Submitted:
01 October 2023
Posted:
03 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Preliminaries
3. Main Results
4. Application to Three Polynomials
4.1. Ornstein-Uhlenbeck Generator
4.2. Jacobi Generator
4.2.1. Beta Approximation
4.2.2. Normal Approximation
4.3. Romanovski-Routh Generator
5. Conclusions and Future Works
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Azmoodeh, E.; Campese, S. Poly Fourth moment theorems for Markov diffusion generators. J. Funct. Anal. 2014, 266, 2341–2359. [Google Scholar] [CrossRef]
- Bakry, D.; Gentil, I.; Ledoux, M. Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science ]; 348. Springer: Cham. MR3155209, 2014. [Google Scholar]
- Bourguin, S.; Campese, S.; Leonenko, N.; Taqqu, M.S. Four moment theorems on Markov chaos. Ann. probab. 2019, 47, 1417–1446. [Google Scholar] [CrossRef]
- Chen, L. H. Y.; Goldstein, L.; Shao, Q-M. Normal apprtoximation by Stein’s method; Probability and its Applications (New York); Springer: Heidelberg, 2011. [Google Scholar]
- Chaggara, H.; Koef, W. On linearization coefficients of jacobi polynomials. Appl. Math. Lett. 2010, 23, 609–614. [Google Scholar] [CrossRef]
- Kim, Y.T.; Park, H.S. An Edeworth expansion for functionals of Gaussian fields and its applications. Stoch. Proc. Appl. 2018, 44, 312–320. [Google Scholar]
- Kim, Y.T.; Park, H.S. Normal approximation when a chaos grade is greater than two. Prob Stat Lett. 2022, 44, 312–320. [Google Scholar] [CrossRef]
- Ledoux, M. Chaos of a Markov operator and the fourth moment condition, Ann. Probab. 2012, 40, 2439–2459. [Google Scholar] [CrossRef]
- Nourdin, I. Lectures on Gaussian approximations with Malliavin calculus. In Séminaire de Probabilités XLV; Lecture Notes in Mathematics 2078; 2013. [Google Scholar] [CrossRef]
- Nourdin, I.; Peccati, G. Stein’s method on Wiener Chaos. Probab. Theory Relat. Fields 2009, 145, 75–118. [Google Scholar] [CrossRef]
- Nourdin, I.; Peccati, G. Stein’s method and exact Berry-Esseen asymptotics for functionals of Gaussian fields. Ann. Probab. 2009, 37, 2231–2261. [Google Scholar] [CrossRef]
- Nourdin, I.; Peccati, G. Stein’s method meets Malliavin calculus: A short survey with new estimates. In Recent development in Stochastic dynamics and stochasdtic analysis, Volume 8 of Interdiscip. math. SCi. 207–236 World Sci. Publ.: Hackensack, 2010.
- Nourdin, I.; Peccati, G. Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality; Cambridge Tracts in mathematica, Volume 192, Cambridge University Press, Cambridge, 2012.
- Nourdin, I.; Peccati, G. The optimal fourth moment theorem. Proc. Amer. Math. Soc.. 2015, 143, 3123–3133. [Google Scholar] [CrossRef]
- Nualart, D. Malliavin calculus and related topics. Probability and its Applications, 2nd ed.; Springer: Berlin, 2006. [Google Scholar]
- Nualart, D. Malliavin Calculus and Its Applications; Regional conference series in Mathmatics Number 110, 2008.
- Nualart, D.; Ortiz-Latorre, S. Central limit theorems for multiple stochastic integrals and malliavin calculus. Ann. Probab. 2008, 33, 177–193. [Google Scholar] [CrossRef]
- Nualart, D.; Peccati, G. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab., 2005, 33, 177–193. [Google Scholar] [CrossRef]
- Rahman, M. A non-negative representation of the linearizatioon coefficients of the product of Jacobi polynomials. Canad. J. Math. 1981, 33, 915–928. [Google Scholar] [CrossRef]
- Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probabiltiy; Volume II: Probability Theory, 583–602. University of California Press: Berkeley, California, 1972. [Google Scholar]
- Stein, C. Approximate Computation of Expectations; IMS, Hayward, CA. MR882007, 1986.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
