Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Magnetic Stirling Cycle for Qubits with Anisotropy near the Quantum Critical Point

Version 1 : Received: 16 October 2023 / Approved: 16 October 2023 / Online: 17 October 2023 (06:54:21 CEST)

A peer-reviewed article of this Preprint also exists.

Araya, C.; Peña, F.J.; Norambuena, A.; Castorene, B.; Vargas, P. Magnetic Stirling Cycle for Qubits with Anisotropy near the Quantum Critical Point. Technologies 2023, 11, 169. Araya, C.; Peña, F.J.; Norambuena, A.; Castorene, B.; Vargas, P. Magnetic Stirling Cycle for Qubits with Anisotropy near the Quantum Critical Point. Technologies 2023, 11, 169.

Abstract

We studied the performance of a quantum magnetic Stirling cycle that uses a working substance composed of two entangled antiferromagnetic qubits (J) under the influence of an external magnetic field (Bz) and an uniaxial anisotropy field (K) along the total spin in the y-direction. The efficiency and work were calculated as a function of Bz and for different values of the anisotropy constant K given hot and cold reservoir temperatures. The anisotropy has been shown to extend the region of the external magnetic field in which the Stirling cycle is more efficient compared to the ideal case.

Keywords

Entangled qubits; magnetic cycle; quantum thermodynamics; Stirling cycle

Subject

Physical Sciences, Thermodynamics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.