Submitted:
07 October 2023
Posted:
08 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacological Activities
2.2.1. Anti-inflammatory Activity
2.2.2. Ulcerogenicity
2.2.3. Acute toxicity
2.3. Analgesic activity
2.4. Antimicrobial Activity
2.5. The binding affinity of the synthesized 7 compound into FabH, and prostaglandin H2 synthase receptor.
3. Materials and methods
3.1. Chemistry
3.2. Pharmacological screening
3.2.1. Animals
3.2.2. Anti-inflammatory Activity
3.2.2.1. Ulcerogenic activity
3.2.2.2. Acute Toxicity
3.3. Analgesic activity
3.4. Antimicrobial Screening
3.4.1. Microorganisms species
- a)
- Gram-negative bacteria, Escherichia coli, Salmonella typhi.
- b)
- Gram-positive bacteria, Bacillus subtilis, Staphylococcus aureus.
- Fungi: Aspergillus Niger.
- Yeast: Candida albicans, Sacchromyces.
3.4.2. Medium
3.5. Molecular docking study
3.5.1. Method
3.5.2. Validation of the docking accuracy for beta-Ketoacyl-acyl carrier protein synthase III (FabH) receptor
3.5.3. Validation of the docking accuracy for prostaglandin H2 synthase receptors
Statistical analysis
4. Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Katrusiak, A.; Skierska, U.; Katrusiak, A. Azido-tetrazolo tautomers of methylated azolopyridazines. J. Mol. Str. 2005, 751, 65–73. [Google Scholar] [CrossRef]
- Jubete, G.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. Pyrido [2,3-d] pyrimidin-7 (8 H)-ones: synthesis and biomedical applications. Molecules. 2019, 24, 4161–4182. [Google Scholar] [CrossRef]
- Sayed, H.H.; Abbas, H.S.; Morsi, E.M.H.; Amr, A.E.; Abdelwahad, N.A.M. Antimicrobial activity of some synthesized glucopyranosyl-pyrimidine carbonitrile and fused pyrimidine systems. Acta Pharm. 2010, 60, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Amr, A.E.; Ashraf, M.M.; Salwa, F.M.; Nagla, A.A.; Hammam, A.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem. 2006, 14, 5481–5488. [Google Scholar] [CrossRef]
- Mohamed, S.F.; Flefel, E.M.; Amr, A.E.; Abd El-Shafy, D.N. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur. J. Med. Chem. 2010, 45, 1494–1501. [Google Scholar] [CrossRef]
- Manzoor, S.; Almarghalani, D.A.; William James, A.; Raza, M.K.; Kausar, T.; Nayeem, S.M.; Hoda, N.; Shah Z., A. Synthesis and Pharmacological Evaluation of Novel Triazole-Pyrimidine Hybrids as Potential Neuroprotective and Anti-neuroinflammatory Agents. Pharm. Res. 2023, 40, 167–185. [Google Scholar] [CrossRef]
- Wang, H.; Cui, E.; Li, J.; Ma, X.; Jiang, X.; Du, S.; Qian, S.; Du, L. Design and synthesis of novel indole and indazole-piperazine pyrimidine derivatives with anti-inflammatory and neuroprotective activities for ischemic stroke treatment. Eur. J. Med. Chem. 2022, 241, 114597. [Google Scholar] [CrossRef]
- Al-Omar, M.A.; Amr, A.E.; Al-Salahi, R.A. Anti-inflammatory, Analgesic, Anticonvulsant and Antiparkinsonian Activities of Some Pyridine Derivatives Using 2,6-Disubstituted Isonicotinic Acid Hydrazides. Arch. Pharm. 2010, 343, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.A.; Jan, M.S.; Shbeer, M.A.; Al-Ghorbani, M.; Rauf, A.; Wilairatana, P.; Mannan, A.; Sadiq, A.; Farooq, U.; Rashid, U. Evaluation of pyrimidine/pyrrolidine-sertraline based hybrids as multitarget anti-Alzheimer agents: In-vitro, in-vivo, and computational studies. Biomed. Pharmacother. 2023, 159, 114239. [Google Scholar] [CrossRef] [PubMed]
- Gangjee, A.; Adair, O.O.; Queener, S.F. Synthesis and biological evaluation of 2,4-diamino-6-(arylaminomethyl)pyrido[2,3-d]-pyrimidines as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase and as antiopportunistic infection and antitumor agents. J. Med. Chem. 2003, 46, 5074–5082. [Google Scholar] [CrossRef]
- Elzahabi, H.S.; Nossier,E. S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem. 2018, 33, 546–555. [Google Scholar] [CrossRef]
- Amr, A.E.; Ali, K.A.; Abdalla, M.M. Cytotoxic, antioxidant activities and structure activity relationship of some newly synthesized terpenoidaloxaliplatin analogs. Eur. J. Med. Chem. 2009, 44, 901–907. [Google Scholar] [CrossRef]
- Ibrahim, D.A.; Ismail, N.S. Design, synthesis and biological study of novel pyrido [2,3-d] pyrimidine as anti-proliferative CDK2 inhibitors. Eur. J. Med. Chem. 2011, 46, 5825–5832. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; He, H.; Ang, W.; Yang, Y.H.; Yang, J.Z.; Lin, Y.N. Syntheses and Cell-Based Phenotypic Screen of Novel 7-Amino pyrido [2,3-d] pyrimidine -6- carbonitrile Derivatives as Potential Antiproliferative Agents. Molecules, 2012, 17, 2351–2366. [Google Scholar] [CrossRef] [PubMed]
- Mojahidi, S.; Rakib, E.; Sekkak, H.; Abouricha, S.; Benchat, N.; Mousse, H.A.; Zyad, A. Synthesis and in-vitro cytotoxic evaluation of novel pyridazin-4-one derivatives. Arch. Pharm. 2010, 343, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Butnariu, R.M.; Mangalagiu, I.I. New pyridazine derivatives: synthesis, chemistry and biological activity. Bioorg. Med. Chem. 2009, 17, 2823–2829. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Sui, X.; Deng, X.Q.; Quan, Y.C.; Quan, Z.S. Synthesis and anticonvulsant activity of a new 6-alkoxy-[1,2,4]triazolo[4,3-b]pyridazine. Eur. J. Med. Chem. 2010, 45, 1746–1752. [Google Scholar] [CrossRef]
- Nagawade, R.R.; Khanna, V.V.; Bhagwat, S.S.; Shinde, D.B. Synthesis of new series of 1-Aryl-1,4-dihydro-4-oxo-6-methyl pyridazine-3-carboxylic acid as potential antibacterial agents. Eur. J. Med. Chem. 2005, 40, 1325–1330. [Google Scholar] [CrossRef]
- Van Laar, M.; Volkerts, E.R.; Verbaten, M. Subchronic effects of the GABA-agonist lorazepam and the 5HT 2A/2C antagonist ritanserin on driving performance, slow wave sleep and daytime sleepiness in healthy volunteers. Psychopharmacology. 2001, 154, 189–197. [Google Scholar] [CrossRef]
- Amr, A.E.; Hegab, M.I.; Agami, A.; Abdalla, M.M.E. Synthesis and Reactions of Some Fused Oxazinone, Pyrimidinone, Thiopyrimidinone, and Triazinone Derivatives with a Thiophene Ring as Analgesic, Anticonvulsant, and Antiparkinsonian Agents. Monatsh. Chem. 2003, 134, 1395–1409. [Google Scholar] [CrossRef]
- Harb, A.F.; Abbas, H.H.; Mostafa, F.H. Pyrazoles as building blocks in heterocyclic synthesis: Synthesis of pyrazolo [3,4-d]pyrimidine pyrazolo[3,4-e][1,4]diazepine, pyrazolo [3,4-d][1,2,3]triazine and pyrolo [4,3-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives. J. Iran. Chem. Soc. 2005, 2, 115–123. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, J.S.; Hwang, K.J.; Kim, Y.K.; Kim, Y.S.; Park, N.G.; Shin, E.J.; Lee, S.H. Synthesis and characterization of phosphorescent iridium complexes of 6-chloro-3-phenylpyridazine and 3-chloro-6-(3′-methoxy-phenyl)-4-methyl-pyridazine. Current Applied Physics. 2005, 5, 43–46. [Google Scholar] [CrossRef]
- Hernández-Pérez, M.; Rabanal, R.M.; De la Torre, M.C.; Rodriguez, B. Analgesic, anti-inflammatory, antipyretic and haematological effects of aethiopinone, an o-naphthoquinone diterpenoid from Salvia aethiopis roots and two hemisynthetic derivatives. planta Med. 1995, 61, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, H.; Shirota, H.; kobayashi, S.; Yamagishi, Y.; Yamada, K.; Yamatsu, I.; Katayama, K. Synthesis and anti-inflammatory activities of 3- (3,5-di-tert-butyl-4-hydroxybenzylidene) pyrrolidin-2-ones. J. Med. Chem. 1987, 30, 1995–1998. [Google Scholar] [CrossRef] [PubMed]
- Sztaricskai, F.; Takács, E.I.; Pusztai, F.; Szabó, G.; Csípõ, I. Antiulcer effect of the N- and O-beta-D-glucopyranosides of 5-aminosalicylic acid. Arch. Pharm. 1999, 332, 321–326. [Google Scholar] [CrossRef]
- Sohel, M.; Sayed, A.; Azizul, I. Cytotoxic and antimicrobial activities of two new synthetic 2'-oxygenated flavones reported from Andrographis Viscosula. J. Serb. Chem. Soc. 2007, 72, 321–329. [Google Scholar] [CrossRef]
- Bahashwan, S.A. Pharmacological studies of some pyrimidino derivatives. Afr. J. Pharm. Pharmacol. 2011, 5, 527–531. [Google Scholar] [CrossRef]
- Loll, P.J.; Picot, D.; Ekabo, O.; Garavito, R.M. Synthesis and Use of Iodinated Nonsteroidal Anti-inflammatory Drug Analogs as Crystallographic Probes of the Prostaglandin H2 Synthase Cyclooxygenase Active Site. Biochemistry, 1996, 35, 7330–7340. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Janson, C.A.; Smith, W.W.; Head, M.; Lonsdale, J.; Konstantinidis, A.K. Refined structures of beta-ketoacyl-acyl carrier protein synthase III. J. Mol. Biol. 2001, 307, 341–356. [Google Scholar] [CrossRef]









| Compd. No. | Dose (mg/kg)a | ||
| 10 | 25 | 50 | |
| Control | 0/4 | 0/4 | 0/4 |
| 7 | 0/4(0) | 0/4(0) | 0/4(0) |
| 11 | 0/4(0) | 0/4(0) | 0/4(0) |
| Indonethacin | 1/4(1.2 ± 0.3)b.c | 2/4(1.5 ± 0.23b.c | 4/4(1.9 ± 0.3)b.c |
| Compound No. | LD50[mg/kg] |
|---|---|
| 4b | 1.94 ± 0.01 |
| 5a | 2.01 ± 0.02 |
| 7 | 1.25 ± 0.03 |
| 9b | 2.23 ± 0.01 |
| 11 | 1.14 ± 0.01 |
| Indomethacin | 1.81 ± 0.02 |
| Tested Comp. No. | Diameter of inhibition Zone (mm)a (MIC values are in µg/mL) | ||||||
| Microorganism | |||||||
| Bacteria Gram –ve |
Bacteria Gram +ve | Fungi | Yeast | ||||
| E. Coli | S. typhi | B. subtitls | S. aureus | A. niger | C. Albicans | Sacchromyces | |
| Control (DMSO/DMF) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4a | 6 | 4 | 7 | 10 | 9 | 11 | 13 |
| 4b | 13 | 14 | 12 | 16 | 15 | 9 | 15 |
| 5a | 14 | 13 | 14 | 17 | 16 | 11 | 17 |
| 5b | 8 | 7 | 8 | 5 | 12 | 10 | 14 |
| 7 | 26 | 23 | 21 | 29 | 30 | 18 | 28 |
| 9a | 10 | 8 | 11 | 7 | 13 | 11 | 15 |
| 9b | 15 | 13 | 13 | 17 | 18 | 12 | 18 |
| 11 | 25 | 21 | 20 | 28 | 29 | 16 | 27 |
| Streptomycinb | 28 | 26 | 25 | 30 | 32 | 20 | 31 |
| Erythromycinb | 10 | 8 | 21 | 17 | 19 | 6 | 9 |
| Ligands | Hydrogen bonds between atoms of ligands and amino acids of receptor |
S- score (binding energy) (kcal/mol) |
||||
| ligands Atoms |
Receptor | Type | Distance (Å) | |||
| Atoms | Residues | |||||
| FabH Receptor | ||||||
| MLC | H 4701 | O 2225 | Arg 151 | H-donor | 2.15 | -13.96 |
| N 4697 | OG 439 | Thr 28 | H-acceptor | 2.99 | ||
| O 4706 | NH 2241 | Arg 151 | H-acceptor | 2.93 | ||
| O 4743 | ND 3645 | Asn 247 | H-acceptor | 3.09 | ||
| 7 | H 4736 | O 4486 | Phe 304 | H-donor | 2.01 | -14.38 |
| N 4722 | N 1659 | Cys 112 | H-acceptor | 2.83 | ||
| N 4698 | ND 3645 | Asn 247 | H-acceptor | 2.52 | ||
| N 4722 | N 4508 | Gly 306 | H-acceptor | |||
| Prostaglandin H2 Synthase Receptor | ||||||
| IMM | O 8914 | NH 1437 | ARG 120 | H-donor | 2.67 | -12.53 |
| 7 | O 8906 | OH 5754 | TYR 385 | H-donor | 2.97 | -13.34 |
| H 8926 | O 7926 | MET 522 | H-donor | 2.35 | ||
| O 8906 | OG 8049 | Ser 530 | H-donor | 2.37 | ||
| N 8887 | NH 1437 | ARG 120 | H-acceptor | 1.05 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).