CrossRef]
- Wu H, Xiao Z, Zhang H, Wang K, Liu W, Hao Q. MiR-489 modulates cisplatin resistance in human ovarian cancer cells by targeting Akt3. Anticancer Drugs 2014; 25: 799-809. [CrossRef]
- Zhao J, Yang T, Ji J, Zhao F, Li C, Han X. RHPN1-AS1 promotes cell proliferation and migration via miR-665/Akt3 in ovarian cancer. Cancer Gene Ther 2021; 28: 33-41. [CrossRef]
- Duan M, Fang M, Wang C, Wang H, Li M. LncRNA EMX2OS Induces Proliferation, Invasion and Sphere Formation of Ovarian Cancer Cells via Regulating the miR-654-3p/AKT3/PD-L1 Axis. Cancer Manag Res 2020; 12: 2141-2154. [CrossRef]
- Li L, Ma L. Upregulation of miR-582-5p regulates cell proliferation and apoptosis by targeting AKT3 in human endometrial carcinoma. Saudi J Biol Sci 2018; 25: 965-970. [CrossRef]
- Wang S, Yi M, Zhang X, Zhang T, Jiang L, Cao L et al. Effects of CDKN2B-AS1 on cellular proliferation, invasion and AKT3 expression are attenuated by miR-424-5p in a model of ovarian endometriosis. Reprod Biomed Online 2021; 42: 1057-1066. [CrossRef]
- Zuo X, Li W, Yan X, Ma T, Ren Y, Hua M et al. Long non-coding RNA LINC01224 promotes cell proliferation and inhibits apoptosis by regulating AKT3 expression via targeting miR-485-5p in endometrial carcinoma. Oncol Rep 2021; 46. [CrossRef]
- Boufraqech M, Zhang L, Jain M, Patel D, Ellis R, Xiong Y et al. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer 2014; 21: 517-531. [CrossRef]
- Li R, Liu J, Li Q, Chen G, Yu X. miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3. Tumour Biol 2016; 37: 3987-3996. [CrossRef]
- Lin Y, Cheng K, Wang T, Xie Q, Chen M, Chen Q et al. miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed Pharmacother 2017; 95: 1718-1724. [CrossRef]
- Feng J, Zhou Q, Yi H, Ma S, Li D, Xu Y et al. A novel lncRNA n384546 promotes thyroid papillary cancer progression and metastasis by acting as a competing endogenous RNA of miR-145-5p to regulate AKT3. Cell Death Dis 2019; 10: 433. [CrossRef]
- Fan YX, Shi HY, Hu YL, Jin XL. Circ_0000144 facilitates the progression of thyroid cancer via the miR-217/AKT3 pathway. J Gene Med 2020; 22: e3269. [CrossRef]
- Zhao C, Zhao F, Chen H, Liu Y, Su J. MicroRNA-424-5p inhibits the proliferation, migration, and invasion of nasopharyngeal carcinoma cells by decreasing AKT3 expression. Braz J Med Biol Res 2020; 53: e9029. [CrossRef]
- Fang X, Huang W, Wu P, Zeng J, Li X. CircRNA circTRAF3 promotes nasopharyngeal carcinoma metastasis through targeting miR-203a-3p/AKT3 axis. Pathol Res Pract 2021; 221: 153438. [CrossRef]
- Wang X, Li GH. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J Cell Physiol 2018; 233: 9447-9457. [CrossRef]
- Mo X, Cao Q, Liang H, Liu J, Li H, Liu F. MicroRNA-610 suppresses the proliferation of human glioblastoma cells by repressing CCND2 and AKT3. Mol Med Rep 2016; 13: 1961-1966. [CrossRef]
- Jin C, Zhao J, Zhang ZP, Wu M, Li J, Xiao GL et al. Long non-coding RNA GAS5, by up-regulating PRC2 and targeting the promoter methylation of miR-424, suppresses multiple malignant phenotypes of glioma. J Neurooncol 2020; 148: 529-543. [CrossRef]
- Liu L, Ye Q, Liu L, Bihl JC, Chen Y, Liu J et al. C6-ceramide treatment inhibits the proangiogenic activity of multiple myeloma exosomes via the miR-29b/Akt pathway. J Transl Med 2020; 18: 298. [CrossRef]
- Liu F, Wang YL, Wei JM, Huang ZD. Upregulation of circ_0000142 promotes multiple myeloma progression by adsorbing miR-610 and upregulating AKT3 expression. J Biochem 2021; 169: 327-336. [CrossRef]
- Li QY, Chen L, Hu N, Zhao H. Long non-coding RNA FEZF1-AS1 promotes cell growth in multiple myeloma via miR-610/Akt3 axis. Biomed Pharmacother 2018; 103: 1727-1732. [CrossRef]
- Liu W, Zhou Z, Zhang Q, Rong Y, Li L, Luo Y et al. Overexpression of miR-1258 inhibits cell proliferation by targeting AKT3 in osteosarcoma. Biochem Biophys Res Commun 2019; 510: 479-486. [CrossRef]
- Wang Q, Liu MJ, Bu J, Deng JL, Jiang BY, Jiang LD et al. miR-485-3p regulated by MALAT1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling. Life Sci 2021; 268: 118925. [CrossRef]
- Li J, Liu X, Li C, Wang W. miR-224-5p inhibits proliferation, migration, and invasion by targeting PIK3R3/AKT3 in uveal melanoma. J Cell Biochem 2019; 120: 12412-12421. [CrossRef]
- Wang R, Tahiri H, Yang C, Landreville S, Callejo S, Hardy P. MiR-181a-5p inhibits uveal melanoma development by targeting GNAQ and AKT3. Am J Cancer Res 2023; 13: 293-306.
- Wu SJ, Chen J, Wu B, Wang YJ, Guo KY. MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma. J Exp Clin Cancer Res 2018; 37: 18. [CrossRef]
- Wang X, Ding Y, Wang J, Wu Y. Identification of the Key Factors Related to Bladder Cancer by lncRNA-miRNA-mRNA Three-Layer Network. Front Genet 2019; 10: 1398. [CrossRef]
- Luo B, Ma L, Xing X, Wang ZR, Teng Q, Li SG. MiR-22-3p regulates the proliferation and invasion of Wilms’ tumor cells by targeting AKT3. Eur Rev Med Pharmacol Sci 2020; 24: 5996-6004. [CrossRef]
- Grabinski N, Bartkowiak K, Grupp K, Brandt B, Pantel K, Jücker M. Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal 2011; 23: 1952-1960. [CrossRef]
- Tan Y, Ge G, Pan T, Wen D, Chen L, Yu X et al. A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus. PLoS ONE 2014; 9: e107986. [CrossRef]
- Park GB, Jeong JY, Kim D. GLUT5 regulation by AKT1/3-miR-125b-5p downregulation induces migratory activity and drug resistance in TLR-modified colorectal cancer cells. Carcinogenesis 2020; 41: 1329-1340. [CrossRef]
- Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T et al. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 2010; 12: 221-232. [CrossRef]
- Nguyen TTP, Suman KH, Nguyen TB, Nguyen HT, Do DN. The Role of miR-29s in Human Cancers-An Update. Biomedicines 2022; 10. [CrossRef]
- Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB et al. The role of miR-29b in cancer: Regulation, function, and signaling. Onco Targets Ther 2015; 8: 539-548. [CrossRef]


| Tumor tissue/cell lines | CircAKT3/functions | Targets | Ref. |
|---|---|---|---|
| Lung cancer tissues; cell lines: A549 and H1299 |
hsa_circ_0000199/ glycolysis↑, cell growth↑, drug sensitivity↓ |
miR-516b-5p, STAT3 | [37] |
| GC tissues; cell lines: SGC7901, BGC823, CDDP-resistant SGC7901, CDDP-resistant BGC823 |
hsa_circ_0000199/ DNA damage repair↑, cell survival↑ |
miR-198 | [38] |
| TNBC tissues; cell lines: MCF-10A, MDA-MB-231, MDA-MB-468, SK-BR-3 |
hsa_circ_0000199/ chemo-tolerance↑, proliferation↑, migration↑, invasion↑ |
miR-206, miR-613 | [39] |
| ccRCC tissues; cell lines: OSRC-2, Caki-1, SN12-PM6, A498, SW839 |
hsa_circ_0017252/ metastasis↓ |
miR-296-3p | [40] |
| GBM tissues; cell lines: U251, HS683, SW1783, U373, glioma-initiating cells |
hsa_circ_0017250/ proliferation↓, invasiveness↓ |
AKT | [41] |
| BC model system | AKT3 or Akt3/functions | AKT3 targets | Ref. |
|---|---|---|---|
| K-RAS mutated MDA-MB-231 cells; xenografts | AKT3/cell proliferation↑, tumor growth↑, post-irradiation cell survival↑ | [21] | |
| 3475 subline of MDA-MB-231 cells (lung metastasis); MDA-MB-231 | AKT3/tumor growth↑, metastasis↑, apoptosis↓ | ERK, Bim, Bax | [45] |
| MDA-MB-231; MDA-MB-468 and MCF10DCIS xenografts | AKT3/TNBC growth↑ | p27 | [46] |
| ErbB2(+) BC cells, mammary tumor cells | AKT3/cell proliferation↑, tamoxifen sensitivity↓ | pErbB2/pErbB3, Foxo3a, ERα | [47] |
| MMTV-ErbB2, MMTV-PyMT mice (Neu- and PyMT- driven mammary oncogenesis) | Akt3/no effect on tumorigenesis of mouse BC cells | [48] | |
| PyMT mouse BC cells | Akt3/metastasis of mouse BC cells↓ | [49] | |
| MDA-MB-231 BO cells; xenografts | AKT3/migration↓, invasion↓ bone metastasis↓ | HER2, DDR kinase | [50] |
| IBC cells: SUM149 | AKT3/survival of IBC↑, no effect on invasion | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
