Submitted:
03 October 2023
Posted:
04 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Assessment using Imaging
2.1. Fluorescein Angiography & Indocyanine green angiography
2.2. Fundus Autofluorescence
2.3. Optical Coherence Tomography
2.4. Multicolor Confocal Scanning Laser Ophthalmoscopy
2.5. Optical Coherence Tomography Angiography
3. Assessment through Visual Function
3.1. Multifocal Electroretinogram (ERG) for mapping progression
3.2. Microperimetry for retinal sensitivity for severity of degeneration
4. Ongoing trends in management and research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Financial Disclosure
References
- Klaver CCW: Age-Specific Prevalence and Causes of Blindness and Visual Impairment in an Older Population. Archives of Ophthalmology. 1998, 116:653. [CrossRef]
- Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, Wong TY: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014, 2:e106–16. [CrossRef]
- Korb CA, Kottler UB, Wolfram C, et al.: Prevalence of age-related macular degeneration in a large European cohort: results from the population-based Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol. 2014, 252:1403–11. [CrossRef]
- Friedman DS, O’Colmain BJ, Muñoz B, et al.: Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004, 122:564–72. [CrossRef]
- Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR: The estimated prevalence and incidence of late stage age related macular degeneration in the UK. British Journal of Ophthalmology. 2012, 96:752–6. [CrossRef]
- Colijn JM, Buitendijk GHS, Prokofyeva E, et al.: Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future. Ophthalmology. 2017, 124:1753–63. [CrossRef]
- Gillies MC, Campain A, Barthelmes D, et al.: Long-Term Outcomes of Treatment of Neovascular Age-Related Macular Degeneration: Data from an Observational Study. Ophthalmology. 2015, 122:1837–45. [CrossRef]
- Heier JS, Pieramici D, Chakravarthy U, et al.: Visual Function Decline Resulting from Geographic Atrophy. Ophthalmol Retina. 2020, 4:673–88. [CrossRef]
- Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY: Age-related macular degeneration. The Lancet. 2012, 379:1728–38. [CrossRef]
- Cheng AM, Joshi S, Banoub RG, Saddemi J, Chalam K V: Faricimab Effectively Resolves Intraretinal Fluid and Preserves Vision in Refractory, Recalcitrant, and Nonresponsive Neovascular Age-Related Macular Degeneration. Cureus. Published Online First: 7 June 2023. [CrossRef]
- Bakri SJ, Thorne JE, Ho AC, Ehlers JP, Schoenberger SD, Yeh S, Kim SJ: Safety and Efficacy of Anti-Vascular Endothelial Growth Factor Therapies for Neovascular Age-Related Macular Degeneration: A Report by the American Academy of Ophthalmology. Ophthalmology. 2019, 126:55–63. [CrossRef]
- Rosenfeld PJ, Brown DM, Heier JS, et al.: Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006, 355:1419–31. [CrossRef]
- Maguire MG, Martin DF, Ying G, et al.: Five-Year Outcomes with Anti–Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology. 2016, 123:1751–61. [CrossRef]
- Grunwald JE, Pistilli M, Daniel E, et al.: Incidence and Growth of Geographic Atrophy during 5 Years of Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2017, 124:97–104. [CrossRef]
- Grunwald JE, Daniel E, Huang J, et al.: Risk of Geographic Atrophy in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology. 2014, 121:150–61. [CrossRef]
- Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K: Seven-Year Outcomes in Ranibizumab-Treated Patients in ANCHOR, MARINA, and HORIZON. Ophthalmology. 2013, 120:2292–9. [CrossRef]
- Sadda SR, Tuomi LL, Ding B, Fung AE, Hopkins JJ: Macular Atrophy in the HARBOR Study for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2018, 125:878–86. [CrossRef]
- Abdelfattah NS, Zhang H, Boyer DS, Sadda SR: PROGRESSION OF MACULAR ATROPHY IN PATIENTS WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION UNDERGOING ANTIVASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY. Retina. 2016, 36:1843–50. [CrossRef]
- Bhisitkul RB, Desai SJ, Boyer DS, Sadda SR, Zhang K: Fellow Eye Comparisons for 7-Year Outcomes in Ranibizumab-Treated AMD Subjects from ANCHOR, MARINA, and HORIZON (SEVEN-UP Study). Ophthalmology. 2016, 123:1269–77. [CrossRef]
- Gemenetzi M, Lotery AJ, Patel PJ: Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. Eye. 2017, 31:1–9. [CrossRef]
- Spooner KL, Fraser-Bell S, Cozzi M, et al.: Macular Atrophy Incidence and Progression in Eyes with Neovascular Age-Related Macular Degeneration Treated with Vascular Endothelial Growth Factor Inhibitors Using a Treat-and-Extend or a Pro Re Nata Regimen. Ophthalmology. 2020, 127:1663–73. [CrossRef]
- Bailey C, Scott LJ, Rogers CA, et al.: Intralesional Macular Atrophy in Anti–Vascular Endothelial Growth Factor Therapy for Age-Related Macular Degeneration in the IVAN Trial. Ophthalmology. 2019, 126:75–86. [CrossRef]
- Gillies MC, Hunyor AP, Arnold JJ, et al.: Macular Atrophy in Neovascular Age-Related Macular Degeneration. Ophthalmology. 2020, 127:198–210. [CrossRef]
- Christakis PG, Agrón E, Klein ML, et al.: Incidence of Macular Atrophy after Untreated Neovascular Age-Related Macular Degeneration. Ophthalmology. 2020, 127:784–92. [CrossRef]
- Schmitz-Valckenberg S, Sadda S, Staurenghi G, Chew EY, Fleckenstein M, Holz FG: GEOGRAPHIC ATROPHY. Retina. 2016, 36:2250–64. [CrossRef]
- Capuano V, Miere A, Querques L, et al.: Treatment-Naïve Quiescent Choroidal Neovascularization in Geographic Atrophy Secondary to Nonexudative Age-Related Macular Degeneration. Am J Ophthalmol. 2017, 182:45–55. [CrossRef]
- Pfau M, Möller PT, Künzel SH, et al.: Type 1 Choroidal Neovascularization Is Associated with Reduced Localized Progression of Atrophy in Age-Related Macular Degeneration. Ophthalmol Retina. 2020, 4:238–48. [CrossRef]
- Heimes B, Lommatzsch A, Zeimer M, Gutfleisch M, Spital G, Dietzel M, Pauleikhoff D: Long-term visual course after anti-VEGF therapy for exudative AMD in clinical practice evaluation of the German reinjection scheme. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2011, 249:639–44. [CrossRef]
- Wightman AJ, Guymer RH: Reticular pseudodrusen: current understanding. Clin Exp Optom. 2019, 102:455–62. [CrossRef]
- Hill DW: Fluorescein angiography in fundus diagnosis. Br Med Bull. 1970, 26:161–5. [CrossRef]
- Wald KJ, Elsner AE, Wolf S, Staurenghi G, Weiter JJ: Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration. Int Ophthalmol Clin. 1994, 34:311–25. [CrossRef]
- Sarks SH: Ageing and degeneration in the macular region: a clinico-pathological study. British Journal of Ophthalmology. 1976, 60:324–41. [CrossRef]
- Tomi A, Marin I: Angiofluorographic aspects in age-related macular degeneration. J Med Life. 2014, 7 Spec No. 4:4–17.
- NOVOTNY HR, ALVIS DL: A Method of Photographing Fluorescence in Circulating Blood in the Human Retina. Circulation. 1961, 24:82–6. [CrossRef]
- Schneider U, Sherif-Adel S, Gelisken F, Kreissig I: Indocyanine green angiography and transmission defects. Acta Ophthalmol Scand. 2009, 75:653–6. [CrossRef]
- Ozkaya A, Alagoz C, Garip R, Alkin Z, Perente I, Yazici AT, Taskapili M: The role of indocyanine green angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting. Eye. 2016, 30:958–65. [CrossRef]
- Meira J, Marques ML, Falcão-Reis F, Rebelo Gomes E, Carneiro Â: Immediate Reactions to Fluorescein and Indocyanine Green in Retinal Angiography: Review of Literature and Proposal for Patient’s Evaluation. Clinical Ophthalmology. 2020, Volume 14:171–8 . [CrossRef]
- Holz FG, Sadda SR, Staurenghi G, et al.: Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration. Ophthalmology. 2017, 124:464–78. [CrossRef]
- Jaffe GJ, Schmitz-Valckenberg S, Boyer D, et al.: Randomized Trial to Evaluate Tandospirone in Geographic Atrophy Secondary to Age-Related Macular Degeneration: The GATE Study. Am J Ophthalmol. 2015, 160:1226–34. [CrossRef]
- Schmitz-Valckenberg S, Sahel J-A, Danis R, et al.: Natural History of Geographic Atrophy Progression Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression Study). Ophthalmology. 2016, 123:361–8. [CrossRef]
- Hopkins J, Walsh A, Chakravarthy U: Fundus autofluorescence in age-related macular degeneration: an epiphenomenon? Invest Ophthalmol Vis Sci. 2006, 47:2269–71. [CrossRef]
- Schmitz-Valckenberg S, Fleckenstein M, Scholl HPN, Holz FG: Fundus autofluorescence and progression of age-related macular degeneration. Surv Ophthalmol. 2009, 54:96–117. [CrossRef]
- Spaide RF, Curcio CA, Zweifel SA: Drusen, an old but new frontier. Retina. 2010, 30:1163–5. [CrossRef]
- Curcio CA: Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Investigative Opthalmology & Visual Science. 2018, 59:AMD182. [CrossRef]
- Ferris FL, Davis MD, Clemons TE, et al.: A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005, 123:1570–4. [CrossRef]
- Davis MD, Gangnon RE, Lee L-Y, et al.: The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol. 2005, 123:1484–98. [CrossRef]
- Ferris FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR: Clinical Classification of Age-related Macular Degeneration. Ophthalmology. 2013, 120:844–51. [CrossRef]
- Chen L, Messinger JD, Ferrara D, Freund KB, Curcio CA: Stages of Drusen-Associated Atrophy in Age-Related Macular Degeneration Visible via Histologically Validated Fundus Autofluorescence. Ophthalmol Retina. 2021, 5:730–42. [CrossRef]
- Suzuki M, Curcio CA, Mullins RF, Spaide RF: REFRACTILE DRUSEN: Clinical Imaging and Candidate Histology. Retina. 2015, 35:859–65. [CrossRef]
- Balaratnasingam C, Cherepanoff S, Dolz-Marco R, et al.: Cuticular Drusen: Clinical Phenotypes and Natural History Defined Using Multimodal Imaging. Ophthalmology. 2018, 125:100–18. [CrossRef]
- Lima LH, Laud K, Freund KB, Yannuzzi LA, Spaide RF: Acquired vitelliform lesion associated with large drusen. Retina. 2012, 32:647–51. [CrossRef]
- Balaratnasingam C, Cherepanoff S, Dolz-Marco R, et al.: Cuticular Drusen: Clinical Phenotypes and Natural History Defined Using Multimodal Imaging. Ophthalmology. 2018, 125:100–18. [CrossRef]
- Sakurada Y, Parikh R, Gal-Or O, et al.: CUTICULAR DRUSEN: Risk of Geographic Atrophy and Macular Neovascularization. Retina. 2020, 40:257–65. [CrossRef]
- Spaide RF, Curcio CA: Drusen characterization with multimodal imaging. Retina. 2010, 30:1441–54. [CrossRef]
- Shijo T, Sakurada Y, Tanaka K, et al.: Drusenoid Pigment Epithelial Detachment: Genetic and Clinical Characteristics. Int J Mol Sci. 2021, 22:. [CrossRef]
- Yoneyama S, Sakurada Y, Mabuchi F, Imasawa M, Sugiyama A, Kubota T, Iijima H: Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014, 252:1435–41. [CrossRef]
- Ueda-Arakawa N, Ooto S, Nakata I, Yamashiro K, Tsujikawa A, Oishi A, Yoshimura N: Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration. Am J Ophthalmol. 2013, 155:260-269.e2. [CrossRef]
- Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF: Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology. 2010, 117:1775–81. [CrossRef]
- Zhou Q, Daniel E, Maguire MG, et al.: Pseudodrusen and Incidence of Late Age-Related Macular Degeneration in Fellow Eyes in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016, 123:1530–40. [CrossRef]
- Suzuki M, Sato T, Spaide RF: Pseudodrusen subtypes as delineated by multimodal imaging of the fundus. Am J Ophthalmol. 2014, 157:1005–12. [CrossRef]
- Shijo T, Sakurada Y, Yoneyama S, Sugiyama A, Kikushima W, Tanabe N, Iijima H: Prevalence and characteristics of pseudodrusen subtypes in advanced age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017, 255:1125–31. [CrossRef]
- Lee MY, Yoon J, Ham D-I: Clinical features of reticular pseudodrusen according to the fundus distribution. Br J Ophthalmol. 2012, 96:1222–6. [CrossRef]
- Kim JH, Chang YS, Kim JW, Lee TG, Kim CG: PREVALENCE OF SUBTYPES OF RETICULAR PSEUDODRUSEN IN NEWLY DIAGNOSED EXUDATIVE AGE-RELATED MACULAR DEGENERATION AND POLYPOIDAL CHOROIDAL VASCULOPATHY IN KOREAN PATIENTS. Retina. 2015, 35:2604–12. [CrossRef]
- Spaide RF: Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration. Retina. 2013, 33:1800–8. [CrossRef]
- Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N: Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina. 2013, 33:490–7. [CrossRef]
- Schmitz-Valckenberg S, Brinkmann CK, Alten F, et al.: Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011, 52:7640–6. [CrossRef]
- Wolf-Schnurrbusch UEK, Wittwer V V, Ghanem R, Niederhaeuser M, Enzmann V, Framme C, Wolf S: Blue-light versus green-light autofluorescence: lesion size of areas of geographic atrophy. Invest Ophthalmol Vis Sci. 2011, 52:9497–502. [CrossRef]
- Forte R, Querques G, Querques L, Leveziel N, Benhamou N, Souied EH: Multimodal evaluation of foveal sparing in patients with geographicatrophy due to age-related macular degeneration. Retina. 2013, 33:482–9. [CrossRef]
- Fleckenstein M, Schmitz-Valckenberg S, Martens C, Kosanetzky S, Brinkmann CK, Hageman GS, Holz FG: Fundus autofluorescence and spectral-domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. Invest Ophthalmol Vis Sci. 2011, 52:3761–6. [CrossRef]
- Hassenstein A, Meyer CH: Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography - a review. Clin Exp Ophthalmol. 2009, 37:130–43. [CrossRef]
- Charbel Issa P, Finger RP, Holz FG, Scholl HPN: Multimodal Imaging Including Spectral Domain OCT and Confocal Near Infrared Reflectance for Characterization of Outer Retinal Pathology in Pseudoxanthoma Elasticum. Investigative Opthalmology & Visual Science. 2009, 50:5913. [CrossRef]
- Weinberger AWA, Lappas A, Kirschkamp T, Mazinani BAE, Huth JK, Mohammadi B, Walter P: Fundus Near Infrared Fluorescence Correlates with Fundus Near Infrared Reflectance. Investigative Opthalmology & Visual Science. 2006, 47:3098. [CrossRef]
- Sakurada Y, Tanaka K, Fragiotta S: Differentiating drusen and drusenoid deposits subtypes on multimodal imaging and risk of advanced age-related macular degeneration. Jpn J Ophthalmol. 2023, 67:1–13. [CrossRef]
- Schmitz-Valckenberg S, Alten F, Steinberg JS, et al.: Reticular drusen associated with geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011, 52:5009–15. [CrossRef]
- Smith RT, Sohrab MA, Busuioc M, Barile G: Reticular macular disease. Am J Ophthalmol. 2009, 148:733-743.e2. [CrossRef]
- Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N: Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina. 2013, 33:490–7. [CrossRef]
- Wu Z, Ayton LN, Luu CD, Baird PN, Guymer RH: Reticular Pseudodrusen in Intermediate Age-Related Macular Degeneration: Prevalence, Detection, Clinical, Environmental, and Genetic Associations. Invest Ophthalmol Vis Sci. 2016, 57:1310–6. [CrossRef]
- Lengyel I, Csutak A, Florea D, Leung I, Bird AC, Jonasson F, Peto T: A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina. Ophthalmology. 2015, 122:1340–7. [CrossRef]
- Youngquist RC, Carr S, Davies DE: Optical coherence-domain reflectometry: a new optical evaluation technique. Opt Lett. 1987, 12:158–60. [CrossRef]
- Sadda SR, Guymer R, Holz FG, et al.: Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology. 2018, 125:537–48. [CrossRef]
- Schmidt-Erfurth U, Waldstein SM: A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res. 2016, 50:1–24. [CrossRef]
- Gass JD: Drusen and disciform macular detachment and degeneration. Arch Ophthalmol. 1973, 90:206–17. [CrossRef]
- Klein ML, Ferris FL, Armstrong J, et al.: Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology. 2008, 115:1026–31. [CrossRef]
- Ferris FL, Davis MD, Clemons TE, et al.: A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005, 123:1570–4. [CrossRef]
- Christenbury JG, Folgar FA, O’Connell R V, Chiu SJ, Farsiu S, Toth CA, Age-related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group: Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology. 2013, 120:1038–45. [CrossRef]
- Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR: Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology. 2013, 120:2656–65. [CrossRef]
- Wu Z, Luu CD, Ayton LN, et al.: Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. Ophthalmology. 2014, 121:2415–22. [CrossRef]
- Lek JJ, Brassington KH, Luu CD, et al.: Subthreshold Nanosecond Laser Intervention in Intermediate Age-Related Macular Degeneration: Study Design and Baseline Characteristics of the Laser in Early Stages of Age-Related Macular Degeneration Study (Report Number 1). Ophthalmol Retina. 2017, 1:227–39. [CrossRef]
- Schaal KB, Rosenfeld PJ, Gregori G, Yehoshua Z, Feuer WJ: Anatomic Clinical Trial Endpoints for Nonexudative Age-Related Macular Degeneration. Ophthalmology. 2016, 123:1060–79. [CrossRef]
- Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M: Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology. 2014, 121:1079–91. [CrossRef]
- Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y: Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology. 2010, 117:303-12.e1. [CrossRef]
- Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB: Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2017, 58:BIO211–26. [CrossRef]
- Ferrara D, Silver RE, Louzada RN, Novais EA, Collins GK, Seddon JM: Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2017, 58:3519–29. [CrossRef]
- Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR: Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology. 2013, 120:2656–65. [CrossRef]
- Christenbury JG, Folgar FA, O’Connell R V, Chiu SJ, Farsiu S, Toth CA, Age-related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group: Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology. 2013, 120:1038–45. [CrossRef]
- Veerappan M, El-Hage-Sleiman A-KM, Tai V, et al.: Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration. Ophthalmology. 2016, 123:2554–70. [CrossRef]
- Abdelfattah NS, Zhang H, Boyer DS, Rosenfeld PJ, Feuer WJ, Gregori G, Sadda SR: Drusen Volume as a Predictor of Disease Progression in Patients With Late Age-Related Macular Degeneration in the Fellow Eye. Invest Ophthalmol Vis Sci. 2016, 57:1839–46. [CrossRef]
- Schaal KB, Gregori G, Rosenfeld PJ: En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy. Am J Ophthalmol. 2017, 174:145–54. [CrossRef]
- Monés J, Biarnés M, Trindade F: Hyporeflective wedge-shaped band in geographic atrophy secondary to age-related macular degeneration: an underreported finding. Ophthalmology. 2012, 119:1412–9. [CrossRef]
- Wu Z, Luu CD, Ayton LN, et al.: Fundus autofluorescence characteristics of nascent geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015, 56:1546–52. [CrossRef]
- Wu Z, Luu CD, Ayton LN, et al.: Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. Ophthalmology. 2014, 121:2415–22. [CrossRef]
- Guymer RH, Rosenfeld PJ, Curcio CA, et al.: Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration: Classification of Atrophy Meeting Report 4. Ophthalmology. 2020, 127:394–409. [CrossRef]
- Niu S, de Sisternes L, Chen Q, Rubin DL, Leng T: Fully Automated Prediction of Geographic Atrophy Growth Using Quantitative Spectral-Domain Optical Coherence Tomography Biomarkers. Ophthalmology. 2016, 123:1737–50. [CrossRef]
- Staurenghi G, Sadda S, Chakravarthy U, Spaide RF, International Nomenclature for Optical Coherence Tomography (IN•OCT) Panel: Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology. 2014, 121:1572–8. [CrossRef]
- Litts KM, Ach T, Hammack KM, Sloan KR, Zhang Y, Freund KB, Curcio CA: Quantitative Analysis of Outer Retinal Tubulation in Age-Related Macular Degeneration From Spectral-Domain Optical Coherence Tomography and Histology. Invest Ophthalmol Vis Sci. 2016, 57:2647–56. [CrossRef]
- Steinberg JS, Auge J, Fleckenstein M, Holz FG, Schmitz-Valckenberg S: Longitudinal analysis of reticular drusen associated with age-related macular degeneration using combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging. Ophthalmologica. 2015, 233:35–42. [CrossRef]
- Wu Z, Ayton LN, Luu CD, Baird PN, Guymer RH: Reticular Pseudodrusen in Intermediate Age-Related Macular Degeneration: Prevalence, Detection, Clinical, Environmental, and Genetic Associations. Invest Ophthalmol Vis Sci. 2016, 57:1310–6. [CrossRef]
- Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA: Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014, 19:071412. [CrossRef]
- Spaide RF, Koizumi H, Pozzoni MC: Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008, 146:496–500. [CrossRef]
- Tan ACS, Fleckenstein M, Schmitz-Valckenberg S, Holz FG: Clinical Application of Multicolor Imaging Technology. Ophthalmologica. 2016, 236:8–18. [CrossRef]
- Pang CE, Freund KB: Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology. Am J Ophthalmol. 2014, 158:171-178.e2. [CrossRef]
- Ben Moussa N, Georges A, Capuano V, Merle B, Souied EH, Querques G: MultiColor imaging in the evaluation of geographic atrophy due to age-related macular degeneration. Br J Ophthalmol. 2015, 99:842–7. [CrossRef]
- De Bats F, Mathis T, Mauget-Faÿsse M, Joubert F, Denis P, Kodjikian L: PREVALENCE OF RETICULAR PSEUDODRUSEN IN AGE-RELATED MACULAR DEGENERATION USING MULTIMODAL IMAGING. Retina. 2016, 36:46–52. [CrossRef]
- Alten F, Clemens CR, Heiduschka P, Eter N: Characterisation of reticular pseudodrusen and their central target aspect in multi-spectral, confocal scanning laser ophthalmoscopy. Graefes Arch Clin Exp Ophthalmol. 2014, 252:715–21. [CrossRef]
- Bischoff PM, Flower RW: Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue? Doc Ophthalmol. 1985, 60:235–91. [CrossRef]
- Zhu L, Zheng Y, von Kerczek CH, Topoleski LDT, Flower RW: Feasibility of extracting velocity distribution in choriocapillaris in human eyes from ICG dye angiograms. J Biomech Eng. 2006, 128:203–9. [CrossRef]
- Flower RW: Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. Invest Ophthalmol Vis Sci. 1993, 34:2720–9.
- Yu L, Chen Z: Doppler variance imaging for three-dimensional retina and choroid angiography. J Biomed Opt. 2010, 15:016029. [CrossRef]
- An L, Wang RK: In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008, 16:11438–52. [CrossRef]
- Fingler J, Schwartz D, Yang C, Fraser SE: Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express. 2007, 15:12636–53. [CrossRef]
- Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y: Optical coherence angiography. Opt Express. 2006, 14:7821–40. [CrossRef]
- Borrelli E, Shi Y, Uji A, Balasubramanian S, Nassisi M, Sarraf D, Sadda SR: Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. Am J Ophthalmol. 2018, 196:34–43. [CrossRef]
- Alten F, Heiduschka P, Clemens CR, Eter N: Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 2016, 254:2165–73. [CrossRef]
- Vujosevic S, Toma C, Villani E, et al.: Quantitative choriocapillaris evaluation in intermediate age-related macular degeneration by swept-source optical coherence tomography angiography. Acta Ophthalmol. 2019, 97:e919–26. [CrossRef]
- Lee B, Ahn J, Yun C, Kim S-W, Oh J: Variation of Retinal and Choroidal Vasculatures in Patients With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2018, 59:5246–55. [CrossRef]
- Borrelli E, Souied EH, Freund KB, et al.: REDUCED CHORIOCAPILLARIS FLOW IN EYES WITH TYPE 3 NEOVASCULARIZATION AND AGE-RELATED MACULAR DEGENERATION. Retina. 2018, 38:1968–76. [CrossRef]
- Müller PL, Pfau M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG: Optical Coherence Tomography-Angiography in Geographic Atrophy. Ophthalmologica. 2021, 244:42–50. [CrossRef]
- Thulliez M, Zhang Q, Shi Y, et al.: Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. Ophthalmol Retina. 2019, 3:478–88. [CrossRef]
- Alagorie AR, Nassisi M, Verma A, Nittala M, Corradetti G, Velaga S, Sadda SR: Relationship between proximity of choriocapillaris flow deficits and enlargement rate of geographic atrophy. Graefes Arch Clin Exp Ophthalmol. 2020, 258:995–1003. [CrossRef]
- Nassisi M, Baghdasaryan E, Borrelli E, Ip M, Sadda SR: Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. PLoS One. 2019, 14:e0212563. [CrossRef]
- Biesemeier A, Taubitz T, Julien S, Yoeruek E, Schraermeyer U: Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol Aging. 2014, 35:2562–73. [CrossRef]
- Choi W, Moult EM, Waheed NK, et al.: Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology. 2015, 122:2532–44. [CrossRef]
- McLeod DS, Taomoto M, Otsuji T, Green WR, Sunness JS, Lutty GA: Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2002, 43:1986–93.
- McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA: Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009, 50:4982–91. [CrossRef]
- Spaide RF, Fujimoto JG, Waheed NK: IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. 2015, 35:2163–80. [CrossRef]
- Sunness JS, Rubin GS, Zuckerbrod A, Applegate CA: Foveal-Sparing Scotomas in Advanced Dry Age-Related Macular Degeneration. J Vis Impair Blind. 2008, 102:600–10.
- Owsley C, Jackson GR, White M, Feist R, Edwards D: Delays in rod-mediated dark adaptation in early age-related maculopathy. Ophthalmology. 2001, 108:1196–202. [CrossRef]
- Neelam K, Nolan J, Chakravarthy U, Beatty S: Psychophysical function in age-related maculopathy. Surv Ophthalmol. 2009, 54:167–210. [CrossRef]
- Dimitrov PN, Robman LD, Varsamidis M, Aung KZ, Makeyeva GA, Guymer RH, Vingrys AJ: Visual function tests as potential biomarkers in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011, 52:9457–69. [CrossRef]
- Feigl B, Lovie-Kitchin J, Brown B: Objective functional assessment of age-related maculopathy: a special application for the multifocal electroretinogram. Clin Exp Optom. 2005, 88:304–12. [CrossRef]
- Hood DC, Odel JG, Chen CS, Winn BJ: The multifocal electroretinogram. J Neuroophthalmol. 2003, 23:225–35. [CrossRef]
- Lai TYY, Chan W-M, Lai RYK, Ngai JWS, Li H, Lam DSC: The clinical applications of multifocal electroretinography: a systematic review. Surv Ophthalmol. 2007, 52:61–96. [CrossRef]
- Palmowski AM, Sutter EE, Bearse MA, Fung W: [Multifocal electroretinogram (MF-ERG) in diagnosis of macular changes. Example: senile macular degeneration]. Ophthalmologe. 1999, 96:166–73. [CrossRef]
- Feigl B, Brown B, Lovie-Kitchin J, Swann P: Cone-mediated multifocal electroretinogram in early age-related maculopathy and its relationships with subjective macular function tests. Curr Eye Res. 2004, 29:327–36. [CrossRef]
- Chen C, Wu L, Wu D, Huang S, Wen F, Luo G, Long S: The local cone and rod system function in early age-related macular degeneration. Doc Ophthalmol. 2004, 109:1–8. [CrossRef]
- Li J, Tso MO, Lam TT: Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration. Br J Ophthalmol. 2001, 85:287–90. [CrossRef]
- Heinemann-Vernaleken B, Palmowski AM, Allgayer R, Ruprecht KW: Comparison of different high resolution multifocal electroretinogram recordings in patients with age-related maculopathy. Graefes Arch Clin Exp Ophthalmol. 2001, 239:556–61. [CrossRef]
- Huang S, Wu D, Jiang F, Ma J, Wu L, Liang J, Luo G: The multifocal electroretinogram in age-related maculopathies. Doc Ophthalmol. 2000, 101:115–24. [CrossRef]
- Gerth C, Hauser D, Delahunt PB, Morse LS, Werner JS: Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch Ophthalmol. 2003, 121:1404–14. [CrossRef]
- Parisi V, Perillo L, Tedeschi M, Scassa C, Gallinaro G, Capaldo N, Varano M: Macular function in eyes with early age-related macular degeneration with or without contralateral late age-related macular degeneration. Retina. 2007, 27:879–90. [CrossRef]
- Palmowski AM, Sutter EE, Bearse MA, Fung W: [Multifocal electroretinogram (MF-ERG) in diagnosis of macular changes. Example: senile macular degeneration]. Ophthalmologe. 1999, 96:166–73. [CrossRef]
- Falsini B, Piccardi M, Iarossi G, Fadda A, Merendino E, Valentini P: Influence of short-term antioxidant supplementation on macular function in age-related maculopathy: a pilot study including electrophysiologic assessment. Ophthalmology. 2003, 110:51–60; discussion 61. [CrossRef]
- Neveu MM, Tufail A, Dowler JG, Holder GE: A comparison of pattern and multifocal electroretinography in the evaluation of age-related macular degeneration and its treatment with photodynamic therapy. Doc Ophthalmol. 2006, 113:71–81. [CrossRef]
- Mackay AM, Brown MC, Hagan RP, Fisher AC, Grierson I, Harding SP: Deficits in the electroretinogram in neovascular age-related macular degeneration and changes during photodynamic therapy. Doc Ophthalmol. 2007, 115:69–76. [CrossRef]
- Feigl B, Lovie-Kitchin J, Brown B: Objective functional assessment of age-related maculopathy: a special application for the multifocal electroretinogram. Clin Exp Optom. 2005, 88:304–12. [CrossRef]
- Feigl B, Brown B, Lovie-Kitchin J, Swann P: Cone- and rod-mediated multifocal electroretinogram in early age-related maculopathy. Eye (Lond). 2005, 19:431–41. [CrossRef]
- Feigl B, Brown B, Lovie-Kitchin J, Swann P: The rod-mediated multifocal electroretinogram in aging and in early age-related maculopathy. Curr Eye Res. 2006, 31:635–44. [CrossRef]
- Wu Z, Ayton LN, Guymer RH, Luu CD: Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013, 54:2800–6. [CrossRef]
- Gerth C, Delahunt PB, Alam S, Morse LS, Werner JS: Cone-mediated multifocal electroretinogram in age-related macular degeneration: progression over a long-term follow-up. Arch Ophthalmol. 2006, 124:345–52. [CrossRef]
- Campa C, Hagan R, Sahni JN, Brown MC, Beare NA V, Heimann H, Harding SP: Early multifocal electroretinogram findings during intravitreal ranibizumab treatment for neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011, 52:3446–51. [CrossRef]
- Moschos MM, Brouzas D, Chatziralli IP, Ladas I: Ranibizumab in the treatment of choroidal neovascularisation due to age-related macular degeneration: an optical coherence tomography and multifocal electroretinography study. Clin Exp Optom. 2011, 94:268–75. [CrossRef]
- Moschos MM, Brouzas D, Apostolopoulos M, Koutsandrea C, Loukianou E, Moschos M: Intravitreal use of bevacizumab (Avastin) for choroidal neovascularization due to ARMD: a preliminary multifocal-ERG and OCT study. Multifocal-ERG after use of bevacizumab in ARMD. Doc Ophthalmol. 2007, 114:37–44. [CrossRef]
- Karanjia R, Eng KT, Gale J, Sharma S, ten Hove MW: Electrophysiological effects of intravitreal Avastin (bevacizumab) in the treatment of exudative age-related macular degeneration. Br J Ophthalmol. 2008, 92:1248–52. [CrossRef]
- Park JY, Kim SH, Park TK, Ohn Y-H: Multifocal electroretinogram findings after intravitreal bevacizumab injection in choroidal neovascularization of age-related macular degeneration. Korean J Ophthalmol. 2011, 25:161–5. [CrossRef]
- Chandramohan A, Stinnett SS, Petrowski JT, Schuman SG, Toth CA, Cousins SW, Lad EM: VISUAL FUNCTION MEASURES IN EARLY AND INTERMEDIATE AGE-RELATED MACULAR DEGENERATION. Retina. 2016, 36:1021–31. [CrossRef]
- Wu Z, Ayton LN, Luu CD, Guymer RH: Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration. JAMA Ophthalmol. 2015, 133:442–8. [CrossRef]
- Midena E, Vujosevic S, Convento E, Manfre’ A, Cavarzeran F, Pilotto E: Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol. 2007, 91:1499–503. [CrossRef]
- Luu CD, Dimitrov PN, Robman L, et al.: Role of flicker perimetry in predicting onset of late-stage age-related macular degeneration. Arch Ophthalmol. 2012, 130:690–9. [CrossRef]
- Wu Z, Ayton LN, Luu CD, Guymer RH: Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration. JAMA Ophthalmol. 2015, 133:442–8. [CrossRef]
- Wu Z, Ayton LN, Guymer RH, Luu CD: Comparison between multifocal electroretinography and microperimetry in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014, 55:6431–9. [CrossRef]
- Meleth AD, Mettu P, Agrón E, Chew EY, Sadda SR, Ferris FL, Wong WT: Changes in retinal sensitivity in geographic atrophy progression as measured by microperimetry. Invest Ophthalmol Vis Sci. 2011, 52:1119–26. [CrossRef]
- Querques L, Querques G, Forte R, Souied EH: Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration. Am J Ophthalmol. 2012, 153:1110–5. [CrossRef]
- Landa G, Su E, Garcia PMT, Seiple WH, Rosen RB: Inner segment-outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration. Retina. 2011, 31:364–70. [CrossRef]
- Hariri AH, Tepelus TC, Akil H, Nittala MG, Sadda SR: Retinal Sensitivity at the Junctional Zone of Eyes With Geographic Atrophy Due to Age-Related Macular Degeneration. Am J Ophthalmol. 2016, 168:122–8. [CrossRef]
- Gorusupudi A, Nelson K, Bernstein PS: The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration. Adv Nutr. 2017, 8:40–53. [CrossRef]
- Rosenberg D, Deonarain DM, Gould J, et al.: Efficacy, safety, and treatment burden of treat-and-extend versus alternative anti-VEGF regimens for nAMD: a systematic review and meta-analysis. Eye (Lond). 2023, 37:6–16. [CrossRef]
- Patel PJ, Villavicencio P, Hanumunthadu D: Systematic Review of Neovascular Age-Related Macular Degeneration Disease Activity Criteria Use to Shorten, Maintain or Extend Treatment Intervals with Anti-VEGF in Clinical Trials: Implications for Clinical Practice. Ophthalmol Ther. 2023, 12:2323–46. [CrossRef]
- Cheng AM, Joshi S, Banoub RG, Saddemi J, Chalam K V: Faricimab Effectively Resolves Intraretinal Fluid and Preserves Vision in Refractory, Recalcitrant, and Nonresponsive Neovascular Age-Related Macular Degeneration. Cureus. 2023, 15:e40100. [CrossRef]
- ElSheikh RH, Chauhan MZ, Sallam AB: Current and Novel Therapeutic Approaches for Treatment of Neovascular Age-Related Macular Degeneration. Biomolecules. 2022, 12:. [CrossRef]
- Constable IJ, Pierce CM, Lai C-M, et al.: Phase 2a Randomized Clinical Trial: Safety and Post Hoc Analysis of Subretinal rAAV.sFLT-1 for Wet Age-related Macular Degeneration. EBioMedicine. 2016, 14:168–75. [CrossRef]
- Rakoczy EP, Lai C-M, Magno AL, et al.: Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet. 2015, 386:2395–403. [CrossRef]
- Lukacs R, Schneider M, Nagy ZZ, et al.: Seven-year outcomes following intensive anti-vascular endothelial growth factor therapy in patients with exudative age-related macular degeneration. BMC Ophthalmol. 2023, 23:110. [CrossRef]
- Pegcetacoplan (Syfovre) for geographic atrophy in age-related macular degeneration. Med Lett Drugs Ther. 2023, 65:49–50. [CrossRef]
- Biarnés M, Garrell-Salat X, Gómez-Benlloch A, et al.: Methodological Appraisal of Phase 3 Clinical Trials in Geographic Atrophy. Biomedicines. 2023, 11:.
- Cruz-Pimentel M, Wu L: Complement Inhibitors for Advanced Dry Age-Related Macular Degeneration (Geographic Atrophy): Some Light at the End of the Tunnel? J Clin Med. 2023, 12:.
- Borchert GA, Shamsnajafabadi H, Hu ML, et al.: The Role of Inflammation in Age-Related Macular Degeneration-Therapeutic Landscapes in Geographic Atrophy. Cells. 2023, 12:.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
