Submitted:
29 September 2023
Posted:
29 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Formalism of the Thermodynamics of Irreversible Processes in the Linear Region
3. Thermodynamic Formalism of Complex Processes
4. Extension to Biophysical-Chemical Systems
5. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; Wiley-VCH: Weinheim, 2006. [Google Scholar]
- Nicolis, G.; Nicolis, C. Foundations of Complex Systems. Nonlinear Dynamics. Statistical Physics. Information and Prediction; World Scientific Publishing Co. Pte. Ltd: Singapore, 2007. [Google Scholar]
- Prigogine, I. Etude Thermodynamique des Phenomenes irreversibles, Theses d´agregation de l´Enseignement superieur de l´Universite Libre de Bruxelles, Dunod, Editeurs Paris y Editions Desoer Liege, 1947.
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, 1962. [Google Scholar]
- Katchalsky, A.; Curran, P. Non-Equilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, 1965. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium systems; Wiley: New York, 1977. [Google Scholar]
- Beck, C.; Schlögl, F. Thermodynamics of Chaotic Systems: An Introduction; Cambridge University Press: New York, 1993. [Google Scholar]
- Gaspard, P.; Henneaux, M.; Lambert, F.; Editors. From dynamical systems theory to nonequilibrium thermodynamics. Symposium Henri Poincaré, Proceedings International Solvay Institutes for Physics and Chemistry, Brussels, 2007, 97-119.
- Nicolis, G.; De Decker, Y. Stochastic approach to irreversible thermodynamics. Chaos 2017, 27, 104615. [Google Scholar] [CrossRef] [PubMed]
- Nicolis, G.; Nicolis C. What can we learn from thermodynamics on stochastic and chaotic dynamics? in Stochastic and chaotic dynamics in the lakes; D. Broomhead, E. Luchinskaya, P. Mc Clintock and I. Mullin (eds), American Institute of Physics, 2000.
- Onsager, L. Reciprocal Relations in Irreversible Processes I. Physical Review 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes I. Physical Review 1931, 38, 2265–2279. [Google Scholar] [CrossRef]
- Coveney, P.; Highfields R. The Arrow of Time: A Voyage Through Science to Solve Time’s Greatest Mystery, Fawcett, 1st Ed., 1991.
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Wiley: New York, 1961. [Google Scholar]
- Andronov, A.; Vit, A.; Chaitin, C. Theory of Oscillators; Pergamon Press: Oxford, 1966. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics, From Heat Engines to Dissipative Structures; John Wiley & Sons, 1998. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamics of Structure, Stability and Fluctuations; Wiley: New York, 1971. [Google Scholar]
- Mawhin, J. The early reception in France of the work of Poincaré and Lyapunov in the qualitative theory of differential equations. Philosophia Scientiæ 1996, 1, 119–133. [Google Scholar]
- Mansilla, R. & Nieto-Villar, J.M. (coordinadores). La Termodinámica de los sistemas complejos; UNAM, 2017.
- Strogatz, S.H. Nonlinear dynamics and chaos; Westview Press: Boulder, 2000. [Google Scholar]
- Nieto-Villar, J.M.; Betancourt-Mar, J.; Izquierdo-Kulich, E.; Tejera E. Complejidad y Auto-organización en Patrones Naturales; editorial UH, 2013.
- Nicolis, G. Fluctuations Around Nonequilibrium States in Open Nonlinear Systems. J. Stat. Phys. 1972, 6, 195. [Google Scholar] [CrossRef]
- Nicolis, G.; Daems, D. Probabilistic and thermodynamic aspects of dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 1998, 8, 311–320. [Google Scholar] [CrossRef]
- Kuznetsov, Y. A. Elements of applied bifurcation theory; vol. 112, Springer Science & Business Media, 2013.
- Prigogine, I. Time, Structure, and Fluctuations. Science 1975, 201, 777–785. [Google Scholar] [CrossRef]
- Lloyd, S. Measures of complexity: a no exhaustive list. IEEE, Control Systems 2001, 21, 7–8. [Google Scholar]
- Bruers, S. Classification and Discussion of Macroscopic Entropy Production Principles. <http://arxiv.org/abs/cond-mat/0604482>, 2006.
- Nieto-Villar, J. M.; Velarde, M. G. Chaos and Hyperchaos in a Model of the Belousov-Zhabotinsky Reaction in a Batch Reactor. Journal of Non-Equilibrium Thermodynamics, 2001, 25, 269–278. [Google Scholar] [CrossRef]
- Nieto-Villar, J.M.; Quintana, R.; Rieumont, J. Entropy Production Rate as a Lyapunov Function in Chemical Systems: Proof. Physica Scripta 2003, 68, 163–165. [Google Scholar] [CrossRef]
- Ledesma-Durán, A.; Santamaría-Holek, I. Energy and Entropy in Open and Irreversible Chemical Reaction–Diffusion Systems with Asymptotic Stability. Journal of Non-Equilibrium Thermodynamics 2022, 47, 311–328. [Google Scholar] [CrossRef]
- Nieto-Villar, J.M.; García, J.M.; Rieumont, J. Entropy Production Rate as an Evolutive Criteria in Chemical Systems. I. Oscillating Reactions. Physica Scripta 1995, 5, 30. [Google Scholar] [CrossRef]
- García, J.M.; Nieto-Villar, J.M.; Rieumont, J. Entropy Production Rate as an Evolutive Criteria in Chemical Systems. II. Chaotic Reactions. Physica Scripta 1996, 53, 643. [Google Scholar] [CrossRef]
- Nieto-Villar, J.M.; Izquierdo-Kulich, E.; Quintana, R.; Rieumont, J. Una aproximación del criterio evolutivo de Prigogine a sistemas químicos. Rev. Mex. Fis. 2013, 59, 527. [Google Scholar]
- Nieto-Villar, J.M.; Rieumont, J.; Mansilla, R. The entropy production rate a bridge between thermodynamics and chemical kinetics. Rev. Mex. de Fís. E 2022, 19, 010212. [Google Scholar] [CrossRef]
- Hoover, W. G.; Posch, H.A. Second-law irreversibility and phase-space dimensionality loss from time-reversible nonequilibrium steady-state Lyapunov spectra. Physical Review E. 1994, 49, 1913. [Google Scholar] [CrossRef]
- Hoover, W.G. Nosé–Hoover nonequilibrium dynamics and statistical mechanics. Molecular Simulation. 2007, 33, 13–19. [Google Scholar] [CrossRef]
- Gaspard, P. Time asymmetry in nonequilibrium statistical mechanics. Advances in Chemical Physics. 2007, 135, 83–134. [Google Scholar]
- Varma, A.; Morbidelli, M.; Wu, H. Parametric sensitivity in chemical systems; ed.; Cambridge University Press; 2005.
- Edelson, D.; Allara, D.L. A computational analysis of the alkane pyrolysis mechanism: Sensitivity analysis of individual reaction steps. International Journal of Chemical Kinetics. 1980, 12, 605–621. [Google Scholar] [CrossRef]
- Edelson, D.; Thomas, V.M. Sensitivity analysis of oscillating reactions. 1. The period of the Oregonator. The Journal of Physical Chemistry. 1981, 85, 1555–1558. [Google Scholar] [CrossRef]
- Edelson, D. Sensitivity analysis of proposed mechanisms for the Briggs-Rauscher oscillating reaction. The Journal of Physical Chemistry. 1983, 87, 1204–1208. [Google Scholar] [CrossRef]
- Turányi, T. Sensitivity analysis of complex kinetic systems. Tools and applications. Journal of mathematical chemistry. 1990, 5, 203–248. [Google Scholar] [CrossRef]
- Gyorgy, L.; Turányi, T.; Field, R. J. Mechanistic Details of the Oscillatory Belousov-Zhabotinsky Reaction. J. Phys. Chem. 1990, 94, 7162–7170. [Google Scholar] [CrossRef]
- Turányi, T.; Gyorgy, L.; Field, R. J. Analysis and Simplification of the GTF Model of the Belousov-Zhabotinsky Reaction. J. Phys. Chem. 1993, 97, 1931–1941. [Google Scholar] [CrossRef]
- Rieumont-Briones, J.; Nieto-Villar, J.M.; García, J.M. The Rate of Entropy Production as a Mean to Determine the Most Important Reaction Steps in Belousov-Zhabotinsky Reaction. Anales Química, International Edition, 1997, 93, 147–152. [Google Scholar]
- Nieto-Villar, J.M.; Velarde, M.G. Chaos and Hyperchaos in a Model of the Belousov-Zhabotinsky Reaction in a Batch Reactor. Journal of Non-Equilibrium Thermodynamics 2001, 25, 269–278. [Google Scholar] [CrossRef]
- Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Farmer, J. D. Dimension, fractal measures, and chaotic dynamics. In Evolution of Order and Chaos: in Physics, Chemistry, and Biology Proceedings of the International Symposium on Synergetics at Schloß Elmau, Bavaria, April 26–May 1, 1982, 228-246. 26 April.
- Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Physical Review Letters 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Rényi, A. On measures of information and entropy. In Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability. 1960, 1, 547–561. [Google Scholar]
- Farmer, J. D. Information dimension and the probabilistic structure of chaos. Zeitschrift für Naturforschung A 1982, 37, 1304–1326. [Google Scholar] [CrossRef]
- Farmer, J. D.; Ott, E.; Yorke, J. A. The dimension of chaotic attractors. Physica D: Nonlinear Phenomena, 1983, 7, 153–180. [Google Scholar] [CrossRef]
- Frederickson, P.; Kaplan, J. L.; Yorke, E. D.; Yorke, J. A. The Liapunov dimension of strange attractors. Journal of differential equations, 1983, 49, 185–207. [Google Scholar] [CrossRef]
- Betancourt-Mar, J. A.; Rodríguez-Ricard, M.; Mansilla, R.; Cocho, G.; Nieto-Villar, J.M. Entropy production: evolution criteria, robustness and fractal dimension. Rev. Mex. Fis 2016, 62, 164–167. [Google Scholar]
- Miquel, J.; Economos, A.C.; Johnson, J.E. A systems analysis—thermodynamic view of cellular and organismic aging. In Aging and Cell Function.; Springer US, 1984; pp. 247–280. [Google Scholar]
- Balmer, RT. Entropy and aging in biological systems. Chemical Engineering Communications. 1982, 17, 171–181. [Google Scholar] [CrossRef]
- Aoki, I. Entropy principle for human development, growth and aging. Journal of theoretical biology. 1991, 150, 215–223. [Google Scholar] [CrossRef]
- Nieto-Villar, J.M.; Rieumont, J.; Quintana, R.; Miquel, J. Thermodynamic approach to the aging process of biological systems. Revista CENIC Ciencias Químicas. 2003, 34, 149–157. [Google Scholar]
- Triana, L.; Cocho, G.; Mansilla, R.; Nieto-Villar, J.M. Entropy production as a physical pacemaker of lifespan in mole-rats. International Journal of Aging Research, 2018, 1, 22. [Google Scholar]
- Betancourt-Mar, J. A.; Mansilla, R.; Cocho, G.; Nieto-Villar, J.M. On the relationship between aging & cancer. MOJ Gerontol Ger, 2018, 3, 163–168. [Google Scholar]
- Montemayor-Aldrete, J. A.; Márquez-Caballé, R. F.; del Castillo-Mussot, M.; &, *!!! REPLACE !!!*; Cruz-Peregrino, F.; Cruz-Peregrino, F. General Thermodynamic Efficiency Loss and Scaling Behavior of Eukaryotic Organisms. Biophysical Reviews and Letters 2020, 2020 15, 143–169. [Google Scholar] [CrossRef]
- Nieto-Villar, J. M.; Mansilla, R. Longevity, Aging and Cancer: Thermodynamics and Complexity. Foundations. 2022, 2, 664–680. [Google Scholar] [CrossRef]
- Michaelian, K. Non-equilibrium thermodynamic foundations of the origin of life. Foundations, 2022, 2, 308–337. [Google Scholar] [CrossRef]
- Molnar, J.; et al. Thermodynamic aspects of cancer: possible role of negative entropy in tumor growth, its relation to kinetic and genetic resistance. Letters in Drug Design & Discovery 2005, 26, 429–438. [Google Scholar]
- Luo, L. Entropy production in a cell and reversal of entropy flow as an anticancer therapy. Front. Phys. China 2009, 4, 122–136. [Google Scholar] [CrossRef]
- Lucia, U. Entropy generation and cell growth with comments for a thermodynamic anticancer approach. Physica A 2014, 406, 107–118. [Google Scholar] [CrossRef]
- Lucia, U.; Ponzetto, A.; and Deisboeck, T.S. A thermodynamic approach to the ‘mitosis/apoptosis’ ratio in cancer. Physica A: Statistical Mechanics and its Applications 2015, 436, 246–255. [Google Scholar] [CrossRef]
- Marín, D.; Sabater, B. The cancer Warburg effect may be a testable example of the minimum entropy production rate principle. Physical Biology 2017, 14, 024001. [Google Scholar] [CrossRef]
- Miranda, L. M.; Souza, A. M. Fractality in tumor growth at the avascular stage from a generalization of the logistic-Gompertz dynamics. Physica A: Statistical Mechanics and its Applications 2023, 2023, 128664. [Google Scholar] [CrossRef]
- Montero, S.; Martin, R.; Mansilla, R.; Cocho, G.; Nieto-Villar, J.M. Parameters Estimation in Phase-Space Landscape Reconstruction of Cell Fate: A Systems Biology Approach. Systems Biology. 2018, 125–170. [Google Scholar]
- Norton, L. Conceptual and Practical Implications of Breast Tissue Geometry: Toward a More Effective, Less Toxic Therapy. Oncologist 2005, 10, 370. [Google Scholar] [CrossRef]
- Izquierdo-Kulich, E.; Alonso-Becerra, E.; Nieto-Villar, J.M. Entropy production rate for avascular tumor growth. Journal of Modern Physics. 2011, 2, 615. [Google Scholar] [CrossRef]
- Izquierdo-Kulich, E.; Nieto-Villar, J. M. Morphogenesis and complexity of the tumor patterns. In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. 2013, 657-691.
- Landau, L.D.; Lifshitz, E.M. Curso de Física Teórica, Física Estadística, Vol. 5, Reverté, México, 1964.
- Betancourt-Mar, J.A.; Llanos-Pérez, J.A.; Cocho, G.; Mansilla, R.; Martin, R.; Montero, S.; Nieto-Villar, J.M. Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells. Physica A 2017, 473, 344. [Google Scholar] [CrossRef]
- Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M. Phase transition in tumor growth: I avascular development. Physica A: Statistical Mechanics and its Applications 2013, 392, 6616–6623. [Google Scholar] [CrossRef]
- Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; &, *!!! REPLACE !!!*; Nieto-Villar, J. M. Phase transitions in tumor growth: II prostate cancer cell lines. Physica A: Statistical Mechanics and its Applications 2015, 426, 88–92. [Google Scholar] [CrossRef]
- Llanos-Pérez, J. A.; Betancourt-Mar, J. A.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M. Phase transitions in tumor growth: III vascular and metastasis behavior. Physica A: Statistical Mechanics and its Applications 2016, 462, 560–568. [Google Scholar] [CrossRef]
- Martin, R. R.; Montero, S.; Silva, E.; Bizzarri, M.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M. Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations? Physica A: Statistical Mechanics and its Applications 2017, 486, 762–771. [Google Scholar] [CrossRef]
- Guerra, A.; et al. Phase transitions in tumor growth VI: Epithelial–Mesenchymalmal transition. Physica A: Statistical Mechanics and its Applications 2018, 499, 208–215. [Google Scholar] [CrossRef]
- Betancourt-Padron, P. J.; García-Medina, K.; Mansilla, R.; Nieto-Villar, J. M. Phase transition in tumor growth VIII: The spatiotemporal of avascular evolution. Revista Mexicana de Física 2020, 66, 856–862. [Google Scholar] [CrossRef]
- Nieto-Villar, J.M.; Mansilla, R. Ferroptosis as a Biological Phase Transition I: avascular and vascular tumor growth. European Journal of Biomedical and Pharmaceutical Sciences 2021, 8, 63–70. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
